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Abstract

A high accurate tracking technique with the use of
intelligent approach on matrix covariance resetting is
proposed in this paper. In practice, the conventional
Kalman filters have a fast convergence rate at the
beginning. However, after some iteration the Kalman
filter steps become very small. To overcome this defect
and to make use of Kalman filter abilities, the matrix
covariance resetting idea is wused. The matrix
covariance presetting usually is used to improve the
tracking algorithm  result especially  for high
maneuvering targets. To determine the optimal value of
the unknown resetting parameter in each step, the
intelligent fuzzy block is used. In this paper, an
innovative technique is presented, which resets
covariance matrix by using fuzzy logic. It is
demonstrated by means of numerical acceleration
examples that the tracking capability of the proposed
method is essentially as good as that of the traditional
methods, especially for high maneuver targets.

1. Introduction

Track while scan (TWS) radars, which use phase
array antenna are often used in air and sea surveillance.
With the function of TWS, the search radars can track a
target or targets while scanning [1]. The Kalman filter
has been used widely in target tracking problems [2]-
[4]. However, when the target maneuvers the quality of
the position and velocity estimation could be degraded
significantly. To solve this problem, some techniques
have been introduced to modify the conventional
Kalman filter. For instance, Korn, Gully and Willsky
presented a generalized likelihood ratio (GLR) method
for mancuver detection and target state estimation [5].
This algorithm proposed the use of two ssss. Null
hypothesis for a target without maneuver, and
alternative hypothesis for a target with mancuver. When
the log likelihood ratio is over a threshold, a maneuver
is detected. This system needs a bank of correlators to
detect the maneuver onset time. In some situations, the
Kalman filter solves the target tracking problem by
including the parameters as part of an augmented state
to be estimated [6, 7, 8]. In many papers such filters are
called a “full state” estimator. Goodwin and Sin
proposed an adaptive control of time varying systems

[9]. They used a finite data window for error covariance
matrix in least square algorithm and reset that matrix
periodically. In practice, the performance characteristic
of this technique is very well. However, every time the
error covariance matrix is reset, information from
carlier updates is partially lost. Therefore, resctting
error covariance should be logical.

On the other hand, fuzzy logic was applied to
mancuvering target tracking with intelligent adaptation
and capability to add human knowledge to the system
[10, 11].

Continuing these efforts, in this paper we find some
logical rules for resetting error covariance matrix and
add them to the Goodwin and Sin method with the use
of fuzzy logic.

2. Model of uncertainty [12]

The basic models to be considered in this paper are
the Bayesian and Fisher models, which are used in [6].
Theses models are specific cases of the state space
structure-white process. The Bayesian models are one
of the most important and common used models of
uncertainty. In Bayesian models, uncertainty is modeled
by random variables and/or stochastic processes with
either completely specified probability distributions or
completely specified first and second moments.

The complete definition of the Bayesian, discrete
time model for linear systems is summarized below.

Xmn+D =FmXmn) +Gmwh)
z(n) = HmX (n) +v(n)

X(n) state

z(n) observation

v(n) white observation uncertianty M
w(r) white system driving uncertianty

X (0) initial condition
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In many applications, the input disturbance, w(.) can be
modeled as being completely unknown. A model where
w(.) is completely unknown is a type of Fisher model.
Of course, conceptually such Fisher models have to be
handled in a fashion different from Bayesian models
where w() is viewed as a random vector with known
covariance matrix Q(.).

3. Filtering of bayasian models

The desired form of the filtering solution is a
difference equation (recursive relationship) expressing

)?(N+1\N) in terms of )?(N|N) on z(N+1).

