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CLM-former for enhancing multi-
horizon time series forecasting and
load prediction in smart microgrids
using a robust transformer-based
model

S. Mozhgan Rahmatinia, Seyed-Majid Hosseini & Seyed-Amin Hosseini-Seno™

Accurate multi-horizon load forecasting is essential for the stability and efficiency of smart grid
operations, particularly in residential environments where electricity consumption patterns are
shaped by both long-term trends and short-term fluctuations. Transformer-based models such as
Autoformer have advanced forecasting accuracy by leveraging frequency-domain attention to
capture periodic behavior. However, they often struggle with rapidly changing, localized patterns
prevalent in real-world data. To address this challenge, we propose CLM-Former, a novel hybrid
deep learning architecture that integrates time series decomposition, an autocorrelation-based
attention mechanism, and a tailored subnetwork, CLM-subNet, which combines convolutional and
recurrent layers. This design enables the model to effectively capture both seasonal dependencies
and high-resolution variations in electricity usage, thereby enhancing its performance across multiple
forecasting horizons. Comprehensive evaluations on real-world smart meter data demonstrate the
robustness and adaptability of CLM-Former against a range of Transformer-based and deep learning
baselines. By effectively modeling both long-term periodic trends and short-term dynamics, CLM-
Former emerges as a promising tool for residential energy forecasting. Its robust performance offers
valuable implications for demand response, distributed scheduling, and the future management of
smart grids.

Keywords Smart grid, Load forecasting, Multihorizon time series prediction, Deep learning, Transformer,
Autoformer

Accurate load forecasting is a cornerstone of efficient and reliable smart grid (SG) operations. By providing
precise estimates of future electricity demand, load forecasting enables better strategic planning, resource
allocation, and cost control across power systems. It plays a key role in a wide range of smart grid applications,
including demand response, load balancing, cost optimization, theft detection, and anomaly detection in smart
meters (SMs) 2. Moreover, accurate forecasts contribute to reducing power generation costs and supporting grid
stability and sustainability through the integration of renewable energy sources®. Conversely, poor forecasting
can lead to grid imbalances, increased operational costs, and unanticipated outages®.

In recent years, the rapid deployment of smart grid technologies and smart metering infrastructures
has resulted in large volumes of granular consumption data. These data streams often exhibit nonlinear,
nonstationary, and seasonally fluctuating patterns. As a result, traditional statistical models such as autoregressive
integrated moving average (ARIMA) have shown limited effectiveness in such environments>®. Despite their
interpretability and widespread use, these models require extensive parameter tuning and are not well-suited to
capturing complex, time-varying dynamics’.

To address these shortcomings, machine learning techniques such as support vector regression (SVR) have
been introduced. SVR offers improved flexibility over traditional models and has been applied to various time
series forecasting tasks. However, its effectiveness is often hindered by sensitivity to kernel selection, challenges
in parameter optimization, and difficulties in capturing temporal dependencies in large-scale datasets.
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Deep learning has driven major advances in modeling complex, high-dimensional time series®’. In particular,
recurrent neural networks (RNNs)—including long short-term memory (LSTM)!? and gated recurrent units
(GRU)"—have shown strong ability to capture long-term temporal dependencies in load forecasting. The
integration of convolutional neural networks (CNNs) with RNNs has further enhanced the ability of these
models to extract local patterns while preserving sequential information. Despite their effectiveness, these
models often struggle with issues such as vanishing gradients, limited parallelization, and reduced performance
in very long-range forecasting.

Transformer architecture, originally developed for natural language processing'?, has recently been adopted
in time series forecasting due to its ability to capture global dependencies using self-attention mechanisms.
Unlike RNNs, Transformers enable parallel training and are not constrained by sequence length, which makes
them attractive for modeling complex temporal relationships in electricity demand data.

Nevertheless, vanilla Transformers suffer from high computational complexity (O(L2)), where L is the
sequence length). To address this, various Transformer variants have been proposed to improve efficiency. For
example, Reformer!'® employs locality-sensitive hashing to reduce memory usage, LogTrans!* uses log-sparse
attention to retain key dependencies, and Informer!” introduces ProbSparse attention to filter out low-impact
tokens. While these models significantly reduce computational demands, they often sacrifice prediction accuracy,
particularly when modeling fine-grained short-term fluctuations.

To further improve forecasting accuracy, Autoformer'® replaces the traditional attention mechanism with an
autocorrelation-based module that operates in the frequency domain. This allows the model to better capture
long-term periodic patterns while maintaining a lower time complexity of O(LlogL). Autoformer has shown
superior performance on seasonal time series, making it a promising solution for medium- and long-term
forecasting tasks. However, its reliance on periodicity limits its responsiveness to short-term variability and
abrupt local changes—characteristics commonly found in residential electricity consumption data.

Given these limitations, there is a growing need for forecasting models that not only preserve the benefits of
frequency-domain attention mechanisms but also effectively capture localized and short-term patterns. In this
study, we propose a novel forecasting architecture, CLM-Former, which addresses the weaknesses of previous
Transformer-based models by integrating temporal decomposition and a hybrid learning structure. Specifically,
our model incorporates a convolutional-LSTM subnetwork (CLM-subNet) designed to enhance short-term
pattern recognition while preserving long-term seasonal trends. The conceptual overview of CLM-Former is
illustrated in Fig. 1. As shown, the input time series is decomposed into seasonal and trend components in
every layer. The seasonal path is refined by the proposed CLM-subNet to capture short-term dynamics, while
the trend path undergoes lightweight processing. This targeted enhancement enables CLM-Former to effectively
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Fig. 1. Conceptual overview of CLM-Former. The input time series is decomposed (in every encoder/
decoder layer) into a seasonal component (processed via Auto-Correlation for long-term periodicity and
refined by the proposed CLM-subNet — CNN +LSTM — for short-term and localized dynamics) and a trend
component (lightweight processing). Outputs from both paths are aggregated to produce the final multi-
horizon prediction. This design allows CLM-Former to outperform pure decomposition-based Transformers
by explicitly addressing short-term fluctuations while preserving efficiency.
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model both long-term periodicity and localized fluctuations (see Sect. “Architectural overview” for the detailed
architecture in Fig. 3).

Key contributions and novelty
The proposed CLM-Former introduces several distinctive innovations that differentiate it from existing hybrid
CNN-LSTM-Transformer frameworks. The primary contributions of this work are:

o Architectural innovation: Instead of appending processing blocks, CLM-Former performs a targeted archi-
tectural modification by replacing the Feed-Forward Network (FFN) inside each Autoformer block with our
dedicated CLM-subNet. This subnetwork (1D-CNN > LSTM) is engineered to process only the seasonal com-
ponent. Crucially, it introduces a “bottleneck” design where the LSTM layer compresses the high-dimensional
features (from dy,oder to a compact hidden state), allowing for robust temporal modeling while maintaining
parameter efficiency comparable to, or even lower than, the standard convolutional baselines.

« Functional innovation: The CLM-subNet facilitates hierarchical learning on the seasonal data. The CNN
layers first capture high-frequency, local variations, and the LSTM layers then model the sequential depend-
encies among these extracted features. This dual mechanism provides a much richer temporal representation
than the simple point-wise transformations used in the original Autoformer.

« Conceptual integration: Our model creates a unique cross-domain synergy. It preserves Autoformer’s pow-
erful autocorrelation mechanism for identifying long-term periodicity in the frequency domain, while si-
multaneously introducing explicit time-domain analysis via the CLM-subNet to enhance sensitivity to local,
aperiodic fluctuations.

o Empirical contribution: Through comprehensive experiments on real-world smart microgrid data, we
demonstrate that CLM-Former consistently outperforms strong baselines, including Autoformer, Crossform-
er, and other deep learning models. Furthermore, our results confirm that this superior accuracy is achieved
without compromising computational efficiency, as the model retains the O(LlogL) complexity and exhibits
inference speeds comparable to the official Autoformer implementation.

The remainder of this paper is organized as follows. Section "Related works" presents a detailed review of related
work. Section “Problem definition” introduces the problem formulation. Section “Results and discussion”
describes the architecture of the proposed model. Experimental results and performance evaluations are
discussed in Sect. "Discussion of results”. Finally, Sect. “Limitations and future work” summarizes the findings
and outlines future research directions.

Related works

This section provides a detailed review of the state-of-the-art in time series forecasting for load prediction,
categorized by the underlying architectural approach. We focus on the evolution from recurrent models to the
diverse family of Transformer-based and graph-based architectures, highlighting the specific limitations that
motivate the design of our proposed CLM-Former.

Recurrent and convolutional models: Early deep learning efforts in load forecasting were dominated by
Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM)!® and Gated Recurrent
Unit (GRU)!! networks. Their strength lies in their memory-gated mechanism, which is designed to capture
temporal dependencies from sequential data. Many hybrid models combine CNNs with recurrent architectures
to improve local feature extraction!”. CNN-LSTM hybrids, for example, first extract short-term patterns via
convolution, then model long-term dependencies with LSTM!8. Other notable works include LSTNet!®, which
combines CNN and RNN layers with an autoregressive component to model both short-term local dependencies
and long-term periodic patterns. Despite their success, these models are inherently sequential, which limits
parallelization and can lead to challenges in capturing extremely long-range dependencies due to information
decay over time?’.

