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Abstract [9]. They used a finite data window for error covariance
matrix in least square algorithm and reset that matrix

A high accurate tracking technique with the use of periodically. In practice, the performance characteristic
intelligent approach on matrix covariance resetting is of this technique is very well. However, every time the
proposed in this paper. In practice, the conventional error covariance matrix is reset, information from
Kalman filters have a fast convergence rate at the earlier updates is partially lost. Therefore, resetting
beginning. However, after some iteration the Kalman error covariance should be logical.
filter steps become very small. To overcome this defect On the other hand, fuzzy logic was applied to
and to make use of Kalman filter abilities, the matrix maneuvering target tracking with intelligent adaptation
covariance resetting idea is used. The matrix and capability to add human knowledge to the system
covariance presetting usually is used to improve the [10, 11].
tracking algorithm result especially for high Continuing these efforts, in this paper we find some
maneuvering targets. To determine the optimal value of logical rules for resetting error covariance matrix and
the unknown resetting parameter in each step, the add them to the Goodwin and Sin method with the use
intelligent fuzzy block is used. In this paper, an of fuzzy logic.
innovative technique is presented, which resets
covariance matrix by using fuzzy logic. It is 2. Model of uncertainty [12]
demonstrated by means of numerical acceleration
examples that the tracking capability of the proposed The basic models to be considered in this paper are
method is essentially as good as that of the traditional

the Bayesian and Fisher models, which are used in [6].methods, especiallyfor high maneuver targets. Theses models are specific cases of the state space
structure-white process. The Bayesian models are one

1. Introduction of the most important and common used models of
uncertainty. In Bayesian models, uncertainty is modeled

Track while scan (TWS) radars, which use phase by random variables and/or stochastic processes with
array antenna are often used in air and sea surveillance. either completely specified probability distributions or
With the function of TWS, the search radars can track a completely specified first and second moments.
target or targets while scanning [1]. The Kalman filter The complete definition of the Bayesian, discrete
has been used widely in target tracking problems [2]- time model for linear systems is summarized below.
[4]. However, when the target maneuvers the quality of
the position and velocity estimation could be degraded X(n + 1) = F(n)X(n) + G(n)w(n)
significantly. To solve this problem, some techniques z(n) = H(n)X(n) + v(n)
have been introduced to modify the conventional
Kalman filter. For instance, Korn, Gully and Willsky z(n) osate
presented a generalized likelihood ratio (GLR) method z(n) observation
for maneuver detection and target state estimation [5]. v(n) white observation uncertianty
This algorithm proposed the use of two ssss. Null w(n) white system driving uncertianty
hypothesis for a target without maneuver, and X(0) initial condition
alternative hypothesis for a target with maneuver. When
the log likelihood ratio is over a threshold, a maneuver
is detected. This system needs a bank of correlators to
detect the maneuver onset time. In some situations, the
Kalman filter solves the target tracking problem by
including the parameters as part of an augmented state
to be estimated [6, 7, 8]. In many papers such filters are
called a "full state" estimator. Goodwin and Sin
proposed an adaptive control of time varying systems
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T rJI9(n,) nq n target movements. To be more precise, when the targetE{v(nl)v (n2)}= 2 maneuvers, the quality of the position and velocity
0 fl1 . "n2 estimation could be decreased significantly. Therefore,

E{w(n )WT (n) QQ(n=)n 2 using the kalman filter is suitable until the target starts
E{w(n,)w (nM)= 0 n #n to maneuver.1 2 As we know, in this algorithm error covariance matrix

E{x(0)xT (0)}= ( (n n)) gets small after a few iterations [9]. So,
E{x(0)}= O , E{w(0)}= , E{v(0)}= ° when target begins to maneuver with high acceleration,
In many applications, the input disturbance, w(.) can be tracker which uses Kalman filter would not be
modeled as being completely unknown. A model where functionally accurate. This motivates a related scheme
w(.) is completely unknown is a type of Fisher model. in which E (n In) is reset at various times. In other
Of course, conceptually such Fisher models have to be words, old data is discarded to keep the algorithm alive.
handled in a fashion different from Bayesian models The main idea of resetting E (n n) is to retain the fast
where w(.) is viewed as a random vector with known initial convergence of Kalman filter and track a target
covariance matrix immediately when it maneuvers. However, resetting the

error covariance matrix descends tracking performance
3. Filtering of bayasian models when the target moves at a constant velocity because, as

we know, Kalman filter provides optimal tracking for
The desired form of the filtering solution is a targets with constant velocity. Therefore, resetting error

difference (recursive relationship) . covariance matrix should be logical. To be more

i( IN i eqai express 1ng accurate, when the target moves with constant velocity,
(f (n n) should not be reset and when the target starts