The solution of the filtering problem is the Kalman

filter with equations:
X(N+1|N)=F(NX(N )+ K(N+D[z(N +1)
—H(N+DF(N)X(N|N)]
K(N+D)=S(N+1|MHT (N +DR (N +1)
SN +1|N+1)=3(N+1|N)-

SN +INHT (N + D[R +1)+ H(N +1)
SN +1| NMHN +1 JH(N +DS(N +1)

SN +1|N)=F(N)S(N| N)ET (N)
+GINYQNYG' (N)

$(0]0)=0,X(0]0)=0

@)

K(N) is the Kalman gain and notation X (N +1|N)
denotes the prediction at the (N +1)"sample point

given the measurement up to and including the N t
whilst X (N |N) denotes the estimation at the N o
sample point given the measurement up to and

h . .
including the N f .X(N|N) is the error covariance
matrix and Y (N +1| N)is the error covariance matrix
of the one-step prediction.

Maneuvering targets are difficult to track with Kalman

filter since the target model of tracking filter might not
fit the real target trajectory [13].

4. Intelligent error covariance matrix
resetting

4.1. Error covariance matrix resetting

Kalman filter is known to provide extremely rapid
initial convergence rate and optimal tracking. However,
the algorithm was developed with some assumptions.
The most important assumption is the constant speed of
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target movements. To be more precise, when the target
mancuvers, the quality of the position and velocity
estimation could be decreased significantly. Therefore,
using the kalman filter is suitable until the target starts
to maneuver.

As we know, in this algorithm error covariance matrix
(X(n|n)) gets small after a few iterations [9]. So,

when target begins to maneuver with high acceleration,
tracker which uses Kalman filter would not be
functionally accurate. This motivates a related scheme
in which Y (n|n) is reset at various times. In other

words, old data is discarded to keep the algorithm alive.
The main idea of resetting 3 (n|n)is to retain the fast

initial convergence of Kalman filter and track a target
immediately when it maneuvers. However, resetting the
error covariance matrix descends tracking performance
when the target moves at a constant velocity because, as
we know, Kalman filter provides optimal tracking for
targets with constant velocity. Therefore, resetting error
covariance matrix should be logical. To be more
accurate, when the target moves with constant velocity,
>(n|n) should not be reset and when the target starts

to maneuver, the system should reset> (n|n).

According to this fact, the key of this dilemma is
detection of target maneuver.

4.2. Fuzzy maneuver detector

In this research, fuzzy logic is employed in order to
detect target manecuver immediately. It is the fuzzy
mancuver detector system, which we proposed
previously in [14] and modified it in [15]. When
mancuver has been detected, covariance matrix will be
reset automatically.

The radar output signal has no exact mathematical
relation with target maneuver. However, with no doubt,
there exists a complex nonlincar mapping between
them. To map the input vector to target acceleration
vector it is important to find the effective input
elements. Two features are used as inputs of the fuzzy
acceleration estimator system.

1. Absolute value of difference between last target
course (W ) and observation target course (£ ): It

is shown as A@ in Fig .1. A@ is one of the most
useful elements to detect the target mancuver [14].

When|A6| is low, then with a high probability the
target is moving around its last direction and when
|A9| is high, then with a high probability the target
is moving toward sensor’s observation. This fact

was used as a fuzzy rule in fuzzy acceleration
estimator.

|A9 ,  and & were calculated with the use of
following equations.

A=y ¢ 3)

Where:



v = Last Target Course

& = Observation Target Course
Last Target Course = angle(H)?(N - I‘N)— H)?(N = Z‘N))
Observation Target Course = angle(Z(N ’N )—H)? (N - I‘N )) (€))]

2.  Absolute value of measurement residual (R): The
objective in this section is to develop a mancuver
detection algorithm, which detects the acceleration
and jerk of a maneuvering target. A similar idea of
quickest detection and change detection algorithm,
only for constant acceleration has been investigated
in [16]. The standard KF “(2)” is an efficient and
unbiased filter, so the following sequence is the
residue of observation.

