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Cold Tolerance in Cicer arietinum Seedlings: Multivariate Insights into Freezing

Stress Resistance

Abstract

To enhance the cultivation of chickpeas (Cicer arietinum L.) in regions susceptible to low
temperatures, it is imperative to comprehend the physiological and molecular mechanisms
that enable plants to tolerate low-temperature stress. This study evaluated eight chickpea
genotypes—KAKA and seven cold-resistant lines (MCC194, MCC605, MCC607, MCC613,
MCC885, MCC901, and MCC911) from the Mashhad Chickpea Collection (MCC)—under a
range of freezing temperatures (0, —6, —10, —12, and —14 °C) using a comprehensive
physiological, biochemical, and molecular approach. The plants were cultivated under semi-
controlled conditions and underwent a cold acclimation process prior to undergoing freezing
treatments. Cold-tolerant genotypes showed higher survival, biomass, and pigment levels
under freezing stress, with less electrolyte leakage and more negative osmotic potential.
They accumulated more proline, total scluble carbohydrate, phenolic, and antioxidants,
especially at -12°C. The results of gRT-PCR showed upregulated expression of caCAT,
caPOD, and caAPX as antioxidant genes, particularly in genotypes that were tolerant.
Chlorophyll fluorescence confirmed better maximum quantum efficiency of photosystem II
in these genotypes after cold exposure. Principal component analysis (PCA) and the
correlation matrix revealed significant relationships among the measured indices. Partial
least squares structural equation modeling (PLS-SEM) indicated that enzymatic activity was
the strongest positive predictor of plant dry weight (B = 0.404), while membrane damage
had a strong negative effect on it (B = -0.913). Furthermore, comprehensive membership
function analysis ranked genotype MCC911 with the highest evaluation value (0.737) as the
most tolerant and genotype KAKA with the lowest value (0.222) as the most sensitive. The
findings indicate that maintaining membrane integrity, accumulating osmotically compatible
compounds, and, particularly, activating the enzymatic antioxidant system are key

mechanisms of freezing tolerance in chickpeas. Genotypes MCC911 and MCC901 are



identified as promising candidates for use in breeding programs aimed at developing cold-
tolerant cultivars for autumn planting. Collectively, these findings provide a detailed
physiological and molecular framework for cold stress adaptation in chickpea and identify

potential markers for breeding cold-resilient cultivars
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1. Introduction

The phenomena of global warming and climate change have heightened heat and drought
stress and exacerbated other abiotic and biotic challenges, including freezing, salinity, and
flooding [1, 2]. A key point is that unpredictable climate change is the main factor limiting
chickpea production because it increases the chances of drought and extreme temperatures,
high (over 30°C) and low (under 15°C), significantly lowering grain yields [3, 4, 5]. Therefore,
developing chickpea cultivars with higher yields and greater resilience under these stressful

conditions is imperative, with particular focus on ccld-tolerant genotypes [6, 7].

Autumn chickpea (Cicer arietinum L.) is a cool-season legume that is cultivated on a global
scale. In spring or summer, under rainfed circumstances, such as in Iran, chickpea
cultivation results in diminished grain yields due to drought stress. Chickpeas are often sown
in autumn to dodge cold stress and terminal drought [6]. Furthermore, experiments indicate
that cold-tolerant autumn or winter-sown chickpeas can yield 50%-100% more than spring-
sown crops [8, 9]. However, the scarcity of cold-tolerant genotypes limits the potential for
high-yielding winter or autumn sowings [10, 5]. The different ways plants respond to cold
across varieties offer opportunities to develop cold-tolerant or cold-resistant varieties. A
similar integrated methodology, employing physiological-biochemical markers and
molecular data, has been successfully applied to assess abiotic stress tolerance in other crops

(11).

Numerous studies on chickpea frost tolerance have shown that plants acquire the ability to

endure freezing temperatures when exposed to cold environments, demonstrating



physiological, biochemical, and genetic adaptations that enable them to counteract and
overcome the adverse effects of cold stress [12-16]. These processes encompass alterations
in the plasma membrane's composition, structure, and function; the production of
cryoprotectant molecules (such as soluble sugars and proline); an improved ability to
eliminate reactive oxygen species (ROS); and the expression of cold-responsive genes [17-

20]. Likewise, cold-tolerant chickpea and legume genotypes demonstrated minimal

membrane damage and lipid peroxidation [12], increased levels of antioxidants [21], proline

[22], and soluble carbohydrates [23, 24], and minimal decreases in chlorophyll fluorescence
[13]. These physiological changes could substantially enhance cold tolerance and facilitate

the identification of freeze-tolerant chickpea genotypes.