The solution of the filtering problem is the Kalman to maneuver, the system should resetY,(nln).
filter with equations: According to this fact, the key of this dilemma is
X(N+ I N) = F(N)X(N |) +K(N+ 1)[z(N+ 1) detection of target maneuver.
-H(N+1)F(N)X(N N)]
K(N+1) = (N+ I N)HT(N+1)93-1(N+1) 4.2. Fuzzy maneuver detector
E(N+1 N+1))=EY(N+1 N) In this research, fuzzy logic is employed in order to
>L(N+1N)HT(N+1491gi(N+1) +H(N+1) (2) detect target maneuver immediately. It is the fuzzy
E(N+1I N)H(N+I)T]H(N+1)(N+1) maneuver detector system, which we proposed
E(N+1I N) = F(N)E(NI N)FT(N) previously in [14] and modified it in [15]. When

+ G(]V)Q(]V)GT (]V) maneuver has been detected, covariance matrix will be
+IG(N)Q(N)G~ reset automatically.

E(O O)= O, X(O O) =0 The radar output signal has no exact mathematical
relation with target maneuver. However, with no doubt,

K(N) is the Kalman gain and notation X(N +1 N) there exists a complex nonlinear mapping between
denotes the prediction at the (N + 1)th sample point them. To map the input vector to target acceleration

iven the measurement up to and including the Nth vector it is important to find the effective input
given the measurement up to and includig the N elements. Two features are used as inputs of the fuzzy
whilst X(N N) denotes the estimation at the Nth acceleration estimator system.
sample point given the measurement up to and 1. Absolute value of difference between last target

ncludin theNth .(NIN)is theerrorcovariancecourse (y/) and observation target course (;). It
including the Nh .L(NI N) iS the error covariance

is shown as AO in Fig .. AO is one of the most
matrix and Y(N +1I N) is the error covariance matrix useful elements to detect the target maneuver [ 14].
of the one-step prediction.of the one-stepprediction. ~When AS~iS low, then with a high probability theManeuvering targets are difficult to track with Kalman When is low, then ith a hirobabi the
filter since the target model of tracking filter might not target is moving around its last direction and when
fit the real target trajectory [13]. |AO| is high, then with a high probability the target

is moving toward sensor's observation. This fact
4.~~Inelgn ero*oaine mti was used as a fuzzy rule in fuzzy acceleration

estimator.
resetting |AO, y and;~were calculated with the use of

4.1. Error covariance matrix resetting following equations.
Kalman filter is known to provide extremely rapid A 3

initial convergence rate and optimal tracking. However,AS= -s(3
the algorithm was developed with some assumptions.
The most important assumption is the constant speed of Where:
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= Last Target Course Where, c;J and xi are the center value and the standard
= Observation Target Course deviation of Gaussian membership function for ith input

Last Target Course angle(Hx(N -1 N)- Hk(N 2 N)) variable of j th fuz rule, respectively. The output of

Observation Target Course =angle(Z(NIN)- HI(N -1 N (4) the fuzzy logic controller determines the estimated
acceleration value of target deviation at from its last
Target course based on AO and R inputs. Fuzzy

2. Absolute value of measurement residual (R): The inference rules suppormentioned information.
objective in this section is to develop a maneuver Block 3 is a simple low pass filter. The main purpose of
detection algorithm, which detects the acceleration using a low pass filter is that the output of block 2 (at
and jerk of a maneuvering target. A similar idea of u
quickest detection and change detection algorithm, is a noisy signal. To vivify, at is the target acceleration
only for constant acceleration has been investigated signal added with high frequency noise. After passing
in [16]. The standard KF "(2)" is an efficient and this noisy signal through a low pass filter, the real value
unbiased filter, so the following sequence is the of target acceleration will be achieved. Block 4 is
residue of observation. another fuzzy system. This fuzzy system has two inputs

Z(n+l) Z(n+l)-Z(n+l/n) Z(n+1)-H(n+l)X(n+1/n) (5) and one output. The inputs are target acceleration
(output of Block 3) and the sum of the diagonal

The residue of observation is a stochastic zero elements of l(nln) (Trace). In practice the
mean white process. i.e., conventional Kalman filters have a fast convergence
EZ(n±+l) O rate at the beginning. Therefore, after some iteration the

Ej.~(nl )(n,. TI 9i,5(n,
Kalman gain which updates proportional to the

1- i 2) estimation, becomes very small. To overcome this
Y Present Prediction defect and to make use of Kalman filter ability, the

/-, -~ ~Point matrix covariance resetting idea is used.