Transformer-Based Architectures: The Transformer architecture!? introduced a paradigm shift by replacing
recurrence with a self-attention mechanism, enabling the model to capture global dependencies in parallel.
This led to its widespread adogtion in time series forecasting. However, the vanilla Transformer’s quadratic
computational complexity O(L*) posed a significant bottleneck for long sequences. Consequently, research has
focused on developing more efficient Transformer variants, which can be broadly grouped as follows.

o Efficiency through Sparse Attention: A major line of research focused on reducing complexity by making the
self-attention mechanism sparse. Informer' introduced a ProbSparse attention mechanism to select only the
most significant queries. Reformer!'? employed locality-sensitive hashing (LSH) to cluster similar queries,
while LogTrans' used a logarithmic pattern to attend to tokens at different scales. While these methods
successfully reduce complexity to near-linear (O(LlogL)), their sparsity can come at the cost of information
loss, as critical but non-dominant tokens may be overlooked. For a conceptual overview of these different
attention strategies, a visual comparison is provided in Appendix A (Fig. 12).

o Frequency-domain approaches: A different approach to achieving efficiency and capturing periodicity was to
operate in the frequency domain. Autoformer!® pioneered this by replacing self-attention with an Autocorre-
lation mechanism, which measures sequence similarity based on their periodic patterns. This design proved
highly effective for time series with strong seasonality. Building on this, FEDformer?! introduced a frequen-
cy-enhanced block with Fourier and wavelet transforms. However, their strong focus on periodicity limits
responsiveness to aperiodic short-term fluctuations and abrupt changes — common in residential load data.
Additionally, recent studies have demonstrated the efficacy of combining attention mechanisms with fre-
quency-domain preprocessing. For instance, Rahmatinia?? proposed an attention-based deep learning model
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incorporating Fast Fourier Transform (FFT) for simultaneous multi-horizon prediction of load, price, and
wind power, showing improved accuracy over traditional RNNs. Building on these insights, CLM-Former ex-
tends the frequency-domain concept by integrating a learnable Auto-Correlation mechanism and specialized
sub-networks for enhanced feature extraction.

o Hybrid and multi-scale designs: To address the limitations of both sparse and frequency-based models, more
recent works have explored hybrid designs. Crossformer?® proposed a multi-scale attention mechanism to
capture dependencies across different temporal resolutions. Other models, such as TFTformer®, focus on
fusing various types of features (static, known-future, and observed) within the Transformer architecture to
improve interpretability and accuracy. More recently, this hybrid paradigm has evolved to explicitly integrate
convolutional modules for enhanced local feature modeling. For instance, Sun et al.>* proposed a framework
combining VMD decomposition, Informer, and a CNN-LSTM module to capture localized peak-valley pat-
terns in non-stationary load data. Similarly, Similarly, Li et al.*® introduced a hybrid model merging Temporal
Convolutional Networks (TCN) with channel-enhanced attention mechanisms to improve short-term load
prediction accuracy. Tang et al.? introduced an image-based forecasting approach that synergizes Trans-
formers for global pattern extraction with 2D-CNN's for local feature capture. Furthermore, addressing the
critical need for model transparency, Xu and Chen?” developed InterFormer, a probabilistic Transformer
architecture incorporating a local variable selection network to enhance interpretability in residential net load
forecasting. These models highlight a growing consensus on the necessity of specialized architectures that
can handle diverse data characteristics simultaneously. Most recently, Hong et al.?® introduced Patchformer,
which integrates a patch embedding mechanism to segment multivariate time series into sub-series patches,
effectively capturing both local and global semantic dependencies for long-term multi-energy forecasting.
These models highlight a trend towards creating specialized architectures that can handle diverse data char-
acteristics simultaneously.

o Graph-Based Models for Load Forecasting: An alternative line of research utilizes graph-based methods to
explicitly model the structural and spatial relationships between different time series, such as neighboring
households or interconnected grid components. For example, the EnGAT-BiLSTM framework® constructs a
dynamic knowledge graph from load data and employs graph attention mechanisms to weigh the influence of
neighboring nodes in its forecast. While powerful for capturing inter-series dependencies, the performance of
these models is heavily reliant on the quality of the predefined graph structure. They can be sensitive to noise
and face challenges in adapting to dynamically changing network topologies, although recent advancements
like the spatiotemporal attention mechanisms proposed by Lv et al.** have attempted to mitigate these issues
by dynamically weighing neighbor influence.

Research gap and motivation: Our review of the literature indicates that while significant progress has been
made, a key challenge remains: developing a single, robust model that can jointly and effectively model both
long-term, periodic patterns and short-term, aperiodic fluctuations without relying on a predefined spatial
structure. Our proposed CLM-Former is designed to address this specific gap. It retains the powerful frequency-
domain autocorrelation from Autoformer’® to capture seasonality while introducing a dedicated CNN-LSTM
subnetwork (CLM-subNet) to explicitly model the local, volatile patterns that other approaches often miss.

Problem definition

Long-term sequence time-series forecasting (LSTF) aims to predict multiple future time steps from historical
observations. It follows the input-l-predict-k paradigm: given a look-back window of length 1, forecast the next
k steps. The model inputs are represented as X * = {xL ..., x}| zf € R%}, and the outputs are represented as

{yt,...,yr}. Consequently, the aim is to find f(.) such that it generates the desired output for the next k time
steps (k being the prediction length) based on the inputs from the previous 1 time steps (1 being the sequence
length), as expressed in Eq. 1.

f(x1i7"'7:vf):{y]{7"'7yii} (1)

A common approach to analyzing time series data involves decomposing it into its fundamental components:
seasonal, trend, cyclical, and residual/random components. This decomposition aims to isolate and understand
the underlying patterns and trends within the time series.

o Seasonal Component: The seasonal component represents the cyclical variations in the time series that repeat
over a fixed period, such as monthly, quarterly, or yearly patterns. It captures the recurring fluctuations due
to seasonal factors.

o Trend Component: The trend component represents the long-term direction or underlying growth of the time
series. It captures the overall trend of the data over time, indicating whether it is increasing, decreasing, or
remaining relatively stable.

o Cyclical Component: The cyclical component encompasses the broader, nonseasonal fluctuations in the time
series that may not have a fixed periodicity. It captures the irregular patterns and trends that are not attributed
to seasonality or the overall trend.

o Residual/Random Component: The residual component represents the random or unpredictable fluctuations
in the time series, often referred to as "noise." It captures the deviations from the overall trend and seasonal
patterns.
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Figure 2 illustrates the decomposition of a time series into its constituent components. The original time series
(top panel) is decomposed into cyclical, seasonal, trend, and residual/random components (panels below). Each
component reveals a distinct pattern within the overall time series.

The trend represents the gradual shift in the values of a time series, causing the pattern to increase or
decrease over time. Time series that do not exhibit a trend are considered stationary, while those with a trend are
considered nonstationary. Trends are present in most real-world data, such as customer electricity consumption,
making these data nonstationary. Since forecasting the duration of cycles is challenging, the cyclical effect is
combined with the trend, forming the cyclical-trend component. This component is deterministic and represents
the long-term, nonstationary fluctuations in the time series. Additionally, seasonality refers to repeating patterns
in short, consecutive periods that maintain a stable magnitude and direction over time. This characteristic is also
deterministic and represents the periodic variations in the time series. The random or residual component is the
unexplainable part of the time series, which is stochastic and consists of the remaining series after removing the
seasonal and trend components.

Two main models are used to combine these four components to extract the underlying signal. The choice of
model depends on the characteristics of the time series:

o Additive Model: The additive model combines the four components by addition.
o Multiplicative Model: The multiplicative model combines the components via multiplication.

Each specific signal favors one of these models. Based on the characteristics of our electricity consumption data,
we utilize the additive model.

Architectural overview

Encoder-decoder architecture has emerged as a cornerstone of deep learning models for sequence processing
tasks. These architectures comprise an encoder module tasked with extracting a comprehensive representation
from the input sequence, followed by a decoder module that utilizes this representation to generate the desired
output sequence. The introduction of the transformer architecture!?, which incorporates multihead attention
mechanisms into the encoder-decoder framework, has revolutionized the capabilities of these networks,
propelling them to the forefront of various sequence processing applications.

This paper introduces CLM-Former, a novel deep learning framework for customer load forecasting. The
proposed architecture builds upon the vanilla transformer model'? with stacked autoencoders (SAEs)?! and
replaces the multihead attention mechanism with frequency-domain autocorrelation, inspired by Autoformer!®.
In our method, each encoder processes customer consumption sequences, extracts temporal-spatial
dependencies, and sends the refined representations to the decoder for future consumption prediction. The
consumption load of length L seq = I is directly fed into the encoder, but for the inputs of the decoders, the
load is divided into two parts—seasonal and cyclical—and then fed into the network. Additionally, decoders
utilize the seasonal pattern generated by the encoders to predict the output. The overall architecture of the CLM-
Former is illustrated in Fig. 3. Subsequently, we elaborate on each component of the architecture.
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Fig. 2. Time series data decomposition into primary components. Using an additive decomposition model, the
original time series (top panel) is separated into three distinct parts to isolate underlying patterns: (1) Trend
Component: Illustrates the long-term progression and growth of electricity consumption over the years. (2)
Seasonality Component: Captures the recurring, periodic fluctuations (e.g., annual cycles) with consistent
frequency. (3) Residual (Random) Component: Represents the irregular, stochastic noise remaining after
removing the trend and seasonal effects. This decomposition allows the model to process global trends and
local variations independently.
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Fig. 3. Overall architecture of CLM-Former. The model follows an Encoder-Decoder structure. (Top)
Encoder: Eliminates the long-term trend via Series Decomposition blocks and focuses on modeling the
seasonal patterns using Auto-Correlation and the proposed CLM-subNet. (Bottom) Decoder: Progressively
refines the trend and seasonal components. The CLM-subNet (highlighted in green) replaces the standard
feed-forward network to capture localized, high-frequency fluctuations within the seasonal component. Data
Flow: The arrows indicate the forward propagation, where the Decomposition blocks separate the series into
Trend (accumulated towards the output) and Seasonal (processed by CLM-subNet) parts.

Why CLM-subNet is critical for improving load forecasting?

Accurate residential load forecasting necessitates capturing both overarching global trends and intricate local
temporal dynamics within time series data. This section elucidates why the CLM-subNet is an indispensable
component in achieving this comprehensive predictive capability.

Residential load forecasting models must simultaneously capture long-term dependencies, seasonal patterns,
and rapid, short-term fluctuations due to the inherently complex nature of time series data in this domain.
While Autoformer, relying on frequency-domain autocorrelation, has shown commendable performance in
identifying long-term periodic patterns, its use of simple feed-forward layers for modeling seasonal components
introduces limitations in detecting local correlations and abrupt changes.

To overcome these limitations, the proposed model incorporates a combination of CNN and LSTM within
the CLM-subNet architecture. The CNN layers excel at extracting localized features, enabling the model to
identify short-term variations caused by instantaneous user behaviors and environmental conditions with high
precision. Meanwhile, LSTM layers, with their memory gating mechanism, are particularly adept at preserving
long-term dependencies and modeling the recurring patterns characteristic of seasonal data.

