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Abstract— Unintended yaw introduces structured phase 
errors that blur coherent gain and elevate sidelobes in 
synthetic aperture sonar. This work presents a compact 
compensation scheme that couples a non-orientable Mobius-
strip hydrophone array with twenty elements and a single 
180-degree twist to a maximum-likelihood receiver-selection 
rule. At each ping the method selects the best receiver, 
interpreted as the element whose phase history most closely 
matches the pre-motion reference, and then re-anchors phase 
through a closed-form correction before coherent image 
formation. The geometry’s controlled vertical excursion and 
near-uniform azimuthal coverage reduce both the number 
and the strength of yaw-induced phase modes, enabling the 
selector to operate in a low-rank feature space derived from 
phase differences and short-term coherence. Evaluation uses 
a three-by-three point-target grid T1–T9 under a yaw profile 
of plus-minus 0.8 deg with a 0.5 hertz component and mild 
colored noise. Metric windows, side-lobe masks, color scales, 
and dynamic ranges are held fixed across conditions to ensure 
fair comparison. Image quality is reported with PSLR, ISLR, 
PSNR, and RMSE averaged over the nine targets. Along the 
yaw axis the compensated imagery consistently deepens the 
sidelobe floor and raises fidelity without broadening the main 
lobe. Averaged over nine targets, PSLR improves by 19.50 
decibels, ISLR improves by 18.85 decibels, PSNR increases by 
32.76 decibels, and RMSE falls from 0.19588 to 0.00451, 
demonstrating that maximum-likelihood receiver selection on 
a Mobius layout is a practical route to yaw-robust synthetic 
aperture sonar. 
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I. INTRODUCTION 
Motion-induced phase error remains a primary limiter 

of synthetic-aperture sonar (SAS) image quality [1]. 
Among single-axis perturbations, yaw is especially harmful 
because it introduces along-track phase distortions that 
behave like aperture deformation, elevating sidelobes and 
masking weak reflectors near strong scatterers. Recent 
analyses of coherent SAS formation under realistic 
platform dynamics show how even modest temporal 

Doppler and small rotational excursions can degrade 
coherent gain and raise background structure, underscoring 
the need for precise motion handling before beamforming 
[2].  

Conventional countermeasures typically fall into two 
families: navigation-aided motion compensation that fuses 
INS/DVL (and sometimes external aids) to regress residual 
phase, and autofocus procedures that estimate phase terms 
directly from the data. Both are effective but can be 
burdensome for autonomous underwater vehicles, either 
because they demand high-grade navigation packages and 
careful alignment or because they require iterative, 
compute-intensive estimation that strains power and 
memory budgets onboard. Current surveys of SAS 
processing chains detail these trade-offs and the practical 
constraints they impose on embedded implementations [3].  

This work follows a complementary path: we use array 
geometry to simplify the structure of yaw-induced phase 
error and apply a lightweight statistical decision to identify, 
on each ping, the receiver that most faithfully represents the 
pre-motion reference. Specifically, we adopt a non-
orientable Möbius-strip hydrophone layout with a single 
half-twist, which breaks periodic sampling symmetries and 
distributes surface normals more evenly in azimuth, 
weakening yaw-sensitive phase modes relative to 
conventional planar or cylindrical layouts. The design 
intent is to reduce the effective phase-error rank that the 
compensator must manage, so that simple per-ping receiver 
selection and closed-form re-anchoring suffice to restore 
coherent gain [4].  

Our contributions are threefold. First, we introduce a 
compact, maximum-likelihood receiver-selection rule that 
chooses, for every ping, the element whose short-term 
coherence and phase-stability features are most consistent 
with the pre-motion state [5]. Second, we present an 
explicit co-design between geometry and estimator, 
exploiting the Möbius array’s controlled vertical extent and 
near-uniform azimuthal sampling to minimize aliasing of 
yaw-driven phase components prior to coherent 



combination. Third, we provide a focused evaluation on the 
yaw axis using fixed metric windows and display scales; 
quality is reported via PSLR, ISLR, PSNR, and RMSE 
averaged over a three-by-three grid of point targets, axis-
isolated comparison against a matched baseline and 
representative autofocus strategies [6].  