Zn+) =Zn+)—Zn+1/n) =Zn+)-Hp+DX@+1/n) (5)

The residue of observation is a stochastic zero

mean white process. i.c.,

E{Z(n+1)}=0

E{Z(n)Z(n,)"} = R&(n, —n,)
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Figure 1. Target movement geometry [14].

Therefore, for non-maneuvering targets, the mean of
this sequence (Z(n+1)) is zero. But, for the case of
maneuvering target, this sequence is no longer zero and
contains more information.

This fact was used as another fuzzy rule in fuzzy
acceleration estimator system.

4.3. Intelligent error covariance matrix

resetting

The proposed method is illustrated in Fig .2. In this
figure, block 1, calculates A@ and R. Block 2 is a fuzzy
controller. The fuzzy system has two inputs and one

output. The input variables of fuzzy system are |A9’ and

R. Input and output fuzzy sets all have three Gaussian
membership functions with the following membership

gradeu! (x,) .

- 1| %-¢f
uf (%) = exp{— 5[ Ul-l le ©6)

Where, ¢/ and x, are the center value and the standard

deviation of Gaussian membership function for i input
variable of ;™ fuzzy rule, respectively. The output of

the fuzzy logic controller determines the estimated
acceleration value of target deviation a, from its last

Target course based on A& and R inputs. Fuzzy
inference rules support mentioned information.
Block 3 is a simple low pass filter. The main purpose of

using a low pass filter is that the output of block 2 (a,)

is a noisy signal. To vivify, a, is the target acceleration

signal added with high frequency noise. After passing
this noisy signal through a low pass filter, the real value
of target acceleration will be achieved. Block 4 is
another fuzzy system. This fuzzy system has two inputs
and one output. The inputs are target acceleration
(output of Block 3) and the sum of the diagonal
elements of > (m|n) (Trace). In practice the

conventional Kalman filters have a fast convergence
rate at the beginning. Therefore, after some iteration the
Kalman gain which updates proportional to the
estimation, becomes very small. To overcome this
defect and to make use of Kalman filter ability, the
matrix covariance resetting idea is used.

Block 1 Block 2 Block 3 Block 4
AR |
Angle & R ] Acceleration L Fuzzy Resetting
Calculator Estimator Filter| ”| Factor Determination
Ar A r a X
Trace li' Block 5
Last State—® Covariance Resetting
Centre
Measurement
A 4
;l Kalman IS\ItZZ
P Filter
Block 6

Figure 2. The proposed method.

The matrix covariance resetting is usually used to
improve the tracking algorithm specially for high
mancuvering targets. The trace norm is usually used as
a matrix measure. So after some iterations which the

7 race[z (n|n)] , as the covariance matrix norm

becomes smaller than the specified value, the following
presetting procedure is done:

Z(n+l|n+l)=kp2(n|n) 10
The main drawback of traditional resetting covariance
matrix is on the estimation of the unknown constant
coefficient (&, )at the presence of target maneuvering.

To overcome this drawback the Intelligent Matrix
Covariance Resetting is suggested in this paper.
Therefore, our fuzzy system in block 4 is utilized to
support this fact.

Input and output fuzzy sets all have two Gaussian
membership functions. As mentioned, > (7 |n) should
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be reset when the target is maneuvering and > (n|n) is
low.

Block 5 is the covariance resetting centre. The system
in this block, gets k, and uses it to reset error

covariance matrix using relation 7.

5. Simulation result

The estimation improvements obtained by the

proposed method is illustrated by the following
examples.
In experiments reported in this section, the following
assumptions and parameter values are used. In this
simulation, the sampling time is T=0.015 (sec).
Covariance elements generated for Rand @ axis are
both Gaussian random variables; in addition, the
measurement noise vector in Cartesian coordinates is
related to the measurement noise vector in polar
coordinates by the following equation [14].