This powerful combination allows the CLM-Former model to effectively address both local and long-term
dynamics. By integrating the localized features extracted by CNN with the temporal dependencies captured by
LSTM, the model delivers optimized performance for forecasting residential electricity consumption time series.
This hybrid approach not only resolves the shortcomings of existing models in handling rapid fluctuations but
also significantly enhances prediction accuracy across diverse scenarios.

In essence, the CLM-subNet provides a unique and essential synergy for accurate residential electricity
consumption forecasting, a domain inherently prone to significant variations. It empowers the model to overcome
Autoformer’s limitations in detecting sudden changes and localized patterns, all while retaining Autoformer’s
excellent capabilities in modeling periodic and long-term trends. Integrating CNN and LSTM improves both
local and long-range feature extraction, leading to more robust and accurate multi-horizon predictions.

Computational complexity of CLM-former

While Autoformer, as the foundational architecture of CLM-Former, benefits from a computational complexity
of O(LlogL) due to its autocorrelation mechanism, the integration of the CLM-subNet introduces additional
computational operations. The CLM-subNet, composed of 1D Convolutional and LSTM layers, primarily
contributes to a linear complexity with respect to the sequence length L (i.e., O(L) or O(L x D?) depending
on architectural details).

Although these additional layers enhance the model’s ability to capture short-term fluctuations and local
dependencies, the dominant computational complexity of the overall CLM-Former architecture is largely
retained from the Autoformer’s O(LlogL) self-attention replacement. However, it is important to acknowledge
that the constant factor associated with this complexity increases due to the added operations within CLM-
subNet.

Our experiments show that combining autocorrelation with the CLM-subNet yields significant accuracy
gains with minimal overhead, confirming the effectiveness of our approach for multi-horizon load forecasting.
Future work could explore further optimizations to reduce this constant factor, while maintaining the model’s
superior predictive performance.
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CLM-former encoder
The CLM-Former Encoder comprises a multilayer structure consisting of N encoder layers. Each encoder layer
in CLM-Former consists of the following main blocks:

The CLM-Former Encoder comprises a multilayer structure consisting of N encoder layers. Each encoder
layer follows the core structure adopted from Autoformer, applying the Auto-Correlation mechanism followed
by series decomposition blocks and our CLM-subNet for seasonal refinement. This specific order—applying
Auto-Correlation before decomposition within each layer—is central to the progressive decomposition
philosophy. It allows the model to first capture period-based dependencies from the combined signal, enabling a
more informed and refined separation of trend and seasonality at each stage. The main blocks consist of:

o Autocorrelation Block: Computes the frequency-domain autocorrelation of the input sequence to capture
long-range dependencies.

» Decomposition process: Decomposes the output of the autocorrelation (plus residual) into seasonal and cy-
clical trend components.

o CLM-subNet: Applied to the extracted seasonal component to capture local, hierarchical features, replacing
the standard Feed-Forward network.

Before feeding the input into the encoder, an embedding operation can be applied to the raw load data. For input
data of length J x D, three different embeddings are performed. These embeddings include:

o Token embedding: Convert each token in the input sequence into a vector representation using a token em-
bedding matrix.

o Positional embedding: Positional information is added to each token vector, allowing the model to learn the
relative positions of tokens within the sequence.

o Temporal embedding: Embeds the time variables into vectors using a temporal embedding matrix, enabling
the model to capture temporal patterns in the data.

The sum of the outputs from these three embeddings, as shown in Eq. 2, is considered the encoder input, and
X0, € R™P represents the historical load data., respectively, with ., being the initial input. The encoder
input is defined as X!, = Encoder(XL 1), wherel € {1,2,..., N} denotes the [ — th encoder layer.

X0, = token__emb(xiny) + positional _emb(xiny) + temporal _emb(iny) 2

X0, is fed into the autocorrelation module to identify and expand the information dependencies in the frequency
domain. This module decomposes the information into seasonal and trend components.

The CLM-subNet network receives the seasonal component and extracts local and deep features from the
decomposed part. The combined result with the cyclical-trend part is then fed back into the decomposition
subblock. Given that the encoder focuses on representing the seasonal component, the seasonal representations
based on the encoder inputs are sent to the decoder for further use.

In summary, the encoder(.) is formulated as shown in Egs. 3 and 4:

Sens _ = Decompose(AutoCorrelation (Xé;l) + sz;l) 3)
Séf, = Decompose(CLM — Net (Sé;l) + Sé;l) @
where [ € {1,2,..., N} is the encoder number, S, € {1,2} is the block number, and S%;! is the seasonal

value obtained from the input sequence, with S%; being the final output of the encoder. The detailed operations
of the autocorrelation subblock, which replaces the multihead attention mechanism with a frequency-based
approach, and the CLM-subNet subblock are discussed in Sects. 4.4 and 4.5.

The structure of the stack of decoders consists of M layers, with each layer comprising three blocks. The
first and last blocks are similar to those in the encoder, while the middle block includes a cross-autocorrelation
attention subblock and a decomposition block. The cross-autocorrelation attention block aims to capture long-
range dependencies between the decoder’s output and the encoder’s seasonal representation. It receives the
seasonal output generated by the encoder as K and V' and the output of the encoder block as Q. It performs
its operations, which will be explained further, and its output is then passed to the decomposition subblock for
decomposition.

Unlike the encoder, which directly receives the time series as input, the input to t}}e decoder involves
decomposing the input series X3, € R(Z+9)*D into two parts: seasonal SY, € R(+9)*D and trend

TS € R(2F0)*D The relationship is defined as S, 7). = Decoder(S' ', 4> "), where l € {1,2,..., M}

denotes the layer number in the stack of decoders, specifying the [ — th decoder. Equations 5-9 illustrate the
operations of the decoder.

Skt Té‘el = Decompose(AutoCorrelation (Xé,:l) + S(ligl) (5)
Slli’:, Téf = Decompose(AutoCorr _Attention (Sfi’el, Sgl) + Sé’el) (6)
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Sde , Téf Decompose(CLM — Net (S ) + S ) (7)
Tie = Tgo ' +Hwia x T, +wiz« Tyl +wis = Ty ®)
Xprea = ws x Sy + Tt )

where wy ;4 € {1,2, 3} represents the projector for the cyclical-trend component of the i — th block T, The
final predlctlon, Xpred, is obtained where w; is a projection of component SM 4 to the target dimensions.

Decomposition method

In time series analysis, understanding the patterns exhibited by data values over time is crucial for accurate
forecasting. The assumption is that future data patterns will align with historical patterns. Decomposition
methods are a standard approach for processing complex time series data to extract predictable components®?
In the CLM-Former model, decomposition is not only applied to the input of the decoder stack but also
incorporated as submodules within both the encoder and decoder architectures. Two common approaches
to time series decomposition are additive and multiplicative methods. In this paper, we focus on the additive
decomposition method. We decompose the data into cyclical-trend and seasonal components, which represent
the long-term progress and seasonality of the time series, respectively. Considering a length L for the input series
X € R™*%, the function Decompose(x) for creating X¢, X is calculated as shown in Egs. 10 and 11.

X = AvgPooling(padding (X)) (10)

Xs=X-Xy (11)

The components X; € R***and X; € R"*? represent the trend and seasonal elements, respectively. In Eq. 10,
AvgPooling(.) is used for the moving avera%e with a padding operator to maintain the sequence length.

Assume that the encoder input X.n. € R "¢ is a sequence from the past I time steps. The decoder - input is
obtained by decomposing X/ € R(2+°)*d as X/, Xi/ = Decompose(X  1.;). Given Xene € R? *D the
enc

remaining sequence length for X dec_s 18 filled with X, € R°*?, which is e u1valent to a zero vector, and for
g g g q

Xaeec + € R77%, it is filled with the average of the data (Eqs. 12-14). This operation is similar to applying an
infinite placeholder in the base transformer structure for unobserved sequences.
X1, Xyt = Decompose(X  1,,) (12)
en2’
Xde se = concat(Xas/, Xo) (13)
Xdeitr = Concat(X/dt7 Xmean) (14)

Avutocorrelation-based attention mechanism

In the CLM-Former model, an autocorrelation-based attention mechanism is employed to replace the
self-attention mechanism in the vanilla transformer architecture. This approach leverages the concept of
autocorrelation to capture temporal dependencies within the input sequence. In the following section, we will
first define the concepts of single attention, attention head, and multi-head attention, and then explain the
computation of autocorrelation.

Single attention
Single attention, introduced in the paper!'? under the name "Scaled Dot-Product Attention," serves as a valuable
Technique in time series forecasting, enabling the model to focus on the most pertinent segments of the data
during the prediction process. This technique involves computing a weight matrix that assesses the significance
of each segment within the input data. The computed weight matrix subsequently dictates the influence of each
input segment on the final prediction.

The calculation of single attention commences with the extraction of three vectors from the input: key (k),
query (Q), and value (v). The attention score is then computed using Eq. 15:

KT
attention (Q, K,V) = softmaa:(L

Vi,

where dj; represents the dimension of the key vector. This equation captures how attention is directed towards
different data segments based on the similarity between the query and key vectors, and subsequently weights the
value vectors proportionally to their respective importance.

WV (15)

Attention head

Each attention head independently processes a set of query, key, and value vectors, generating an attention
matrix. Each head can to distinct and diverse aspects of the data, enabling the model to delve into the intricate
details of the input.
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Multi-head attention

To provide a broader perspective on the data and allow parallel attention to different aspects within the data,
the multi-head attention technique is introduced as an extension of single attention!2. In this approach, several
attention mechanisms are executed in parallel, and their outputs are then combined. This method enables the
model to focus on multiple diverse aspects of the data simultaneously.

In the computation process of multi-head attention, the inputs are first divided into several parts, with each
part being processed by an attention head. For each head, three vectors—Query (Q), Key (K), and Value (V)—
are computed, and the single attention calculation is performed separately for each head. The outputs of all
heads are then concatenated to form a final matrix. The following Eqs. 16 and 17 demonstrates the calculation
of multi-head attention:

MultiHead (Q, K, V) = Concat (heady, . . . , headn) *Woutput (16)

where:
head; = Attention (QwiQ, Kuw¥, Vwiv) (17)
Here, le s wZK ,and wlv are the weight matrices for the i-th head, and Wouiput is the final weight matrix for

combining the outputs of all heads.