Furthermore, it is necessary to conduct research to elucidate and inform by analyzing
physiological, biochemical, and molecular traits to cultivate crops with robust tolerance to
low temperatures. The objective of this investigation was to examine the physiological and
molecular responses exhibited by Cicer arietinum seedlings under conditions of freezing
stress. The current study used various methods, including PCA and PLS-SEM, to thoroughly
examine trait relationships and systematically rank genotypes based on their freezing
resistance using a comprehensive membership function. This study provides new insights
into how chickpea seedlings tolerate cold, highlighting certain types that could be used in
breeding programs to improve their ability to withstand freezing conditions under changing

climates.

2. Material and Method

Plant material

Chickpea seedlings were cultivated in a semi-controlled greenhouse at the Research Center
for Plant Science (RCPS) at Ferdowsi University of Mashhad, Iran (Latitude: 36°18'38" N -
Longitude: 59°32'06" E). Eight chickpea types—cold-tolerant MCC194, MCC605, MCC607,

MCC613, MCC885, MCC901, MCC911, and cold-sensitive KAKA—were selected for this



study. The selection of these genotypes was based on a multi-stage evaluation program. This
program included severe field-freezing events and complementary morphophysiological and
biochemical analyses [16]. The chickpea seeds were sourced from the Mashhad chickpea

collection at Ferdowsi University of Mashhad, Iran.

Growth condition

Seeds were planted in the first week of September in 15-cm-diameter pots filled with field
soil. To apply cold acclimation, the plants were grown under natural conditions until the
seedling stage (Fig. 1). On nights when temperatures were likely to drop below 0°C, the
seedlings were protected from the cold with plastic covers. The potted plants were irrigated

daily until 24 hours before the freezing treatment.

Cold stress treatment

After four months, the cold-acclimated plants were placed in a thermogradient freezer,
starting at 5°C, with the temperature gradually decreasing by 2°C per hour. At -2 °C, ice
crystal formation was induced by spraying plants with ice-nucleation-active bacteria, as
described by Wisniewski et al. (2002) [24]. The pots were held at each freezing point (0, -6,
-10, -12, and -14°C) for two hours before being transferred to a growth chamber at 4 + 1°C
for overnight storage to control the melting rate. After that, plants were transferred to
standard conditions in an unheated greenhouse (22/18°C day/night temperature, 16-hour
photoperiod, 60% relative humidity). After four weeks of regrowth, the survival rate of the
plants at each temperature was recorded. A live plant was defined as one that exhibits visible
green tissues and the ability to resume growth, such as producing new leaves or shoots,

following the removal of stress.

The stress treatments followed a completely randomized design (CRD) with three
replications. The second leaf was collected and immediately frozen in liquid nitrogen at each
specified time point, then stored at -80°C for further analysis. Three biological replicates,

each containing three plants, were used at each time point.
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Fig. 1. Minimum and maximum daily temperatures at the experimental site under the natural
photoperiod.

Survival rate

To assess survival percentage, the number of live plants was enumerated after establishment
(n) and following the recovery period (m), with survival percentage (S) computed using the

following equation [27]:

m
S(%) = X 100

Relative electrolyte leakage (EL)

The youngest fully developed leaves were sectioned into small fragments, and roughly 0.2
grams of each sample was rinsed with deionized water to remove contaminants. The cleaned
components were subsequently placed in a bottle containing 10 mL of distilled water and
allowed to sit at room temperature for 24 hours. After being incubated for 24 hours, a
conductance device (Jenway Model 4510) was used to measure the initial conductance (EC1).
The samples were subjected to a 15-minute boiling process (autoclaved) to facilitate the

greatest degree of leakage. After a cooling period at laboratory temperatures, the electrolyte



conductivity was remeasured and documented as EC2. The ultimate conductance was

determined utilizing the subsequent formula [27, 28]:

EC1
EL(%) = 2 x 100

Plant dry weight (DW)

The dry weight of the plants was measured after a three-week recovery period following the
freezing treatment by drying them at 80°C for 24 hours. The dry weight was then normalized

to the number of plants per pot.