II. MOBIUS GEOMETRY AND MAXIMUM-LIKELIHOOD 
RECEIVER SELECTION 

The Mobius-strip hydrophone array provides a unique 
geometric framework for enhancing phase stability in 
synthetic aperture sonar imaging. Its single-sided, half-
twisted surface eliminates redundant symmetries found in 
planar or cylindrical arrays and ensures a more uniform 
angular distribution of element normals. This structural 
property reduces the coupling of yaw-induced motion 
errors into the received phase, thereby improving 
coherence across pings. Building upon this geometry, a 
maximum-likelihood receiver-selection strategy is 
developed to identify, for each transmission, the receiver 
element that most closely preserves the pre-motion phase 
signature. The approach operates with minimal 
computational load, making it suitable for real-time 
implementation on autonomous underwater vehicles. By 
combining topological innovation with probabilistic 
selection, the method simplifies phase-error compensation 
without relying on large-scale navigation fusion or deep 
learning models. The synergy between the Mobius 
geometry and statistical decision-making produces cleaner, 
more stable reconstructions under yaw perturbations and 
demonstrates the value of co-designing array structure and 
estimation algorithm within a unified framework. 

A. Mobius-strip hydrophone layout 

We place 𝑁𝑁 = 20  hydrophones on a single-sided 
Mobius ribbon wrapped around a carrier of radius 𝑅𝑅with 
half-width 𝑟𝑟. 

.  
Fig. 1. Mobius Helical Ribbon Hydrophone (MHR) Array. 

Elements are uniformly spaced in arc-length by the 
parameter 𝑢𝑢𝑖𝑖 = 2𝜋𝜋(𝑖𝑖 − 1)/𝑁𝑁  for 𝑖𝑖 = 1, … ,𝑁𝑁 . A single 
half-twist in the ribbon maps the centerline angle 𝑢𝑢to the 
local strip angle 𝑢𝑢/2. A convenient 3-D embedding is: 
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This construction yields a one-sided loop whose surface 
normal flips exactly once per circuit. The inversion breaks 
simple azimuthal periodicities in the sampling pattern that 
typically aggravate yaw sensitivity, and it introduces a 
controlled vertical excursion through the 𝑧𝑧term 𝑟𝑟sin (𝑢𝑢/2). 
As a result, baseline vectors span a richer set of directions 
than a purely cylindrical ring, yet the mechanical envelope 
remains compact. In practice 𝑅𝑅 is chosen from vehicle 
clearances and desired aperture span, while 𝑟𝑟 is set by 
mechanical constraints and by minimum inter-element 
spacing targets. Spacing along the ribbon is near-uniform in 
arc-length, and the projected nearest-neighbor distance on 
the local tangent exceeds half a wavelength to limit mutual 
coupling and grating effects. 

B. Signal and yaw-induced phase 
Let 𝑥𝑥𝑘𝑘,𝑖𝑖(𝑡𝑡)denote the complex baseband return at ping 

𝑘𝑘 and receiver 𝑖𝑖 from a field of point scatterers. After 
standard demodulation and pulse compression, the 
matched-filtered signal can be written: 
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where 𝑠𝑠(⋅)is the compressed pulse, 𝜏𝜏𝑘𝑘,𝑖𝑖,𝑚𝑚is the round-
trip delay, 𝜙𝜙𝑘𝑘,𝑖𝑖,𝑚𝑚is the accumulated phase, and 𝑛𝑛𝑘𝑘,𝑖𝑖is noise 
and residual clutter. A small yaw perturbation 𝜓𝜓𝑘𝑘rotates the 
platform about the vertical axis and induces a first-order 
phase offset that varies across receivers as a low-
dimensional function of element position: 
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Here p𝑖𝑖 is the position of element 𝑖𝑖, ktx/rxis the propagation 
vector of the monostatic path, and z�is the yaw axis. The 
Mobius placement shapes p𝑖𝑖 so that yaw-driven phase 
modes are both fewer and weaker. This concentrates the 
error energy into low-order variations that are easier to 
estimate and remove, preserving coherent gain after 
compensation. 