Autocorrelation
Based on the theory of stochastic processes®***, the similarity between the discrete-time processes X; and

X with lag 7 can be obtained using the autocorrelation function Rx x = llim%ZLX +X¢— 1, where Rx x is
—

calculated using the fast Fourier transform (FFT). To replace the self-attention method in the vanilla transformer
with autocorrelation, we first compute the top k lags between @ and K, where k = |log (L)]. Then, the obtained
Rg,k () values are normalized using the softmax function. Finally, the similarity between them is calculated
using the autocorrelation function AutoCorrelation(Q, K, V'), as formulated in Eqs. 18-20:

T1y..., T = argTopK (Ro,x (1)) (18)

ﬁgylc (Tl) J ey ﬁgy;c (Tk) = softmax (RQJC (T1) ,oos Rox (Tk)) (19)

k ~
AutoCorrelation (Q, K,V) = Z Roll (V, ;) Ro,x (T3) (20)
=1

1=

The function Roll (V, T;) represents the sequential selection of sequences of length t; from V.
The multihead attention version of the above equation is represented as Egs. 21 and 22:

MultiHead (Q, K, V) = Woutput * Concat (heady, . .., heady) (21)

where:

head; = Auto — Correlation (Qi, K;, Vi) (22)

where h is the number of heads, dmode: is the dimension of the hidden states, and the query, key, and value

mode

for head 7 are represented as Q;, KC;, V; € RLx—2pde ,where i € {1,...,h}. It was proven in!® that the time

complexity of autocorrelation is O (llogl).

In conclusion, the autocorrelation mechanism in Autoformer primarily functions as a global pattern
extractor, capturing long-range periodic dependencies and revealing the dominant temporal rhythms within the
entire sequence. By correlating the series with its time-shifted versions, it builds a coherent frequency-domain
representation that highlights the major cyclical structures.

Importantly, this global modeling also produces an intermediate representation—particularly for the seasonal
component—that encodes both the stable periodicities and the residual fine-scale variations that remain after
decomposition. In this sense, the autocorrelation block not only summarizes the overarching temporal dynamics
but also organizes the data in a way that exposes subtle, localized fluctuations suitable for further analysis.

This property provides a natural bridge to the subsequent CLM-subNet, which builds upon the globally
informed seasonal representation to perform targeted, local spatio-temporal feature extraction. Hence, the
autocorrelation mechanism effectively prepares the signal, enabling the CLM-subNet to refine and model the
high-frequency, aperiodic behaviors that are beyond the scope of purely frequency-based modeling.

CLM-subNet

To enhance the networK’s ability to extract both local and global features from time series data, we introduce the
CLM-subNet subnetwork, which incorporates convolutional layers followed by an LSTM layer, into the encoder-
decoder stack of CLM-Former. This subnetwork aims to improve the network’s performance in extracting salient
features and enables it to handle time horizon predictions of varying lengths. The CLM-subNet subnetwork
consists of convolutional layers, LSTM, and an MLP. It offers several advantages:
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Fig. 4. The internal architecture of the proposed CLM-subNet. This module is designed to extract hierarchical
spatio-temporal features from the seasonal component. It consists of: (1) 1D-CNN Layers: Two stacked
1D-Convolutional layers with dropout for extracting local high-frequency patterns and reducing noise. (2)
LSTM Layer: Captures sequential dependencies within the extracted features. (3) Linear Layer: Projects the
refined representation back to the model’s dimension d o gei-
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Fig. 5. Internal structure of the Long Short-Term Memory (LSTM) unit within the CLM-subNet. The
diagram illustrates the gating mechanisms (forget, input, and output gates) that regulate information flow.
This recurrent structure enables the CLM-subNet to effectively model temporal dependencies and sequential
patterns within the extracted seasonal features.

Enhanced Feature Extraction: The combination of convolutional and LSTM layers enables the network to
extract both local and global features from time series data, providing a more comprehensive representation of
the underlying patterns and trends.

o Time horizon flexibility: The CLM-subNet subnetwork empowers the network to handle time horizon pre-
dictions of varying lengths, ranging from very short-term (VSTLF) to medium-short-term (MSTF) forecasts.
This versatility makes the network applicable to a wider range of demand forecasting scenarios.

o Scalability to multiple customers: The CLM-subNet subnetwork can be effectively utilized for forecasting the
load of multiple customers simultaneously. This capability is particularly valuable in real-world applications
where demand patterns across a large customer base need to be considered.

The CLM-subNet subnetwork is applied to seasonal data in both the encoder and decoder stacks. The decomposed
output of the previous subnetwork, with dimension d,odei, is first fed into CLM-subNet. Within CLM-subNet,
a one-dimensional convolutional layer first transforms the seasonal input from dmoder to an intermediate
dimension. Then, the second-dimensional convolutional layer extracts features from the data and converts them
back to dmoder. Dropout layers are applied to both convolutional layers to prevent overfitting. The output of
the convolutional layers is then passed to the LSTM layers. The structure of CLM-subNet is illustrated in Fig. 4.

Figure 5 illustrates the internal structure of an LSTM cell. This structure is specifically designed to capture
temporal relationships between past information and current conditions.

In the current work, a stacked LSTM architecture is integrated into the CLM-subNet for both encoder and
decoder. Specifically, the encoder’s CLM-subNet utilizes two LSTM layers, while the decoder’s CLM-subNet
employs one LSTM layer, with each LSTM layer comprising 64 hidden units. For each component in the input
sequence, the components of each layer include the input gate 4., forget gate f:, cell state c¢, and output gate O
as Egs. 23 and 29:
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i1(t)=o(x(t)us +h(t—1)w) (23)
i2(t) = tanh(z (t) ug + h (t — 1) wy) (24)
i(t) =1 (t) x4z (2) (25)

f(&) =o(z(t)us+h(t—1)wy) (26)
ct)=o(f@)*xc(t—1)+1i(t)) (27)
o(t)=o(x(t)uo+h(t—1)wo) (28)
h (t) = tanh (c¢) * o(¢) (29)

Here, § represents the sigmoid activation function, and tanh is the hyperbolic tanh activation function. z () is
the input unit at time ¢, and v and w are the weight matrices.

Algorithmic distinction from autoformer
While CLM-Former is built upon the robust Autoformer framework, it introduces a significant algorithmic
modification to the internal processing of each transformer block. In the original Autoformer, the decomposed
seasonal component is processed through a standard Feed-Forward Network (FFN), which applies
transformations point-wise and cannot inherently model relationships across adjacent time steps.

In contrast, CLM-Former replaces this point-wise FFN with our specialized CLM-subNet. This modification
fundamentally alters how the seasonal component is represented by introducing a hierarchical, sequence-aware
processing path:

o First, the 1D-CNN layers act as local feature detectors, extracting salient high-frequency patterns from the
seasonal data.
o Next, the LSTM layers model the temporal dependencies among this sequence of extracted features.

This architectural refinement transforms the processing from a series of independent operations into a
dynamic, spatio-temporal analysis. As a result, CLM-Former preserves the core strengths of Autoformer (series
decomposition and autocorrelation) while fundamentally enhancing its capability to model the localized,
aperiodic dynamics critical for accurate load forecasting. This targeted enhancement leads to a more powerful
and empirically superior model, as demonstrated in our results.

Results and discussion

In this section, we present the results of the proposed CLM-Former model for simultaneous load forecasting
across 321 residential households. The dataset utilized in this study is the publicly available Electricity dataset,
which contains 26,305 records of hourly electricity consumption data spanning three years, from July 1, 2016, at
2:00 AM to July 2, 2019, at 1:00 AM.

A key aspect of this methodology is the use of a global, multivariate household load forecasting. Instead of
training 321 separate, individual models (one for each household), we train a single, unified CLM-Former model
that learns concurrently from the data of all 321 households. This approach treats the electricity consumption
of all households as a single, high-dimensional (321-variable) multivariate time series. This allows the model
to capture complex shared seasonal patterns and inter-household dependencies, leading to a more robust and
generalizable forecasting solution. Therefore, this single model simultaneously forecasts the future electricity
consumption for all 321 households across the specified horizons (96, 192, and 336 future time steps).

To assess the performance of the CLM-Former, the model’s accuracy is benchmarked against several state-
of-the-art models. For this purpose, we selected six models from the transformer family and six deep learning-
based models, comparing their forecasting accuracy with that of the CLM-Former. These benchmark methods
include Autoformer, Crossformer, Informer, Reformer, LogTrans, Transformer, TiDe, SCINet, LSTNet, TCN,
LSTM and CNN-LSTM.

In the following sections, we will discuss the evaluation metrics employed in this study and provide a detailed
analysis of the experimental results obtained.

Data preparation

To ensure methodological consistency, reproducibility, and a fair comparison across all experiments, a
standardized data preparation pipeline was applied uniformly across all datasets—our primary Electricity
benchmark as well as the Weather, ETT and Traffic datasets used for generalizability testing. The following steps
summarize the complete data preparation pipeline:

« Data splitting: Each dataset was divided chronologically into three subsets: 70% for training, 10% for vali-
dation, and 20% for testing. This temporal split preserves the natural sequential order of time series data and
prevents any potential leakage of future information into the training process.

« Handling of missing data: We first performed an integrity check on all datasets. We confirmed that these
standard benchmarks were complete and contained no missing values. Consequently, no data imputation or
interpolation steps were necessary.

« Normalization: All input features were standardized using Z-score normalization, where each data point =
was transformed as ' = (z — ) /o. To avoid any risk of data leakage, the mean (1) and standard deviation
(o) were computed exclusively from the training set of each dataset, and the same statistics were subsequently
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used to normalize the corresponding validation and test sets. This approach ensures consistent scaling across
all phases of model evaluation while maintaining data integrity.

« Seasonal decomposition: It is important to note that seasonal decomposition is not a static pre-processing
step in our pipeline. Instead, it operates as an integrated, learnable module within the CLM-Former archi-
tecture, dynamically decomposing the input sequences into seasonal and cyclical-trend components during
training and inference. The implementation details of this mechanism are provided in Section Decomposition
method.