Physiological and biochemical assessment

The photosynthetic pigment content (chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids
(Car), and total pigment (TP)) was assessed using the experimental method described by
Dere et al. [29]. The sample's total phenolic content (TPC) was determined using the Folin-
Ciocalteu method, following Singleton and Rossi. [30]. Free proline content (PC) was
measured according to the procedure cutlined by Bates et al [31]. The antioxidant capacity
of the chickpea leaf extract was eveluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl)
assay, as described by Abe et al. [32]. Flavonoid content (FC) was quantified following the
methodology of Chun et al. [33]. Total soluble carbohydrate (TSC) was determined using the

method of Dubois et al. [34].

Leaf osmotic potential

Leaf osmotic potential measurements were conducted using an osmometer (OM802-D;

Vogel, Germany) [35].

Antioxidant enzyme activity assessment

Enzyme extraction from 0.1 g of fresh leaf tissue was performed using a chilled mortar and
pestle with 1 ml of extraction buffer (50 mM K-phosphate buffer, pH 7.6, and 0.1 mM Nazo-

EDTA). The samples were centrifuged at 15,000 g for 15 minutes at 4 °C, and the supernatant



was used to measure catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)

activities, following protocols by Velikova et al. [36], Sreenivasulu et al. [37], and Yamaguchi

et al. [38].

Measurement of chlorophyll fluorescence parameters

Chlorophyll fluorescence parameters were assessed utilizing a pulse-modulated fluorometer
(MINI-PAM Portable Chlorophyll Fluorometer, WALZ, Germany). All parameters were

measured using the third true leaf in a light-adapted condition [39, 40].

Quantitative RT-PCR

Three stress-associated genes, CA7, POD, and APX, were used for analysis. The nucleotide
sequences were obtained from the NCBI database (https://www.ncbi.nlm.nih.gov). The
Beacon Designer software was used to design the primer for polymerase chain reaction
(PCR). Total RNA was extracted from chickpea seedlings subjected to freezing treatment or
control treatment using the Paratous Kit (Iran, A101321) along with RNase-free DNase
treatment (SinaClon, Iran, M0O5401). 25 ng/uL of total RNA was utilized for first-strand cDNA
synthesis in a 20 pL reaction volume. A first-strand cDNA synthesis kit (Parstous, Iran,
A101162) was used, and amplification was performed with SYBR® Green Real-Time PCR
Master Mix (Paratous, Iran, C101021) on a Bio-Rad real-time PCR machine (CFX96, Version
1.6, Germany) according to the manufacturer's instructions. The Actin (NM_001278957.1)
served as an internal control. The thermal cycling protocol was as follows: an initial
incubation at 95°C for 1 min, then 40 cycles of 95°C for 30s, 60°C (a primer-specific Tm) for
30s, 72°C for 40s, and a final extension at 72°C for 5 min. The 2"~ —AACt method was applied

to calculate the relative gene expression levels (41) (Al).

Table 1. Primer sequences used this study.

Gene Sequence (5- > 3') of forward | Sequence (5- > 3°) of reverse | Tm Product | mRNA accession
name primer primer size number
(bp)
Actinl | 5'- 5'- 60°C | 110 NM 001278957.1
CTGTGCTCTCTCTCTTCCTCTC- | CGTCTGCCATCTTCTAATATCTTCG-
3' 3




caCAT | 5'-
AGAAGGGTGTAGTCTAGTGGT- | 3
3

5'-AGAGGATGAGGAGAAACGAAGA- | 60°C | 105 XM_004500820.3

GCCAACGCTATATCAGTCACAC-
3'

caAPX | 5'- 5'-AAACCAAACGAAGCACACCC-3' 60°C | 110 XM_004501278.3

GGGTTGCGATGGGTCAGTATTA- | 3
3

caPOD | 5'- 5'-AGACGATTCTTCCACACTGCTT- 60°C | 149 XM _004496386.3

Statistical analysis

Experiment design and data analysis

An analysis of variance (ANOVA) was performed using Minitab 16.0, with mean separation
performed using the least significant difference (LSD) procedure at the 0.05 and 0.01 levels
of significance (A2 and A3). To ensure data uniformity, a normalization process was
implemented prior to PCA and the subsequent generation of the heat map, and PLS-SEM
analysis using the R environment (version 4.4.2). The data were uploaded to Origin (Origin
Lab Corporation, v.2021) software for graphical representation. The membership function is
calculated using normal and uniform data, as described by Cao et al. [42] and Sun et al. [43]

(A4).