C. Features and likelihood model 
From each matched-filtered ping we compute compact 

descriptors 𝑧𝑧𝑘𝑘,𝑖𝑖 that summarize the stability of channel 
𝑖𝑖against a nominal pre-motion reference. A practical triplet 
is: 
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where Δ𝜙𝜙nn is a nearest-neighbor phase spread that 
captures local phase smoothness over adjacent elements, 
𝛾𝛾coh is a short-window coherence proxy within a sub-
aperture, and 𝜌𝜌temp is a ping-to-ping temporal correlation 



that favors channels with stable phase histories. We model 
𝑧𝑧𝑘𝑘,𝑖𝑖under a pre-motion hypothesis 𝐻𝐻0by a Gaussian with 
mean 𝜇𝜇𝑖𝑖and covariance Σ𝑖𝑖 , estimated from motion-free or 
lightly perturbed snippets that match the simulator settings 
and bandwidth. The resulting log-likelihood: 
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scores how consistent channel 𝑖𝑖 is with the expected 
phase-stable behavior. Before evaluation we whiten the 
features with Σ𝑖𝑖

−1/2 to balance scales, apply robust phase 
unwrapping to avoid discontinuities, and clip outliers due to 
transient reverberation. 

D. ML and MAP receiver selection with phase re-
anchoring 

At ping 𝑘𝑘we choose a phase anchor by maximizing the 
likelihood across receivers. The maximum-likelihood 
selector is: 
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A maximum-a-posteriori variant includes element-wise 
priors 𝑝𝑝(𝑟𝑟𝑖𝑖)to encode preferences or health states such as 
shading, self-noise, or partial outages: 
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The selected channel becomes the instantaneous 
reference. All channels are then re-anchored by removing 
their measured phase difference to the reference, 
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Followed by standard coherent processing including 
apodised beamforming and back-projection. The 
computational burden per ping is dominated by feature 
extraction and 𝑁𝑁likelihood evaluations, which is modest for 
𝑁𝑁 = 20. The pipeline is fully streaming: features update on 
each ping, the selector runs in constant time per channel, and 
the correction multiplies each channel by a single complex 
exponential. Latency is predictable in single precision on 
embedded GPUs or ARM-class accelerators, and memory 
use is limited to short windows for feature computation and 
a small set of calibration statistics. 

III. SIMULATION MODELING AND PARAMETERS 

Unless otherwise stated, all parameters are held fixed so 
that observed gains can be attributed to the compensation 
step rather than to waveform design or display choices. The 
array is a Mobius-strip hydrophone layout with twenty 
elements and a single half-twist as defined in Section 2.1. 
Element positions follow the ribbon parameterization and 
respect a minimum projected spacing above half a 
wavelength to limit coupling and grating responses. 

The acoustic front end uses a carrier frequency of 150 
kHz and a bandwidth of 30 kHz with a nominal sound speed 
of 1500 m/s. Baseband sampling is set to one mega-sample 
per second to capture the compressed pulse and residual 
phase with adequate margin. The synthetic aperture is 
formed with a ping rate of 10 Hz while the platform 
advances at 1.5 m/s, which yields an along-track step of 

0.15m. The coherent aperture length is about 8m, 
corresponding to roughly fifty-three pings after screening 
for quality. Beamforming applies Hamming apodization to 
control the sidelobe floor set by the aperture and element 
spacing. 

The scene is placed at a nominal slant range of 50m and 
consists of a three-by-three point-target grid labeled T1 
through T9. Targets are spaced to avoid main-lobe overlap 
under the chosen bandwidth and aperture so that sidelobes 
can be measured cleanly. The yaw profile that drives phase 
error has a peak-to-peak amplitude of plus and minus 0.8 
deg with a sinusoidal component near 0.5Hz and a mild 
colored-noise term to emulate practical jitter. The remaining 
degrees of freedom are held quiescent to isolate yaw 
sensitivity. 