Experimental environment and metrics

The CLM-Former model was implemented using Python 3.11.7, Torch 2.2.2 + cul21, NumPy 1.26.4, and Pandas
2.1.4. The experiments were conducted on a system equipped with a 13th Gen Intel Core i5-13600KF CPU,
an NVIDIA GeForce RTX 4080 GPU with 16 GB of GPU memory, and 64 GB of system memory. This setup
ensured seamless execution across all benchmark models.

To evaluate all the models on the abovementioned datasets, commonly used statistical metrics, including
the mean squared error (MSE) and mean absolute error (MAE), were utilized. These metrics were deliberately
chosen to ensure direct methodological comparability with the foundational baselines (e.g., Autoformer), to
align with our MSE loss function, and for their numerical stability, as relative metrics like MAPE are unreliable
when true data values approach zero. These evaluations were conducted using the MSE and MAE, as defined in
Eqgs. 30 and 31, respectively:

N
1 s
MSE = — E (yi — i) (30)
i=1
1 N
MAE = N 2 lyi — il (31)

where N is the number of samples, y; is the i — th actual sample, and y; is the i — th predicted sample.

To ensure the proposed CLM-Former model operates at its optimal performance, a rigorous hyperparameter
optimization (HPO)¥ process was conducted. Given the complexity and potential impact of hyperparameters
on model efficacy, we employed the random search method, which has been shown to be effective in exploring
a vast parameter space more efficiently than grid search for deep learning models®*.

The objective metric for this search was the Mean Squared Error (MSE) on the validation set. We did not
employ k-fold cross-validation, as this method is methodologically inappropriate for time-series data due to its
violation of temporal dependencies. Instead, we used the standard fixed chronological training and validation
split. We performed 250 random trials for each prediction horizon to thoroughly explore the defined search
space. The stability of this search was ensured by this large number of trials and the consistent application of
early stopping with a patience of 3 epochs, which prevents overfitting and ensures the selected parameters are
robust and generalizable.

The comprehensive range of values considered for each hyperparameter, including sequence length, label
length, batch size, dropout rates, and the number of layers for encoders, decoders, and LSTMs, is detailed in
Appendix B, Table 5. Sample results from various hyperparameter configurations explored during this process
are provided in Appendix B, Table 6, illustrating the impact of different settings on model performance.

Throughout the optimization, early stopping was consistently applied to prevent overfitting and ensure that
the model captured the most generalizable patterns from the training data. The specific set of hyperparameters
that yielded the lowest average MSE on the validation set across all tested prediction horizons was carefully
selected as the optimal configuration for the final CLM-Former model used in our comparative analysis. These
final optimal settings are precisely listed in Table 1.

Parameters Value
Sequence length 128
Label length 48
Batch size 64
Dropout 0.05
Dropout for LSTM 0
Loss function MSE
Encoder layers 4
Decoder layers 4
Num layer for LSTM in encoder | 2
Num layer for LSTM in decoder | 1
Activation GeLU

Table 1. Parameter settings.
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96 0.196 | 0.313 | 0.201 | 0.317 | 0.219 |0.314 | 0.274 | 0.368 | 0.312 | 0.402 | 0.258 | 0.357 | 0.260 | 0.358
192 0.203 | 0.316 | 0.222 | 0.334 | 0.231 | 0.322 | 0.296 | 0.386 | 0.348 | 0.433 | 0.266 | 0.368 | 0.266 | 0.367
336 0.229 | 0.341 | 0.231 | 0.338 | 0.246 | 0.337 | 0.300 | 0.394 | 0.350 | 0.433 | 0.280 | 0.380 | 0.280 | 0.375
AVG 0.209 | 0.323 | 0.218 | 0.329 | 0.232 | 0.324 | 0.290 | 0.382 | 0.336 | 0.422 | 0.268 | 0.368 | 0.268 | 0.366

Avg improvement % 413 | 1.82 991 0.31 | 27.93 | 1545 | 37.80 | 23.46 | 22.10 | 12.23 | 22.02 | 11.75

96 0.196 | 0.313 | 0.237 | 0.329 | 0.247 | 0.345 | 0.680 | 0.645 | 0.985 | 0.813 | 0.377 | 0.438 | 0.353 | 0.412
192 0.203 | 0.316 | 0.236 | 0.330 | 0.257 | 0.355 | 0.725 | 0.676 | 0.996 | 0.821 | 0.443 | 0.471 | 0.409 | 0.441
336 0.229 | 0.341 | 0.249 | 0.344 | 0.269 | 0.369 | 0.828 | 0.727 | 1.000 | 0.824 | 0.438 | 0.472 | 0.412 | 0.446
AVG 0.209 | 0.323 | 0.240 | 0.334 | 0.257 | 0.356 |0.744 | 0.682 | 0.993 | 0.819 | 0.419 | 0.460 | 0.391 | 0.433
Avg improvement % 12.92 |3.29 |18.68 |9.27 |71.91 |52.64 |78.95 | 60.56 | 50.11 | 29.78 | 46.5 |25.4

Table 2. Accuracy evaluation of models based on the MAE and MSE metrics. Bold values indicate the best

performance.
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Fig. 6. Qualitative comparison of forecasting results for the 336-step horizon. The plots illustrate the Ground
Truth (blue lines) versus the Predictions (orange lines) generated by: (a) The proposed CLM-Former, (b)
Informer, and (c) Transformer. Observation: As highlighted, CLM-Former demonstrates a superior alignment
with the ground truth, particularly in capturing rapid fluctuations and peak load values, visually corroborating
the quantitative performance gains reported in Table 2.

Experimental results

The performance results of the proposed CLM-Former model compared to state-of-the-art methods are presented
in Table 2. Table 2a provides a comparison between CLM-Former and several models in the Transformer family
(Autoformer, CrossFormer, Informer, Reformer, logTrans, and the base Transformer) for time series forecasting.
Table 2b highlights the performance of CLM-Former against deep learning models, including TiDE, SCINet,
LSTNet, TCN, and CNN-LSTM. The comparison is conducted for three prediction intervals (96, 192, and 336),
with Mean Squared Error (MSE) and Mean Absolute Error (MAE) used as evaluation metrics. Additionally, the
average improvement percentage of the CLM-Former model relative to the other models under investigation has
been calculated using Eq. 32.

‘/baseline - VCLM—Former) % 100 (32)

ump ( ‘/baseline
To evaluate the predictive performance of CLM-Former, we benchmarked it against both Transformer-based
and conventional deep learning models over multiple forecasting horizons (96, 192, and 336 steps). Performance
metrics included Mean Squared Error (MSE) and Mean Absolute Error (MAE).

To ensure that the reported improvements are not due to randomness or initialization noise, we performed a
statistical significance analysis based on five independent runs using different random seeds. For each forecasting
horizon, both CLM-Former and Autoformer were trained with identical seeds to enable paired comparison.
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Mean Square Error (MSE)

Mean Absolute Error (MAE)

We report the mean and standard deviation (mean+std) of the MAE over the 5 runs. In addition, we
conducted two complementary paired statistical tests: (1) a paired t-test and (2) a Wilcoxon signed-rank test.
Across all forecasting horizons (96, 192, and 336), both tests yielded p-values below 0.05, confirming that CLM-
Former significantly outperforms Autoformer. (Detailed statistical test results, including t-statistics and exact
p-values, are provided in Appendix C, Table 7).

To complement the quantitative results presented in Table 2, Fig. 6 provides a visual comparison of the
forecasting capabilities of CLM-Former against key baselines (Informer and Transformer) for the 336-step
prediction horizon. This visualization showcases the model’s ability to capture the complex dynamics inherent
in the residential load data.

As illustrated, while all models attempt to follow the general pattern, CLM-Former demonstrates a closer
alignment with the ground truth, particularly in capturing the peaks and troughs of electricity consumption.
This qualitative evidence supports the superior quantitative performance reported earlier, highlighting CLM-
Former’s enhanced effectiveness in modeling both long-term trends and short-term fluctuations. (Further
visualizations comparing the models across different horizons are available in Appendix D).

Comparison with transformer-based models

As detailed in Table 2a, CLM-Former demonstrates consistent superiority over state-of-the-art Transformer
variants, achieving the lowest average MSE (0.209) and MAE (0.323) across all prediction horizons. Compared
to the canonical Vanilla Transformer, our model reduces the average MSE by approximately 22.0%, highlighting
the fundamental effectiveness of the decomposition-based architecture. More notably, when benchmarked
against Autoformer—the strongest Transformer-based baseline and the direct foundation of our work—CLM-
Former achieves a statistically significant improvement, reducing the average MSE by 4.13% and MAE by 1.82%.
This performance gain is particularly pronounced in longer horizons (e.g., a 5.15% reduction in MAE at 336
steps), confirming that the integration of the CLM-subNet successfully captures the rapidly changing, localized
patterns that the standard frequency-domain attention of Autoformer often misses. Furthermore, CLM-Former
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Fig. 7. Performance Comparison of CLM-Former against Transformer-Based Models. The figure shows a
comparison of (a) Mean Square Error (MSE) and (b) Mean Absolute Error (MAE) for CLM-Former and other
Transformer-based models across the 96, 192, and 336-step prediction horizons.
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outperforms recent competitive models such as Crossformer (MSE 0.232) and Informer (MSE 0.290), proving
its robustness in modeling complex temporal dependencies.

The superior performance of CLM-Former is visually confirmed in Fig. 7. The plots illustrate the performance
gap across all forecasting horizons, showing that our model consistently achieves the lowest Mean Square Error
(a) and Mean Absolute Error (b). This highlights its enhanced capacity for modeling both local and long-term
dependencies.