3. Results

Physiological and biocliemical indicators pattern

Survival rate and L50

The tolerant genotype seedlings demonstrated 100% survival, whereas KAKA seedlings
exhibited survival rates of 100%, 95%, 80%, and 70% under freezing stress at 0, -6, -10, and
-12°C, respectively. At -14°C, both tolerant and sensitive genotype seedlings exhibited zero
survival. The LTso values differed significantly among the genotypes. KAKA exhibited a
higher (less negative) LTso value, while all other genotypes showed significantly lower values

that were statistically similar (A5).

Relative electrolyte leakage (EL)



The extent of damage to the plants was assessed by measuring the electrolyte leakage index
after freezing stress. As the temperature decreased, the EL leaf and crown of all seedlings
exhibited a considerable rise, which was most pronounced at the -14°C treatment (Fig. 2a
and b; p < 0.01). Leaf EL showed a marginal increase with a slight upward trend up to -
10°C, except for MCC613 and KAKA; however, it showed a significant increase as the

temperature decreased from -10 to -14°C, except for MCC911 and MCC194.
Plant dry weight (DW)

The genotypes' dry weight was significantly influenced by temperature, genotype, and their
interaction (Fig. 2c; p < 0.01). The dry weight across all genotypes exhibits a declining trend,
while the KAKA (sensitive genotype) shows a more pronounced reduction, particularly at

0°C, where it decreased by 1.98 - 1.59 times compared to tolerant genotypes.
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Fig. 2. Membrane damage as relative electrolyte leakage in leaves (a) and crown (b) in Cicer

arietinum (KAKA, MCC194, MCC605, MCC607, MCC613, MCC885, MCC901, and MCC911)



under different freezing temperatures, and dry weight (c) evaluated three weeks following
freezing stress. Vertical bars represent the least significant difference (LSD; p = 0.05) at

each temperature.

Photosynthetic pigments

Chlorophyll a (Chla) and total pigment (TP) exhibited substantial variation across genotypes,
temperatures, and their interaction (p < 0.001). Freezing stress (0°C, -6°C, -10°C,- 12 °C,
and -14 °C) exerted a comparable influence on Chla and TP (Fig. 3a and b). In all plants,
freezing stress markedly reduced Chla compared to their respective controls, with a greater
decline observed in cold-sensitive genotypes (28.8%-1.4-fold) than in cold-tolerant genotypes
(1.5%-81.5%). Freezing stress reduces total pigment levels in all eight genotypes,
particularly in cold-sensitive genotypes. Tolerant genotypes exhihited a narrower range of
3.3-55.4% in pigmentation, while the genotype KAKA, which was more likely to be affected

by cold stress, lost 20.1-90.8%. (relative to the control, Fig. 3b).

Proline content (PC)

The leaf PC outcomes showed significant variation by genotype and temperature (Fig. 3c; p
< 0.01). The PC exhibited a repetitive fluctuation pattern, marked by increases at 0°C, -6°C,
-10°C, and -12°C, followed by a reduction at -14°C. Compared with the control, freezing
stress increased PC levels, especially in cold-tolerant genotypes (13.7-96%), whereas the

cold-sensitive genotype KAKA showed lower increases (7.4-51.5%).

Total soluble carbohydrate (TSC)

The result showed that genotype, temperature, and the genotype X temperature interaction
significantly affected soluble sugar levels in seedlings (Fig. 3d; p < 0.001). The amount of
TSC varied over time, rising at 0°C, -6°C, -10°C, and -12°C, followed by falling at -14°C. All
genotypes showed a markedly elevated TSS at -12°C (1.01-fold in KAKA and 2.75-fold in

MCC607 compared to the control).