Last Target AO
B Block 2 3 Block 4

course ~~~~~~~~~~~~~~~~AolFuzzy
- - - Angle & R Acceleration LP u Resctuin
- ~~Observation Calculator siao Filter Factor Determinaion

,, / , , Target Course 44AL R a - k
, Rang Last prediction Trace P r Block5

,'/ Point 4Last State
/ 44 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Centre

Target Measurement
Azimuth

x II~ o New
State

Figure 1. Target movement geometry [14]. Block 6
Figure 2. The proposed method.

Therefore, for non-maneuvering targets, the mean of
this sequence (Z(n+1)) is zero. But, for the case of The matrix covariance resetting is usually used to
maneuvering target, this sequence is no longer zero and improve the tracking algorithm specially for high
contains more information. maneuvering targets. The trace norm is usually used as

This fact was used as another fuzzy rule in fuzzy a matrix measure. So after some iterations which theThis fact was used as another fuzz rulle in fzz
acceleration estimator system. Trace[E (n n)] . as the covariance matrix norm

becomes smaller than the specified value, the following
4.3. Intelligent error covariance matrix presetting procedure is done:
resetting

(nn+ I n+1) = kp (n n) (7)
The proposed method is illustrated in Fig .2. In this Z (+1n +1)wkacZ(f n) (7)

figure, block 1, calculates AO and R. Block 2 is a fuzdt onal resettng covarance
- - . -. ~~~~~~~matrixiS on the estimation of the unknown constantcorntrol ler. Thez fuzm sysQtem has trrwo inutsalc and one

outut T]1 he i^npult variabhles of fuzzsysRcZtem are AOra?ndfi coefficient (kp )at thle presence of target maneuvering.
To overcome this drawback the Intelligent Matrix

R ~~~~ ~-.Inpuanuptz st l aetreGusa ovarianLce Resetting iS suggested in this paper.membershipm functions with the following membership Teeoe u ytm nbok4i tlzdt
igrdu-1v=/ (x) supp thi fact

r S X A1 ~~~~~Input and output fzz sets alll have two Gaussian
/x1 exKyK 2 (6 mebrsi ncin. As metine, (, /) shul
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be reset when the target is maneuvering and E (n n) is Target Range
8000 __ __ _ _

low. Real
Block 5 is the covariance resetting centre. The system 7500 Proposed method

7500 ~~-- Augmented
in this block, gets k- and uses it to reset error
covariance matrix using relation 7. 7000 - - 'a-

5. Simulation result 6500 -

The estimation improvements obtained by the 6000 /
proposed method is illustrated by the following
examples. 5500

-

In experiments reported in this section, the following
assumptions and parameter values are used. In this 5000
simulation, the sampling time is T=0.0 15 (sec). 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Covariance elements generated for R and 0 axis are Figure 4. Range of the maneuvering target and estimation result of the
both Gaussian random variables; in addition, the proposed method and augmented Kalman filter in the first scenario.
measurement noise vector in Cartesian coordinates is
related to the measurement noise vector in polar First scenario: The initial position of the target is
coordinates by the following equation [14]. given by (x,y)=(4330,2500) with an initial speed of (vx
F2 cos2 00 Ro sin2 00 32 ,vy)=(13,7.5). Target moves with constant acceleration!2x 2 soJL K2j (8) ux=0.2 miS2, uy0.02 m/s2 until t= 75s, then it starts
YjLslnO 0c u L to maneuver with acceleration value ux=-2 m/s2, uy 0

Where, m/s2. Target moves with this acceleration until the end
JR = 200, go =1 of this simulation at t=135s. Fig.3 shows, target

Ro =5000 (m) and 00 =30 (deg) trajectory estimation by proposed method and
In order to evaluate and compare the new tracking augmented Kalman filter in this scenario. Fig.4 shows,

scheme with two existing augmented Kalman filter target range estimation by two methods. Fig.5 shows,
methods [6], two scenarios were considered as follows. target azimuth estimation by two methods. Fig.6 shows,

target speed estimation by two methods.