Comparison with deep learning models
Table 2b presents the performance of CLM-Former against conventional deep learning architectures, including
TiDE, SCINet, LSTNet, TCN, LSTM, and CNN-LSTM. A critical finding in this analysis is the substantial
margin by which CLM-Former outperforms traditional hybrid models. Even after rigorously optimizing
the CNN-LSTM baseline (yielding an improved MSE of 0.391), CLM-Former still achieves a remarkable
46.5% reduction in average MSE. This drastic difference underscores the structural advantage of integrating
convolutional and recurrent layers within a decomposition-based Transformer block, as opposed to simply
stacking them sequentially. Additionally, our model surpasses recent MLP-based architectures such as TiDE
(achieving a 12.92% average improvement in MSE) and SCINet (18.68% improvement). While traditional
models like LSTNet and TCN often struggle with stability in long-term forecasting, CLM-Former maintains
consistent accuracy, validating its ability to hierarchically process both short-term local features and long-term
global trends effectively.

Figure 8 complements the tabular results by presenting the comparative error metrics against the deep
learning baselines. The visualizations clearly demonstrate the consistent outperformance of CLM-Former, which
maintains the lowest prediction errors for both MSE (a) and MAE (b) across all forecasting horizons.
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Fig. 8. Performance Comparison of CLM-Former against Deep Learning Models. The figure shows a
comparison of (a) Mean Square Error (MSE) and (b) Mean Absolute Error (MAE) for CLM-Former and other
deep learning baselines across the 96, 192, and 336-step prediction horizons.
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Generalizability analysis on additional domains

To verify that the performance improvements of CLM-Former are not limited to residential load forecasting
and can generalize to other domains, we extended our experimental evaluation to three additional widely-used
benchmarks: Traffic, ETTm2 (Electricity Transformer Temperature), and Weather.

Evaluation Strategy: Given that CLM-Former is a direct architectural enhancement of Autoformer our
primary objective in this analysis was to isolate and validate the specific contribution of this enhancement across
diverse data distributions. Therefore, we focused the comparative analysis on CLM-Former versus the Official
Autoformer baseline across three prediction horizons (96, 192, 336).

Discussion of Results: The results summarized in Table 3 demonstrate the robust generalizability of the
proposed architecture:

ETTm2 (Energy Domain): CLM-Former achieves remarkable improvements in the energy domain. For in-
stance, at the 96-step horizon, it reduces MSE by approximately 45% (0.1847 vs. 0.3354) and MAE by 22.5%,
confirming that the CLM-subNet is highly effective at capturing thermal inertia and load dynamics.

Traffic (Spatial-Temporal Domain): The model consistently outperforms the baseline in MSE across all hori-
zons (e.g., 4.3% reduction at horizon 96), indicating its ability to handle the complex, non-stationary patterns
of traffic flow.

Weather (Meteorological Domain): While the baseline performs slightly better at the shortest horizon (96),
CLM-Former demonstrates superior long-term forecasting capability. At the 336-step horizon, it achieves a
substantial 15.5% reduction in MSE (0.3787 vs. 0.4482), suggesting that the hierarchical features extracted by
CLM-subNet become increasingly valuable for modeling complex weather dependencies over longer periods.

In conclusion, CLM-Former consistently enhances the performance of the Autoformer backbone across diverse
domains, validating that the proposed architectural modification provides generalized benefits beyond the
primary electricity dataset.

Ablation study and computational complexity analysis

To provide a comprehensive evaluation of the CLM-Former architecture, we conducted an integrated study that
simultaneously isolates the contribution of individual components (Ablation Study) and assesses the practical
trade-offs regarding model size and speed (Computational Complexity Analysis). This addresses the need for
empirical validation of our efficiency claims compared to the baseline. We benchmarked the full CLM-Former
against several architectural variants on the Electricity dataset across three horizons (96, 192, 336).

Experimental setup
The variants evaluated are:

1. Vanilla autoformer: Replaces the CLM-subNet with a standard point-wise Feed-Forward Network (FFN),
serving as the theoretical baseline described in the original paper.

2. Autoformer (Official/GitHub): Corresponds to the official convolution-based implementation (denoted as
"w/o LSTM"). This serves as our primary strong baseline.

3. w/o CNN: A variant removing the Convolutional layers from the CLM-subNet to test local feature extrac-
tion.

4. Encoder-Only/Decoder-Only: Partial integration strategies where CLM-subNet replaces the FFN only in
the Encoder or Decoder.

5. CLM-Former: The full proposed architecture.

To ensure reproducibility and provide a standardized benchmark for computational efficiency, the ablation study
and complexity analysis were conducted in a Google Colab environment utilizing an NVIDIA T4 GPU (16
GB GDDR6 VRAM, Turing architecture) with PyTorch 2.9.0. Table 4 summarizes the predictive performance
alongside wall-clock computational metrics measured in this environment (batch size 32).

Discussion of results
Architectural contribution (ablation analysis)
The results confirm the necessity of the proposed hybrid design.

Traffic ETTm2 Weather
Model Metrics | 96 192 336 96 192 336 96 192 336
MSE 0.6943 | 0.6490 | 0.6380 | 0.3354 | 0.2044 | 0.2513 | 0.3004 | 0.3699 | 0.4482
Autoformer
MAE 0.4445 | 0.4003 | 0.3961 | 0.3900 | 0.3166 | 0.3551 | 0.3737 | 0.4259 | 0.4722
MSE 0.6642 | 0.6339 | 0.6343 | 0.1847 | 0.2014 | 0.2340 | 0.3114 | 0.3637 | 0.3787
CLM-Former

MAE 0.4220 | 0.3970 | 0.3970 | 0.3022 | 0.3152 | 0.3397 | 0.3841 | 0.4212 | 0.4066

Table 3. Performance comparison on Traffic, ETTm2, and Weather datasets (MSE/MAE). Bold values indicate
the best performance.
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PLen | Model variant MAE | MSE Param (M) | Train time (s) | Inference time (s) | Peak GPU memory train (MB) | Peak GPU memory inference (MB)
Vanila Autoformer! 0.2416 | 0.3499 | 17.84 1807.47 33.51 4448.16 771.99
w/o CNN (Enc/Dec) 0.1991 | 0.3151 |17.19 2295.50 33.65 4524.82 852.94
w/o LSTM (Enc/Dec)? | 0.1994 | 0.3140 | 34.62 2133.81 39.68 6168.39 900.50
% Linear Enc/ Comp Dec | 0.2034 | 0.3202 | 25.90 2226.49 38.58 5453.35 835.15
Comp Enc/ Linear Dec | 0.2080 | 0.3230 | 25.90 2440.61 35.98 5239.70 833.15
CLM-Former 0.1934 | 0.3104 | 33.96 3126.82 39.26 6247.66 1042.58
Vanila Autoformer! 0.2345 | 0.3422 | 17.84 3196.31 50.15 6816.44 1131.48
w/o CNN (Enc/Dec) 0.2306 | 0.3445 | 17.19 2285.17 50.61 6928.79 1126.50
w/o LSTM (Enc/Dec)? | 0.2124 | 0.3248 | 34.62 4100.67 55.13 8953.38 1258.37
192 Linear Enc/ Comp Dec | 0.2200 | 0.3344 | 25.90 5445.66 53.08 8264.00 1190.88
Comp Enc/ Linear Dec | 0.2252 | 0.3357 | 25.90 4205.00 52.41 7608.64 1191.11
CLM-Former 0.2092 | 0.3208 | 33.96 4443.01 54.24 9060.80 1253.75
Vanila Autoformer! 0.2478 | 0.3530 | 17.84 6471.56 70.96 9932.10 1669.09
w/o CNN (Enc/Dec) 0.2394 | 0.3516 | 17.19 3196.53 70.54 10,098.42 1665.68
336 w/o LSTM (Enc/Dec)? | 0.2290 | 0.3417 | 34.62 4871.64 80.73 12,727.99 1798.62
Linear Enc/ Comp Dec | 0.2300 | 0.3430 | 25.90 472891 79.77 12,116.58 1731.39
Comp Enc/ Linear Dec | 0.2485 | 0.3527 | 25.90 6437.61 72.98 10,725.38 1731.41
CLM-Former 0.2172 | 0.3302 | 33.96 5579.44 81.05 12,510.26 1944.14

Table 4. Ablation study on the contribution of each component in CLM-subNet (Electricity dataset). Best

results in bold, second best in italics. Vanilla Autoformer: Strictly follows the original paper’s illustrated
feed-forward network (no ConvlD layers). 2WO LSTM (Enc/Dec): Equivalent to the official Autoformer
implementation with two Conv1D layers (current standard in literature).

« Superiority of CLM-subNet: Across all three forecasting horizons, CLM-Former consistently yields superior

predictive accuracy compared to all other variants, including the strong “w/o LSTM” baseline (the official
Autoformer implementation). Specifically, relative to the official Autoformer, CLM-Former reduces MAE
from 0.1994 to 0.1934 (3.01% improvement) at the 96-step horizon, and from 0.2124 to 0.2092 (1.51% im-
provement) at the 192-step horizon. Notably, the model achieves its largest gain at the 336-step horizon,
reducing MAE from 0.2290 to 0.2172, a significant 5.16% improvement. A similar trend is observed for MSE.
These consistent gains demonstrate that the synergistic combination of CNN (for local pattern extraction)
and LSTM (for temporal refinement) provides a significantly richer seasonal-path representation than the
official Autoformer baseline alone.

Impact of individual components: The ablation analysis explicitly highlights the critical contribution of
each architectural element. Removing the CNN layers (w/o CNN) leads to a substantial deterioration in per-
formance, with MAE increasing from 0.2092 to 0.2306 at the 192-step horizon—a relative error increase of
10.23%. This underscores the indispensable role of convolutions in capturing high-frequency local variations
that simpler structures miss. Similarly, the exclusion of LSTM layers (w/o LSTM) consistently degrades pre-
diction accuracy, particularly at longer horizons; for instance, at the 336-step horizon, MAE rises from 0.2172
t0 0.2290 (5.43% increase), confirming that recurrent modeling is essential for preserving long-range tempo-
ral dependencies within the extracted features.

Placement strategy: The ablation results strongly validate the full symmetrical integration of the CLM-sub-
Net in both encoder and decoder blocks. While partial integration strategies offer improvements over the
baseline, the full CLM-Former consistently outperforms the best partial variant (Decoder-Only integration)
by approximately 4.9% to 5.6% in terms of MAE across medium and long horizons. This confirms that captur-
ing localized features at both the encoding stage (for robust representation learning) and the decoding stage
(for precise generative prediction) is essential for maximizing forecasting accuracy. To visually consolidate
these findings across different forecasting scales, Fig. 9 illustrates the comparative accuracy (MSE and MAE)
of the architectural variants for both the representative medium-term (192-step) and long-term (336-step)
horizons.