Total phenol content (TPC)

The leaf phenol data showed considerable variance across genotype, temperature, and the
genotype-temperature interaction (Fig. 3e; p < 0.05). Total phenol content decreased initially
on exposure to 0°C compared to the control in all genotypes (25.9% in KAKA and 2.07-13.85%
in other genotypes). Subsequently, the TPC exhibited a significant increase at -6°C, -10°C,
-12°C, and -14°C, reaching a maximum of 26.9% at -12°C in MCC901. The amount of TPC
went up a little at -6, -10, -12, and -14, but it went down compared to the control in KAKA

(5.7-29.6%) (Fig. 3e).
Leaf osmotic potential (OP)

The osmotic potential changed significantly depending on the genotype, temperature, and
how they affected each other (Fig. 3f; p < 0.001). As the temperature decreased, the OP of
all seedlings decreased considerably, most notably at 0°C, where KAKA declined by 42.5%.
At the same time, other genotypes saw reductions ranging from 7.6% to 29.5% compared to

the control.
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carbohydrate (d), total phenol content (e), and osmotic potential of leaf (f) at different

freezing temperatures (data shown are the mean * SD).

Enzymatic antioxidants activity



The CAT, POD, and APX activities all changed in a similar way (sigmoidal response curve):
initially rising at 0°C, -6°C, -10°C, and -12°C, and thereafter declining at -14°C (Fig. 4a, b,
c). MCC901's CAT activity (3.1-fold vs. control) was highest at -12 °C, while KAKA's (1.6-
fold) activity was lowest at -12 °C. The maximum and minimum POD activity levels were 83%
and 38.3% for MCC911 and KAKA, respectively, at -12°C in comparison to the control (Fig.
4b). Likewise, MCC911 demonstrated the highest APX activity (4.1-fold relative to the
control) at -12 °C, while KAKA exhibited the lowest activity (1.6-fold) at the same
temperature (Fig. 4c). At a temperature of -14°C, the activities of CAT, POD, and APX showed
decreasing trends in all eight genotypes. The CAT, POD, and APX levels dropped the least in

KAKA when exposed to -14°C, by 46%, 17%, and 29%, respectively (Fig. 4a, b, c).
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Chlorophyll fluorescence parameters



The findings indicated that the maximum quantum efficiency of photosystem II (Fv'/Fm’') did
not significantly differ among genotypes prior to the beginning of freezing stress (Fig. 5).
The Fv'/Fm' ratio markedly diminished after 24 hours at 0°C, -6°C, and -10°C, although it
exhibited relative stability after 48 hours across all genotypes. A significant rise in Fv'/Fm'
was noted after 72 hours. At -12°C, all six genotypes showed the same trend: a decline after
24 hours, stability at 48 hours, and a pronounced increase after 72 hours, except for MCC613
and KAKA. The Fv'/Fm' ratio of MCC613 and KAKA showed a significant decrease at 24 h
after freezing stress compared to other genotypes. Afterward, it increased sharply. The
distinctions among the cold-tolerant genotypes were evident at -14°C. KAKA is unable to

recover 120 hours post-freezing stress, unlike other genotypes.
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Fig. 5. The maximum quantum efficiency of photosystem II (F'v/F'm) of eight chickpea
genotypes under different freezing temperatures. Vertical bars represent LSD (p = 0.05) at

each temperature. 0 hours = before stress.

Change in gene expression

The antioxidant gene expression profile showed that CAT, POD, and APX transcription
quickly increased at 0°C, -6°C, -10°C, and -12°C. However, expression dropped significantly
at -14°C across all genotypes. The peak expression of caCAT, caPOD, and caAPX occurred
at -12°C. MCC901, a cold-tolerant genotype, exhibited the highest levels of caCAT, caPOD,
and caAPX (11.3, 9.7, and 11.29-fold higher than the control, respectively). In KAKA, a cold-
sensitive genotype, the highest levels of caCA7, caPOD, and caAPX were also found at -12°C

(3.7, 6.4, and 9.6-fold higher than the control, respectively) (Fig. 6a, b, c).
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Fig. 6. The antioxidant gene expression profile caCAT (a), caPOD (b), and caAPX (c) in

chickpeas at different freezing temperatures. Error bars represent SD (n=3).
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Identification and comprehension of treatment-variable interrelations using PCA, and

correlation analysis
Principle Component Analysis (PCA)