Target Trajectory In order to compare the proposed method with
5500 l_l_-Real augmented Kalman filter, a Mont Carlo simulation of

Proposed method 50 runs was performed. The STD of estimation error of
5000 - Augmented range, azimuth, course and speed of all three methods

in this scenario is compared in tablet.
4500 - -t- - - - -- Target Azimuth

-Real
E~ 4000 Proposed ethod

50 -- - - Augmented

3500
45- X rT ,

3500 4000 4500 5000 5500 6000 6500 35 -
X

X (m)

Figure 3. Trajectory of the maneuvering target in Cartesian
coordinates and tracking result of the proposed method and ; -t t -

augmented Kalman filter in the first scenario.
25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 5. Azimuth of the maneuvering target and estimation result of
the proposed method and augmented Kalman filter in the first

scenario.
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Target Speed Target Range
100 6800

Real Real

90g Proposed method 6600 -Propoed method
Augmented Augmented

800 6400
6200-

6000
60 - 6000

5800 -

5600 - AT T

5400 \

5000 -

1_0 i. l ll 4800
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 2000 4000 6000 8000 10000 12000

Figure 6. Speed of the maneuvering target and estimation result of the Figure 8. Range of the maneuvering target and estimation result of the
proposed method and augmented Kalman filter in the first scenario. proposed method and augmented Kalman filter in the second scenario.

TABLE I. RADAR FILTER ESTIMATION ERROR IN THE FIR Table 2 shows comparison of the STD of estimation
SCENARIO (std) error in second scenario. These results are the mean
Range Azimuth Course Speed value over 50 runs.

Proposed method 47.73 0.28 39.75 7.11 TABLE 2. RADAR FILTER ESTIMATION ERROR IN THE
Augmented Method 188.43 1.20 48.59 16.83 SECOND SCENARIO (std)
Percentage Improvement 75 76.5 18 58 Range Azimuth Course Speed

Proposed method 29.15 0.09 35.74 7.32
Second scenario: The initial position of the target is Augmented Method 224.77 0.83 39.78 17.00

given by (x,y)=(4330,2500) with an initial speed of (vx Percentage Improvement 87 89 1 57
,vy)=(13,7.5). Target moves with constant acceleration
ux=0.2 m/s2, uy=0.02 m/s2 until t= 52 s, then it starts Target Azimuth
to maneuver with acceleration value ux=- 1 m/s2 , uY=- 1 32 -Real
m/s2 . This acceleration continue to t=104 s at that Proposed method
moment target starts another maneuver with 30 Augmented
acceleration of ux=1 mis2, u 1 m/s2. Target moves with
this acceleration until the end of this simulation at 28 - T T

t=157 s. Fig.7 shows, target trajectory estimation by the
proposed method and augmented Kalman filter in this 26 - 8X,
scenario. Fig.8, Fig.9 show, target range and azimuth
estimation by two methods. Fig.10 shows, target speed 24 -

estimation by two methods.
Target Trajectory 22 t t t t

3600

3400 - 20
0 2000 4000 6000 8000 10000 12000

3200

3000 - Figure 9. Azimuth of the maneuvering target and estimation result of

2800 - -
the proposed method and augmented Kalman filter in the second

2800 scenario.

2600

2400 _

2200 - X

160C ~~~~~~~~~~Augmented
4200 4400 4600 4800 5000 5200 5400 5600 5800

X(m)

Figure 7. Trajectory of the maneuvering target in Cartesian coordinate
and tracking result of the proposed method and augmented Kalman

filter in the second scenario.
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Target Speed [12] F. C. Schweppe, Uncertain Dynamic Systems, Prentice-
50CReal_-Rea Hall. 1973.
45 Proposed method [13] T. Kawase and H. Tsurunosono, "Two-stage Kalman

Augmented estimator using advanced circular prediction for maneuvering
40 \ 0target tracking", IEEE, 1998.T. Kawase and H. Tsurunosono,

35 - "Two-stage Kalman estimator using advanced circular
30 ----------- .-------prediction for maneuvering target tracking", IEEE, 1998.

[14] M. H. Bahari, A. Karsaz, H, Khaloozadeh, "A new
25 - -i t - method based on combined fuzzy logic and Kalman filter for
20 - target maneuver detection", in International IEEE Conf

ISSCAA, pp. 520-525, June 2006.
15 ih / AX V t [15] M. H. Bahari, A. Karsaz, "High maneuver target

10 ------dtracking based on combined Kalman filter and fuzzy logic", in
International IEEE Conf IDC 200 7, to be published.
[16] T. C. Wang and P. K. Varshney, "A tracking algorithm

0 for maneuvering targets", IEEE Trans. On Aerospace and
Electronics Systems, vol. 29, no. 3, pp. 910-924. 1993.

Figure 10. Speed ofthe maneuvering target and estimation result of
the proposed method and augmented Kalman filter in the second

scenario.

6. Conclusion

In this paper, an innovative technique is presented
which presets covariance matrix using fuzzy logic.
Simulation results show a high perfornance of the
proposed innovative technique and effectiveness of this
scheme specially, in high maneuvering target tracking.
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