Computational efficiency and trade-offs
Contrary to concerns that adding recurrent layers might drastically increase cost, the empirical data reveals a
highly favorable profile:

o Parameter efficiency via bottleneck: Remarkably, CLM-Former (33.96M) requires fewer parameters than

the official Autoformer baseline (34.62M), despite the added LSTM layer. This counter-intuitive result arises
from the bottleneck structure introduced by the LSTM. With a hidden size of 64, the LSTM compresses
features from dpoder = 512 into a low-dimensional representation, and the subsequent Linear layer maps
64 — 512. This significantly reduces the number of parameters compared to the "w/o LSTM" architecture,
where projections operate directly at the full dy,oder. Thus, CLM-subNet enhances feature extraction while
simultaneously improving parameter efficiency through effective feature compression.
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Fig. 9. Impact of architectural components on forecasting accuracy. The bar charts compare the MSE and
MAE of different architectural variants across two key horizons: (a) Medium-term horizon (192 steps). (b)
Long-term horizon (336 steps). Observation: In both scenarios, the full CLM-Former (blue bars) consistently
achieves the lowest error rates, visually confirming that the synergistic contribution of the CLM-subNet
components becomes increasingly vital for robust performance in longer forecasting tasks.
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Fig. 10. Computational efficiency analysis. The charts contrast the Inference Time (bars, left axis) with the
Parameter Count (line, right axis) for each model variant: (a) Medium-term horizon (192 steps). (b) Long-
term horizon (336 steps). Observation: Notably, CLM-Former maintains an inference speed comparable to the
baseline while offering a highly efficient parameter footprint (lower than the 'w/o LSTM’ variant) across both
horizons, validating its suitability for real-time deployment in diverse forecasting scenarios.

 Inference speed (Deployment): Importantly, despite incorporating recurrent operations, CLM-Former
maintains inference efficiency comparable to—and in some cases better than—the official Autoformer base-
line. At the 96-step and 192-step horizons, CLM-Former achieves slightly faster inference times (—1.06%
and - 1.61%, respectively), while at the longest 336-step horizon the overhead remains negligible (+0.40%).
Averaged across all horizons, CLM-Former delivers a 0.78% reduction in inference time relative to the base-
line. This confirms that the proposed architecture preserves the O(LlogL) efficiency of Autoformer and
introduces no meaningful latency penalty during deployment. Figure 10 further contextualizes this efficiency
by plotting the inference time against the model parameter count for both the 192-step and 336-step hori-
zons, highlighting the consistently favorable trade-off achieved by CLM-Former even as the prediction length
extends.
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« Training dynamics: Incorporating recurrent layers within the CLM-subNet naturally introduces addition-
al computational operations, resulting in increased training times compared to the convolution-only "w/o
LSTM" baseline (e.g., an increase of approximately 46.5% at the short 96-step horizon). However, this com-
putational overhead varies but remains moderate as the forecasting task becomes more complex; the relative
increase drops to +8.3% at the 192-step horizon and stabilizes at+ 14.5% for the extended 336-step horizon.
This favorable trend is attributed to more efficient convergence: the superior feature extraction capabilities of
the CLM-subNet enable the model to capture complex patterns more effectively, thereby satisfying the early
stopping criterion in fewer epochs. Consequently, the moderate increase in offline training time is effectively
counterbalanced by the significant gain in predictive accuracy (e.g., a 5.2% reduction in MAE at the 336-step
horizon), representing a highly efficient trade-off for long-term forecasting.

o Peak GPU memory footprint: Regarding memory efficiency, the peak GPU memory usage during both
training and inference shows only a marginal increase (averaging~3.5%) compared to the baseline. This
confirms that CLM-Former remains well within the memory limits of standard hardware accelerators (e.g.,
NVIDIA T4), ensuring that the enhanced model capacity does not impose prohibitive resource overhead.

This integrated analysis demonstrates that CLM-Former does not trade accuracy for efficiency. Instead, it
achieves statistically significant accuracy gains with a negligible (or even favorable) impact on computational
resources and deployment speed, offering a robust solution for practical forecasting tasks.

Scalability to longer horizons

Our experiments evaluated forecasting horizons up to 336 steps, consistent with prior benchmark settings. As
expected, the results in Table 2 show that prediction error (MSE and MAE) increases as the horizon extends,
reflecting the inherent uncertainty in long-range forecasting. While the rate of error growth slightly intensifies
between the 192-step and 336-step horizons, the increase remains gradual. Critically, CLM-Former consistently
maintains its performance advantage over the baselines across all tested horizons, demonstrating its relative
robustness.

Beyond accuracy, the model’s architectural efficiency further supports its scalability. As highlighted in the
ablation study, the CLM-subNet utilizes a bottleneck design that reduces the total parameter count compared to
the baseline and maintains stable inference times even for longer sequences. This suggests that CLM-Former is
not only accurate but also computationally viable for extended horizons. Although explicit testing beyond 336
steps was outside the scope of this study, these characteristics imply that the model is inherently suited for longer
patterns without risking sharp instability or prohibitive computational costs. Further investigation into extended
horizons (e.g., 720 steps) is planned for future work.

Model interpretability and visualization

To validate the internal mechanism of CLM-Former and address the need for model interpretability, we conducted
a visual analysis of the learned dependencies. Unlike standard Transformers that rely on point-wise attention,
CLM-Former utilizes Auto-Correlation Maps to discover period-based dependencies. As detailed in Appendix
E, these maps visualize how the model focuses on specific time lags corresponding to the inherent periodicity of
the data (e.g., daily or weekly cycles). Furthermore, we generated Saliency Maps via gradient analysis to identify
which historical time steps contribute most significantly to the prediction. These visualizations confirm that
the model effectively attends to critical seasonal patterns and local variations rather than processing the input
sequence uniformly.

Model stability and error analysis
In addition to aggregate accuracy, forecasting reliability and model robustness were examined through error
distribution analysis across all 321 residential households.

Figure 11 illustrates the histogram of prediction errors over the three horizons. Across all settings, CLM-
Former maintains a symmetric and centered error distribution, with means consistently close to zero. This
indicates an absence of systematic bias—i.e., no tendency toward consistent over- or under-prediction.

Moreover, the narrow spread and low standard deviation reflect strong stability, even under varying
consumption patterns and extended horizons. Notably, the shape and concentration of the error distribution
remain consistent as the prediction window increases, confirming the model’s robust generalization capability
and resilience to temporal variability. Overall, the error distribution analysis strongly supports the claim that
CLM-Former provides reliable and robust forecasts across diverse conditions.
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Fig. 11. Distribution of prediction errors for CLM-Former across all households. The histograms display the
frequency of errors for prediction horizons of (a) 96 steps, (b) 192 steps, and (c) 336 steps. Visual Components:
The blue bars represent the frequency of error values, and the black curve indicates the fitted normal
distribution density. Observation: In all three horizons, the distributions are symmetric and centered around
zero, indicating a near-zero systematic bias. The narrow spread (low standard deviation) confirms the model’s
stability and robustness against temporal variability, even as the forecasting horizon extends.
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Limitations and future work
While CLM-Former demonstrates significant improvements, it is important to acknowledge certain architectural
characteristics and potential limitations, which also suggest avenues for future research:

o Performance on non-periodic data: The autocorrelation mechanism strongly depends on periodicity detec-
tion. Although the CLM-subNet explicitly addresses local and aperiodic fluctuations, performance may still
degrade on highly irregular series lacking clear seasonality. Further testing on such datasets is planned.

o Interpretability: The inherent series decomposition provides a degree of interpretability by separating trend
and seasonality. However, fully dissecting the intricate interplay between the frequency-based Autocorrela-
tion mechanism and the spatio-temporal features captured hierarchically by the CLM-subNet remains chal-
lenging. Developing more advanced interpretability techniques tailored to this hybrid architecture could yield
valuable insights.

Addressing these aspects offers exciting opportunities for future research. Beyond exploring efficiency
enhancements and advancing model interpretability, we plan to extend our benchmarking to include emerging
architectural paradigms, such as Patching-based Transformers (e.g., PatchTST) and Linear-based models (e.g.,
DLinear), to further evaluate the comparative strengths of the CLM-Former architecture.

Conclusion

In this study, we proposed CLM-Former, a novel hybrid forecasting architecture designed to overcome a
fundamental challenge in smart grid management: the simultaneous modeling of long-term seasonal trends and
rapid, short-term fluctuations in electricity consumption. By synergizing a frequency-domain autocorrelation
mechanism with a specialized CLM-subNet (combining convolutional and recurrent layers), the model
effectively captures multi-scale temporal dependencies that existing architectures often miss.

Through comprehensive experiments on real-world residential load data, CLM-Former demonstrated
consistent superiority over both state-of-the-art Transformer variants (including Autoformer, FEDformer,
Informer, and Crossformer) and optimized deep learning baselines (such as TiDE and CNN-LSTM). Crucially,
our empirical analysis confirms that this superior performance is achieved with high computational efficiency.
Contrary to the trade-offs typically associated with hybrid models, CLM-Former maintains an inference speed
virtually identical to the Autoformer baseline and requires fewer parameters due to its optimized bottleneck
design. Furthermore, the model exhibits faster training convergence in complex long-horizon tasks, highlighting
the effectiveness of the CLM-subNet in extracting robust features.

These results, validated by rigorous statistical significance tests (p <0.05), confirm CLM-Former as a robust,
accurate, and deployment-ready solution for demand response programs and distributed energy scheduling.
Beyond its empirical strength, the architecture offers modularity and interpretability, bridging the gap between
theoretical complexity and practical utility.

In future work, we plan to extend our benchmarking to include emerging paradigms such as Patching-based
Transformers (e.g., PatchTST) and Linear-based models. Additionally, we aim to incorporate contextual and
exogenous variables (e.g., weather data) to further refine prediction accuracy, and explore federated learning
and model compression techniques to enhance scalability and privacy-preserving capabilities in real-time smart
grid deployment.