PCA analysis and correlation were carried out to identify the links between the different
parameters in the treatment groups, thereby facilitating a thorough understanding of the
interactions among freezing tolerance indices across all freezing temperature treatments
(Fig. 7). The PCA demonstrated that the first principal component (PC1) attained the
maximum eigenvalue of 7.85, accounting for 60.4% of the variability. In contrast, the second
principal component (PC2) had an eigenvalue of 3.18, accounting for 24.50% of the variance.
PC1 exhibited substantial negative loadings for Chla, TP, OP, Fv'/Fm’, and DW, alongside
positive loadings for the ELL, ELC, and APX parameters. PC2 was primarily defined by
positive loadings on POD and CAT. TPC was the primary factor influencing PC3, which
exhibited the most significant negative loading. The hue of the variables in the biplot
indicates, based on the square of the cosine, that TPC is less significant than the other
variables. Furthermore, the biplot illustrates the systematic classification of genotypes into
six distinct groups, clearly differentiating between the control and five treatment groups

(Fig. 7).
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Fig. 7. Principal component analysis (PCA) illustrate treatment-variable relationships under

different freezing temperatures

Correlation matrix

The Pearson correlation coefficients are displayed in the correlation matrix (Fig. 8). These
values indicate the degree of linear relationship between two variables and enhance insights
from the PCA analysis. Among the physiological and biochemical parameters, DW
demonstrated significant positive correlations with OP (0.87), Chla (0.89), Fv'/Fm' (0.92),
and TP (0.86) (p<0.001) and negative correlations with APX (-0.36; p<0.05), CAT (-0.29;
p<0.05), TSC (-0.47; p<0.01), PC (-0.38; p<0.05), ELL, and ELC (-0.91; p<0.001).
Conversely, DW exhibited negative statistically insignificant associations with POD and TPC.
There was a positive relationship between the expression levels of the caCAT, caAPX, and
caPOD genes and the activities of the enzymes CAT (0.87), APX (0.86), and POD (0.89),
respectively (p<0.001). Moreover, the antioxidant enzymes APX, POD, and CAT correlated
highly with the non-enzymatic antioxidant parameters of TSC (0.88, 0.76, and 0.80), TPC
(0.46, 0.48, and 0.61), and PC (0.87, 0.85, and 0.84), respectively (p<0.001). APX was

negatively correlated with the photosynthetic parameters Chla, TP, and Fv'/Fm' (-0.44, -0.40,



and -0.36, respectively, at p<0.01 and p<0.05), but CAT and POD showed insignificant

negative correlations.
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Fig. 8. Pearson correlation matrix shows variable relationships under different freezing

temperatures.

PLS-SEM analysis



The partial least squares structural equation modeling (PLS-SEM) analysis was conducted
with six latent variables (freezing temperature, membrane damage, enzyme activity, non-
enzymatic compounds, photosynthetic pigments, and plant dry weight) and 11 visible
variables. As demonstrated in Figure 9, the final PLS-SEM model is illustrated. The model's

goodness-of-fit (GoF) index was 0.842 (A6-A9).

The coefficients of determination (R?) for the endogenous variables indicated substantial
explanatory power of the model: non-enzymatic compounds (R? = 0.876), enzyme activity (R?
= 0.867), membrane damage (R? = 0.819), photosynthetic pigments (R? = 0.748), and plant

dry mass (R? = 0.618).

Evaluation of the measurement (outer) model showed that the Average Variance Extracted
(AVE) for all constructs exceeded the recommended threshold of 0.50, confirming
convergent validity: non-enzymatic compounds (0.907), enzyme activity (0.862), membrane
damage (0.928), photosynthetic pigments (0.930), and plant dry mass (1.000). Internal
consistency reliability was also satisfactory, with Cronbach’s alpha values ranging from
0.898 to 0.925 for multi-indicator constructs and 1.000 for single-indicator constructs.
Composite reliability values (DG.rho) were all above 0.94, further supporting strong
measurement reliability. In addition, all indicator loadings were high (= 0.90), demonstrating

good indicator reliability.

In the structural model, freezing temperature exerted strong and statistically significant
positive effects on membrane damage (B = 0.905, p < 0.001), enzyme activity (B = 1.078, p
< 0.001), and non-enzymatic compounds (B = 0.591, p < 0.001), while significantly
decreasing photosynthetic pigments (B = —0.987, p < 0.001). The direct effect of freezing
temperature on plant dry mass was negative and statistically significant, though weaker in

magnitude (B = —0.529, p = 0.043).