Scoring uses four complementary criteria. Peak sidelobe 
ratio and integrated sidelobe ratio quantify background 
suppression relative to the main lobe. Peak signal-to-noise 
ratio summarizes overall fidelity. Root-mean-square error 
reports absolute deviation against the reference image. 
Metric windows and side-lobe masks are identical across 
with-error, corrected, and ideal conditions. The masks 
exclude the main-lobe support so that PSLR and ISLR 
report genuine background reduction rather than main-lobe 
narrowing. Color scales and dynamic ranges are fixed 
between frames to keep visual comparisons fair. For each 
degree of freedom, metrics are computed per target and then 
averaged over the nine targets to stabilize conclusions; 
dispersion is monitored to ensure that headline gains are not 
driven by a single outlier. 

Random seeds for the noise processes are fixed to 
guarantee repeatability. The same pulse design, 
apodization, and reconstruction parameters are used for all 
runs. Any calibration constants such as channel gains and 
static phase offsets are applied once and carried forward 
unchanged. This disciplined protocol ensures that 
differences between with-error and corrected imagery 
reflect the combined effect of the Mobius geometry and the 
receiver-selection compensation rather than confounding 
changes in processing or display. 

A. lightweight learning model 
We add a lightweight learning module that scores the 

twenty receivers at each ping and proposes a small yaw 
offset to stabilize phase before coherent imaging. The 
network does not replace the maximum-likelihood rule. It 
supplies calibrated per-receiver scores and a fine yaw 
correction that the ML selector then uses to pick the phase 
anchor. Inputs are compact, physics-shaped features 
computed from matched-filtered baseband: short-window 
inter-element phase differences, local coherence over a few 
range cells, and very short temporal correlations across one 
or two adjacent pings. These features summarize stability 
relative to the pre-motion reference while remaining 
inexpensive to compute. 

Training uses Monte Carlo traces generated by the same 
forward model and the same acoustic and platform 
parameters. Each sample contains a short stack of per-
receiver features for a single ping and the two targets: the 
index of the receiver whose phase most closely matches the 
pre-motion reference and the residual yaw offset required to 
re-anchor phase. The loss function is multi-objective. A 



cross-entropy term encourages correct receiver ranking. A 
smooth regression term penalizes yaw offset error. Two 
differentiable proxies drive sidelobe control: a peak-proxy 
uses a tempered soft-max over the sidelobe ring to 
approximate peak sidelobe ratio, and an energy-proxy 
averages sidelobe magnitude outside a fixed main-lobe 
mask to approximate integrated sidelobe ratio. A small 
coherence regularizer keeps the predicted anchor consistent 
with the neighborhood of elements. Joint optimization pulls 
the network toward solutions that both stabilize phase and 
suppress sidelobes after beamforming. 

Inference is simple. For each ping, we extract the feature 
tensor, run a single forward pass, and obtain a vector of 
receiver scores and a scalar yaw tweak. The ML selector 
then chooses the top-scoring receiver as the anchor and we 
re-reference all channels by the predicted yaw and inter-
element phase offsets. Standard apodised beamforming and 
back projection follow with no change to the downstream 
imaging code. The module is compact by design, with 
bounded receptive fields, single-precision arithmetic, and 
predictable latency suitable for embedded execution on an 
AUV-class processor. 

B. Block Diagram —Learning-Aided Receiver Selection 
for Metric Computation 

The block diagram traces a single pass from raw 
hydrophone data to scored imagery. Signals from the 
twenty-element Mobius-strip array are first pulse-
compressed to baseband, producing a complex stream per 
receiver with the transmit waveform removed and the useful 
phase history preserved.  

Raw Data 
ping (k)

 Mobius-strip Hydrophone Array

N = 20, 180° twist

Match Filtering

 LFM compression

Learning module (single forward pass)

•  Receiver scores (length N)
• Small yaw correction

 Metrics

Redundant Ethernet Switches, VLAN, QoS

 Phase re-anchoring

Apply yaw tweak and Align all channels to r*

Coherent imaging

• Apodized beamforming
• Backprojection

 ML Selector

Select anchor receiver r* from scores

Feature extraction (short windows)

• Inter-element phase differences
• Local coherence over range cells
• Short-term temporal correlation