Data availability

The dataset analyzed during the current study is the publicly available ElectricityLoadDiagrams20112014 da-
taset, which can be found in the UCI Machine Learning Repository: [https://archive.ics.uci.edu/dataset/321/el
ectricityloaddiagrams20112014], (https:/archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014). The
source code for the **CLM-Former** model developed in this study is publicly available on GitHub at [https://
github.com/mozhgan-Rahmatinia/CLM\_Former\_to\_enhancing\_load\_prediction], (https:/github.com/mo
zhgan-Rahmatinia/CLM_Former_to_enhancing load_prediction) .

Appendix A: Comparative overview of attention strategies

This appendix provides a conceptual visualization of different attention and correlation mechanisms discussed
in this paper. Each strategy offers a different trade-off between computational efficiency and the ability to capture
temporal dependencies in time series data.

o Full attention (Transformer): As depicted in Fig. 12a, the standard self-attention mechanism computes pair-
wise interactions between all tokens across the sequence. While comprehensive in capturing all possible de-
pendencies, this approach has a quadratic computational complexity (O(Z?)), making it prohibitive for long
sequences.

o Sparse attention (Informer): To improve efficiency, sparse attention mechanisms limit computations to a sub-
set of tokens. For example, the ProbSparse attention used in Informer (Fig. 12b) selects only the most signif-
icant queries, reducing complexity. However, this risks neglecting critical long-range dependencies that fall
outside the sparse set, which can impact prediction accuracy.

o LogSparse attention (LogTrans): This strategy (Fig. 12¢) offers a compromise by selectively attending to both
nearby and distant tokens using a logarithmic pattern. It maintains essential long-term dependencies while
significantly reducing complexity. Its performance, however, may diminish for shorter sequences where its
fixed logarithmic structure might not be optimal.

o Autocorrelation (Autoformer): Unlike attention-based methods, the autocorrelation mechanism (Fig. 12d)
operates in the frequency domain to identify periodic patterns. This approach efficiently captures long-term,
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Fig. 12. A Visual Comparison of Attention and Correlation Mechanisms. The diagrams illustrate how different
strategies model temporal dependencies. (a) Full attention connects every point to every other point. (b)
LogSparse attention captures both local and distant (logarithmically spaced) connections. (c) Sparse attention
focuses only on a few significant connections. (d) Autocorrelation identifies similarities based on periodic lags
rather than direct point-to-point attention.

recurring dependencies and is highly suited for seasonal time series. Nevertheless, its reliance on periodicity
makes it less effective at modeling rapid, short-term fluctuations or non-periodic variations, which are critical
in domains like residential load forecasting.

Appendix B: Hyperparameter optimization details

Given the wide range of possible hyperparameter settings and their direct impact on the learning process and
performance improvement, we utilize the random search method for hyperparameter optimization (HPO)?*.
Random search is a black-box optimization method for HPO that can yield better results than grid search®. To
perform a random search of the model's hyperparameters, we have selected a range of values for the search, as

detailed in the Table 5:

Sample results from the hyperparameter optimization trials are provided in Table 6, illustrating the impact of
different settings on model performance.
Following numerous trials, the optimal hyperparameter values, as listed in Table 1, were obtained using the

HPO method.
Parameters Values
Sequence length 48, 96,128
Label length 48,96
Prediction length 96, 192, 336
Batch size 32,64, 128
Dropout 0, 0.001, 0.005, 0.05, 0.5
Dropout for LSTM 0, 0.001, 0.005, 0.05. 0.5
Loss function MSE, MAE
Encoder layers 1,2,4,8
Decoder layers 1,2,4,8
Num layer for LSTM in encoder | 1, 2,4
Num layer for LSTM in decoder | 1,2, 4
Activation ReLU, GeLU

Table 5. Different hyper parameters.
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Appendix C: Detailed statistical significance analysis
To rigorously validate the performance improvements of CLM-Former over the foundational Autoformer base-
line, we conducted paired statistical significance tests. Both models were trained and evaluated over 5 independ-

ent runs using identical random seeds to ensure a fair, paired comparison.

Table 7 presents the detailed statistical metrics, including the Mean Absolute Error (MAE) (reported as Mean
=+ Standard Deviation), the T-statistic and P-values from the Paired t-test (both one-tailed and two-tailed), and
the P-value from the Wilcoxon signed-rank test (one-tailed).
As shown in the Table 7, for all prediction horizons (96, 192, and 336 steps), the p-values for both parametric
and non-parametric tests are consistently below the significance level of 0.05. This statistically confirms that
the reduction in forecasting error achieved by CLM-Former is significant and not attributable to random

initialization noise.

Model MAE (mean+std) | Horizon | T-Statistic t-test | P-value t-test (one tail) | P-value #-test (two tail) | P-value Wilcoxon | Statistically significant?
CLM-Former | 0.19676+0.00165
96 -6.3547 0.001571 0.003142 0.031250 Yes (p<0.05)
Autoformer | 0.19920+0.00132
CLM-Former | 0.21039 +0.00447
192 -4.3530 0.006064 0.012128 0.031250 Yes (p<0.05)
Autoformer | 0.22225+0.00783
CLM-Former | 0.22161+0.00406
336 -5.5361 0.002602 0.005204 0.031250 Yes (p<0.05)
Autoformer | 0.22642+0.00495
Table 7. Detailed results of paired statistical significance tests comparing CLM-Former and Autoformer (MAE
metric) across 5 independent runs.
Appendix D: Supplementary visualization of forecasting results
This appendix provides supplementary visual evidence to complement the quantitative results presented in the
main text. While a representative visualization comparing model predictions for the 336-step horizon has been
included in the main Results section, this appendix offers further qualitative comparisons for additional fore-
casting horizons.
Figures 13 and 14 illustrate the normalized ground truth load curves versus the predictions generated by
CLM-Former, Informer, and Transformer for the 720-step and 192-step horizons, respectively, for a sample
customer. These plots offer a visual assessment of how effectively each model captures the complex, multi-scale
dynamics inherent in residential electricity consumption data.
As visually confirmed across these different horizons (Figs. 13, 14, and the corresponding figure in the main
text), CLM-Former consistently demonstrates a closer adherence to the actual load patterns compared to the
baseline models. Specifically, CLM-Former appears more adept at capturing both the overall cyclical trends
and the sharper, short-term fluctuations (peaks and troughs) in consumption.
This qualitative superiority aligns with our architectural design:
o The autocorrelation mechanism enables the model to effectively identify and leverage the underlying peri-
odicities in the data.
o The series decomposition, integrated within the model, helps separate long-term trends from seasonal vari-
ations, allowing for more focused modeling.
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Fig. 13. Load Prediction by (a) CLM-Former, (b) Informer, and (c) Transformer for the Next 720 Time

Intervals.
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Fig. 14. Predictions Made by Three Models: (a) CLM-Former, (b) Informer, and (c) Transformer for the Next
192 Time Intervals.

« Crucially, the CLM-subNet provides the necessary capacity to capture the fine-grained, local dynamics with-
in the seasonal component, which simpler feed-forward layers in standard Autoformer might miss.

Together, these visualizations provide compelling qualitative support for the quantitative findings, illustrating
CLM-Former’s enhanced capability in multi-horizon load forecasting.

Appendix E: Visualization of learned dependencies and feature importance
This appendix provides a visual inspection of how CLM-Former processes temporal data, offering insights into
its "black-box" decision-making process and the model’s focus on multi-scale temporal dependencies.

Auto-correlation maps

To investigate how the model identifies temporal dependencies, we visualize the learned Auto-Correlation maps
from two distinct encoder layers. Figure 15 displays the attention patterns for (a) Layer 1 and (b) Layer 2. In these
heatmaps, the x-axis represents the Time Lag (key positions, ranging from 0 to 60 steps), and the y-axis repre-
sents the Query Time Step(input positions). Brighter colors (yellow/green) indicate higher positive correlation
scores, signifying stronger temporal dependencies, while darker regions (purple/blue) correspond to negative
or weak correlations.

As observed in both Layer 1 and Layer 2, distinct vertical bands of high activation appear consistently at
specific lags (e.g., prominent bands around lag indices 20-25 and 45-50). This vertical alignment indicates

that regardless of the current query time step, the model consistently attends to the same historical intervals.
This visually confirms that the network has successfully learned the dominant periods (periodicity) inherent
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Fig. 15. Visualization of learned Auto-Correlation Maps from the Encoder. The heatmaps illustrate the
correlation intensity between query time steps and key time lags for (a) Layer 1 and (b) Layer 2. The consistent
vertical bright bands across different layers demonstrate that the model robustly identifies and focuses on
specific periodic lags (e.g., daily or weekly cycles) to capture the underlying seasonality of the load data.

Scientific Reports |

(2026) 16:4704 | https://doi.org/10.1038/s41598-025-34870-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Saliency Map: Input Feature Importance
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Fig. 16. Saliency Map showing input feature importance. The plot displays the gradient magnitude (y-axis)
across the input look-back window (x-axis). The significant fluctuations and prominent peaks indicate that the
model selectively attends to specific, high-impact historical time steps, effectively filtering noise and focusing
on critical temporal dynamics for prediction.

in the electricity consumption data and utilizes these recurring patterns across multiple layers for forecasting.
This behavior aligns perfectly with the theoretical design of the Autoformer architecture, which prioritizes
period-based dependencies over point-wise attention.

To further interpret the model’s decision-making process, we computed the Saliency Map using gradient back-
propagation®’. Figure 16 visualizes the absolute gradient magnitudes for each time step in the input look-back
window with respect to the model’s output. Higher magnitudes indicate greater sensitivity, meaning perturba-
tions in those historical steps have a stronger influence on the forecast.

As illustrated in Fig. 16, the importance distribution is highly non-uniform, exhibiting distinct peaks (e.g.,
around time steps 45-55 and 75-80, reaching magnitudes up to 16) and valleys. This indicates that CLM-For-
mer does not treat all historical data equally; instead, it selectively prioritizes high-impact segments—such as
specific past events or seasonal phases—while suppressing less relevant noise. This selective mechanism, driven
by the CLM-subNet’s hierarchical processing (local CNN filtering and sequential LSTM weighting), enhances
robustness to non-stationary patterns and directly contributes to the observed accuracy gains.
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