Membrane damage had a strong negative effect on plant dry mass (B = —0.913, p < 0.001)

and photosynthetic pigments (p = —0.427, p < 0.001). It also showed a small but significant



negative effect on enzyme activity (B = —0.166, p = 0.039), while its direct effect on non-
enzymatic compounds was not statistically significant. Enzyme activity positively influenced
photosynthetic pigments (B = 0.619, p < 0.001), non-enzymatic compounds (p = 0.436, p <
0.001), and plant dry mass (B = 0.404, p = 0.036). Non-enzymatic compounds also had a
strong positive effect on plant dry mass (B = 0.736, p < 0.001). In contrast, the direct effect

of photosynthetic pigments on plant dry mass was not statistically significant (B = 0.179, p

= 0.125).
Freezing temperature
0.905%** &
- 0.913**
Membrane damage 5 Dry mass
| g\‘ 0.591%#*
-0.166* 0.736%**
o 0.436%+* |
Enzyme activity \
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Photosynthetic pigment Goodness-of-fit (GOF): 0.842

Fig. 9. The PLS-SEM model illustrates the causal relationship between the impacts of
freezing temperatures on chickpeas. The red arrow denotes a negative correlation, while the
blue arrow signifies a positive correlation. The significance of each correlation is indicated

by (s p > 0.05, * p < 0.05, * p < 0.001, ™ p < 0.001).

Assessment of freezing resistance in chickpea genotypes by thorough, comprehensive

membership value



By applying PCA with CTC to 12 attributes (Chla, TP, PC, TSC, APX, CAT, POD, OP, ELL,
ELC, FV//FM' , and DW) at freezing temperatures (0°C, -6°C, -10°C, -12°C, and -14°C), a
comprehensive index was created from the first five principal components, which was then
used in membership function analysis. Table 2 presents the comprehensive evaluation value
(D) for the eight chickpea genotypes. As anticipated, the KAKA genotype demonstrated the
lowest evaluation value (0.222), signifying its sensitivity. In contrast, the MCC911 genotype
had the highest evaluation value (0.737). An evaluation was conducted to ascertain the cold-
tolerance capabilities of the eight chickpea genotypes, which were subsequently ranked as

follows:

KAKA = 0.222< MCC607 = 0.563 < MCC885 = 0.583 < MCC605 = 0.628 < MCC613 =
0.640 < MCC194 = 0.653, MCC901 = 0.657 < MCC911 = 0.737
Table. 2. Comparison of the comprehensive index, degree of membership (Ui), weight, and

comprehensive evaluation value (D) for chickpea genctypes under different freezing
temperatures
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MCC, Mashhad Chickpea Collection

4. Discussion

Accordingly, it is evident that, based on the cultivation season, freezing stress significantly

impedes the growth and development of chickpeas [44, 5]. A prior study involving genotypic

screening of cold-tolerant genotypes with elevated yield identified high-performing
genotypes (MCC607, MCC885, MCC605, MCC613, MCC194, MCC901, and MCC911) that
performed well in field settings [16]. The present work analyzed the performance of seven
top-freezing-tolerant chickpea genotypes, alongside KAKA, a sensitive genotype, under
freezing stress at physiological, biochemical, and molecular levels. All genotypes exhibited
substantial changes in character under stress compared to the control treatment. The
findings of this research and the subsequent multivariate analysis, including PCA and PLS-

SEM, yielded novel insights into the interrelationships among traits.

Freezing resistance can be conceptualized as a multifaceted quantitative trait that involves
the activation of numerous cold-inducible genes in response to cold. These genes play a
crucial role in helping plants survive under extreme cold conditions [45]. Several
mechanisms, including changes in morphological patterns and physiological and biochemical
processes, have been documented to help plants adapt to stressful environments [46].
Adaptation to freezing tolerance is associated with the accumulation of metabolically
compatible compounds, such as the soluble sugar proline, and with maintaining osmotic
homeostasis through metabolic adjustments. Modification of cell membrane stability and

associated enzyme activity is also included [19; 20; 47]. Therefore, in the present study, these



seven genotypes were compared with the KAKA-sensitive genotype for conductivity, soluble
sugar content, proline and chlorophyll content, and antioxidant enzyme activity under
various freezing-temperature stress conditions. PCA is regarded as a powerful technique for
data analysis and interpretation when multiple parameters are involved [48, 49]. In the
present study, the primary objective was to use PCA to identify and demonstrate the
significance of measured variables that the result exhibited: Chla, TP, OP, Fv'/Fm’, DW, ELL,
ELC, APX, CAT, and APX in the first and second dimensions of the component analysis in

relation to freezing stress (Fig. 7).