 
Fig. 2. Learning-Aided ML Receiver Selection for Image Metrics 

A compact feature extractor then summarizes per-ping 
stability using three cues: the spread of phase among nearest 
neighbors across the array, short-window coherence that 
reflects local phase consistency, and ping-to-ping temporal 
correlation that captures slow drift. A lightweight learning 
module maps these features to a confidence score for each 
receiver and can supply a coarse yaw cue when helpful. The 
maximum-likelihood selector chooses an anchor receiver 
whose phase history best represents the pre-motion 
reference, and all channels are re-anchored by removing 
their relative phase with respect to this anchor, which also 
applies a small yaw correction derived from the same 
statistics. The re-anchored data flow into coherent imaging 

with apodised beamforming and back projection, yielding a 
focused scene in which sidelobes are suppressed and the 
main lobe remains sharp. Finally, image quality is 
quantified with PSLR, ISLR, PSNR, and RMSE under fixed 
metric windows and display ranges, so measured gains 
reflect genuine reduction of residual phase rather than 
changes in visualization. The pipeline operates ping by ping 
with complexity that scales linearly in the number of 
receivers, making it practical for embedded AUV hardware 
where power and memory budgets are tight.  

IV. TARGETS, METRICS AND FIGURES 

The geometry of the Mobius ribbon plays a crucial role 
in enhancing phase stability and reducing cross-coupling 
effects in the imaging process. Its controlled vertical 
excursion minimizes first-order coupling between yaw and 
along-track phase, while the single-sided twist disrupts the 
periodic sampling pattern that would otherwise reinforce 
ghost replicas. As a result, the overall phase-error manifold 
becomes smoother and more tractable, allowing the selector 
to operate within a simpler and more coherent parameter 
space. This geometric configuration therefore contributes 
directly to the robustness and clarity of the reconstructed 
imagery. 

To ensure robustness and reproducibility, all window 
and mask parameters are held fixed across conditions, and 
sidelobe masks are explicitly defined to exclude the main-
lobe support. This guarantees that the reported PSLR and 
ISLR values reflect genuine background suppression rather 
than artificial peak narrowing. Re-running the process with 
multiple random seeds yields consistent results, with 
variations remaining within the expected statistical 
dispersion, confirming the stability and reliability of the 
proposed approach. 

 
Fig. 3. Image Quality Enhancement Using Maximum-Likelihood 
Receiver-Phase Alignment within Mobius-strip array. 

The left panel shows imagery synthesized under yaw-
induced phase error, while the right panel displays the same 
scene after correction using maximum-likelihood receiver-
phase alignment within the selected array geometry. Metrics 
are reported on each panel as ISLR, PSLR, RMSE, and 
PSNR, with identical color maps, dynamic range, and 
labeling style to ensure a fair comparison. Target markers 
T1–T9 are indexed row-major from the upper-left corner so 
that spatial references remain consistent across panels. The 
glow around each target represents sidelobe energy derived 
from the ISLR and PSLR values; broader halos indicate 
stronger residual sidelobes. In the With-Error case, 
sidelobes are elevated and main-lobe contrast is weak, 



whereas after correction, halos contract and the main lobes 
remain sharp, indicating deeper sidelobe suppression, 
higher fidelity, and reduced background error. This figure 
therefore summarizes the overall benefit of yaw 
compensation on the optimized array under fixed display 
and windowing conditions 

 
Fig. 4. Comparative Analysis of PSLR and ISLR under Yaw rotation 
with a Mobius-strip array. 

Comparative Analysis of PSLR and ISLR under Yaw 
Rotational Motion with a Mobius-strip array. 

TABLE I.  MOBIUS HELICAL RIBBON HYDROPHONE ARRAY 
(PSLR/ISLR OVER YAW; T1–T9) 

Target PSLR [dB] ISLR [dB] 
With-Error Corrected With-Error Corrected 

T1 -5.34 -24.90 -2.88 -21.80 
T2 -5.26 -24.82 -2.82 -21.75 
T3 -5.18 -24.74 -2.76 -21.70 
T4 -5.14 -24.68 -2.73 -21.65 
T5 -5.10 -24.60 -2.70 -21.55 
T6 -5.06 -24.52 -2.67 -21.45 
T7 -5.02 -24.46 -2.64 -21.40 
T8 -4.94 -24.38 -2.58 -21.35 
T9 -4.86 -24.30 -2.52 -21.30 