57| |cos?, RZsin’6, |52 i
5y2 sin® 6, R;cos* 0, | 5,

Where,

O =200, o, =1

R, =5000 (m) and 6, =30 (deg)
In order to evaluate and compare the new tracking

scheme with two existing augmented Kalman filter
methods [6], two scenarios were considered as follows.

Target Trajectory
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Figure 3. Trajectory of the maneuvering target in Cartesian
coordinates and tracking result of the proposed method and
augmented Kalman filter in the first scenario.
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Figure 4. Range of the maneuvering target and estimation result of the
proposed method and augmented Kalman filter in the first scenario.

First scenario: The initial position of the target is
given by (x,y)=(4330,2500) with an initial speed of (v,
.Vy)=(13,7.5). Target moves with constant acceleration
1,=0.2 m/s’, u,=0.02 m/s” until t= 75s, then it starts
to maneuver with acceleration value u,=-2 m/s’, u= 0
m/s”. Target moves with this acceleration until the end
of this simulation at t=135s. Fig.3 shows, target
trajectory estimation by proposed method and
augmented Kalman filter in this scenario. Fig.4 shows,
target range estimation by two methods. Fig.5 shows,
target azimuth estimation by two methods. Fig.6 shows,
target speed estimation by two methods.

In order to compare the proposed method with
augmented Kalman filter, a Mont Carlo simulation of
50 runs was performed. The STD of estimation error of
range, azimuth, course and speed of all three methods
in this scenario is compared in tablel.
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Figure 5. Azimuth of the maneuvering target and estimation result of
the proposed method and augmented Kalman filter in the first
scenario.



Target Speed
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Figure 6. Speed of the maneuvering target and estimation result of the
proposed method and augmented Kalman filter in the first scenario.

TABLE I. RADAR FILTER ESTIMATION ERROR IN THE FIR

SCENARIO (std)

Range Azimuth | Course| Speed
Proposed method 47.73 0.28 39.75 | 7.11
Augmented Method 188.43 1.20 48.59 | 16.83
Percentage Improvement | 75 76.5 18 58

Second scenario: The initial position of the target is
given by (x,y)=(4330,2500) with an initial speed of (vy
Vy)=(13,7.5). Target moves with constant acceleration
=02 m/s>,  u~0.02 m/s’ until t= 52 s, then it starts
to maneuver with acceleration value w,=-1 m/s . u=-1
m/s® . This acceleration continue to t=104 s at that
moment target starts another manecuver with
acceleration of u,=1 m/s>, u,=1 m/s”. Target moves with
this acceleration until the end of this simulation at
t=157 s. Fig.7 shows, target trajectory estimation by the
proposed method and augmented Kalman filter in this
scenario. Fig.8, Fig.9 show, target range and azimuth
estimation by two methods. Fig.10 shows, target speed
estimation by two methods.
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Figure 7. Trajectory of the maneuvering target in Cartesian coordinate
and tracking result of the proposed method and augmented Kalman
filter in the second scenario.
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Figure 8. Range of the maneuvering target and estimation result of the
proposed method and augmented Kalman filter in the second scenario.

Table 2 shows comparison of the STD of estimation
error in second scenario. These results are the mean

value over 50 runs.
TABLE 2. RADAR FILTER ESTIMATION ERROR IN THE
SECOND SCENARIO (std)

Range Azimuth | Course | Speed
Proposed method 29.15 0.09 3574 | 7.32
Augmented Method 22477 0.83 39.78 17.00
Percentage Improvement | 87 89 1 57
Target Azimuth
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Figure 9. Azimuth of the maneuvering target and estimation result of
the proposed method and augmented Kalman filter in the second
scenario.
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Figure 10. Speed of the maneuvering target and estimation result of
the proposed method and augmented Kalman filter in the second
scenario.

6. Conclusion

In this paper, an innovative technique is presented
which presets covariance matrix using fuzzy logic.
Simulation results show a high performance of the
proposed innovative technique and effectiveness of this
scheme specially, in high maneuvering target tracking.
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