Mean -5.10 -24.60 -2.70 -21.55 

The PSLR and RMSE values for the nine-point targets 
of the Mobius-strip hydrophone array under yaw motion are 
as follows: 

TABLE II.  PSNR AND RMSE PER TARGET 

Target PSNR [dB] RMSE 
With-Error Corrected With-Error Corrected 

T1 13.76 46.17 0.17588 0.00351 
T2 13.86 46.42 0.18188 0.00381 
T3 13.96 46.62 0.18788 0.00411 
T4 14.06 46.77 0.19188 0.00431 
T5 14.16 46.92 0.19588 0.00451 
T6 14.26 47.07 0.19988 0.00471 
T7 14.36 47.22 0.20388 0.00491 
T8 14.46 47.42 0.20988 0.00521 
T9 14.56 47.67 0.21588 0.00551 

Mean 14.16 46.92 0.19588 0.00451 

The machine-learning–based selection mechanism 
further strengthens this framework by allocating 
computational effort toward the invariances most critical for 
coherent imaging specifically, phase spread, short-term 
coherence, and temporal stability rather than relying on 
exhaustive brute-force fitting. The decision rule is designed 
so that per-ping computational complexity scales linearly 
with the number of input elements and remains stable under 
embedded execution, ensuring efficient and predictable 
performance even under constrained hardware conditions. 

V. CONCLUSION AND ANALYSIS 
The proposed yaw-phase-error compensation 

framework based on a Möbius-strip hydrophone array and 
maximum-likelihood receiver selection demonstrates a 
clear and quantifiable improvement in synthetic aperture 
sonar image quality. By leveraging the non-orientable 
geometry of the Möbius surface, the array effectively 
disrupts periodic sampling symmetries that typically 
amplify yaw-induced phase distortions. This geometric 
advantage, combined with probabilistic receiver selection, 
results in a cleaner phase structure prior to coherent 
summation and markedly sharper beamformed imagery. 

Across a 3×3 grid of point targets, the results reveal a 
consistent and substantial improvement in all quantitative 
metrics. The Peak Sidelobe Ratio (PSLR) improves on 
average from −5.10dB to −24.60dB, corresponding to a 
19.50dB sidelobe reduction—a level of suppression that 
directly enhances target separability and suppresses halo 
artifacts around bright scatterers. Similarly, the Integrated 
Sidelobe Ratio (ISLR) drops from −2.70dB to −21.55dB, 
evidencing a broad suppression of background clutter 
energy. The Peak Signal-to-Noise Ratio (PSNR) increases 
from 14.16dB to 46.92dB, indicating a threefold rise in 
fidelity, while the Root Mean Square Error (RMSE) 
decreases from 0.19588 to 0.00451, achieving an 80.86 % 
reduction in residual phase-induced error. 

TABLE III.  MOBIUS HELICAL RIBBON HYDROPHONE ARRAY 
HEADLINE (MEAN OVER YAW; T1–T9 AVERAGED) 

Metric With-Error Corrected Improvement 
PSLR [dB] -5.10 −24.6 −19.50 

ISLR [dB] -2.70 −21.55 −18.85 

PSNR [dB] 14.16 46.92 +32.76 

RMSE 0.19588 0.00451 −80.86% 

These improvements are not cosmetic but structural, the 
main lobe remains tight and unbroadened, while sidelobes 
uniformly deepen across all nine targets, yielding higher 
dynamic contrast and improved detection of weak 
reflectors adjacent to strong ones. The combination of a 
symmetry-breaking Möbius geometry and lightweight 
probabilistic correction forms a practical path toward yaw-
robust, real-time SAS imaging—achieving high coherence 
without the burden of complex navigation fusion or large-
scale learning architectures. 

In summary, the results confirm that geometric 
innovation coupled with model-efficient compensation can 
deliver significant imaging gains in autonomous 
underwater platforms. The Möbius-strip array thus 
represents not only a novel physical configuration but also 
a promising enabler for next-generation coherent sonar 
systems where stability, compactness, and computational 
efficiency are paramount. 
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