Membrane stability is a key factor in determining freezing tolerance because low
temperatures induce lipid phase transitions, increasing membrane rigidity and disrupting
cellular homeostasis [17]. This study found that EL increased sharply with freezing stress,
especially in the sensitive KAKA genotype, which indicates compromised membranes (Fig.
2a and b). In contrast, tolerant genotypes maintained membrane integrity more effectively,
which is consistent with their lower LTso values (Al). Such damage is likely attributable to
the formation of ice crystals and subsequent cellular dehydration, both attributes of freezing
stress [50]. This observation suggests high membrane stability in these genotypes, a
phenomenon that could be driven by elevated cryoprotectant and antioxidant enzyme levels
[19, 20]. The present findings are consistent with recent observations indicating that
legumes' ability to resist freezing is contingent upon preserving cellular integrity under these
conditions [51, 52]. Recent studies on chickpeas and their wild relatives have underscored
the pivotal role of the ICE-CBF-COR signaling cascade in membrane stabilization. This
process is facilitated by the upregulation of COR genes (e.g., COR47 and LTI), which enhance
the production of osmoprotectants and maintain membrane fluidity under freezing stress
[52]. This study did not assess direct lipid remodeling; however, the reduced EL in tolerant
MCC genotypes likely involves alterations in membrane lipid composition, such as increased
unsaturation or sterol content, as observed in cold-acclimated legumes and other plants

where lipid remodeling prevents phase transitions and leakage during freeze-induced



dehydration [54]. The strong negative relationship between membrane damage and plant
dry mass, as revealed by the PLS-SEM model, underscores the pivotal role of membrane
integrity in integrating physiological performance and molecular adaptation mechanisms

(Fig. 9; p < 0.001).

It has been demonstrated that the osmotic potential can be modified through the
accumulation of osmoregulatory substances, such as PC and TSC, within the cell cytoplasm
without compromising metabolic processes [55]. PC and TSC have been identified as critical
osmoprotectants, capable of counteracting ROS and maintaining structural integrity,
thereby facilitating the identification of freezing-tolerant cultivars [23; 56]. PC and TSC
concentrations increased under freezing stress in all genotypes compared with the control;
however, KAKA showed a moderate response, indicating effective osmoprotectant
mechanisms against freezing stress (Fig. 3c and d). These results align with recent
observations, further emphasizing the importance of PC and TSC in the context of

leguminous plant response to cold stress [44].

Under extreme cold stress, it impedes photosynthesis by altering chlorophyll concentration
and damaging chlorophyll and the photosynthetic apparatus [17]. The observed drop in
chlorophyll content can be atiributed to the impact of cold stress on chlorophyll synthesis,
which has been shown to reduce it and accelerate chlorophyll decomposition [56].
Furthermore, Arslan et al. [58] posited that plants exhibiting elevated levels of cold tolerance
maintain constant chlorophyll content, while those exhibiting diminished cold tolerance
undergo a decline in chlorophyll content. In line with these findings, the present study
demonstrates a decrease in Chla and TP content in all chickpea genotypes under freezing
stress, but the reduction is lower in tolerant genotypes than in sensitive genotypes (Fig. 3c

and d).

The reaction to freezing is characterized by increased oxidative stress, exacerbated by
excessive accumulation of antioxidant systems in plants. Freezing-tolerant genotypes have

been shown to have superior abilities in safeguarding against oxidative stress by activating



the antioxidant system [59]. The present study demonstrated that, under freezing stress, the
activities of CAT, POD, and APX were enhanced in the genotypes. As stated in the reports by

Heidarvand and Maali-Amiri [60], Arslan et al. [58], and Karimzadeh Soureshjani et al. [14],

freezing-tolerant genotypes had higher levels of CAT, POD, and APX compared to freezing-
sensitive genotypes when exposed to freezing stress. The results of this study correspond
with these findings, indicating that CAT, POD, and APX activities were significantly lower in

KAKA (a sensitive genotype) compared to the other genotypes evaluated (Fig. 4a, b, and c ).

Also, parallel increases in transcript levels of caCA7, caPOD, and caAPX, with higher fold-
changes in tolerant genotypes (Fig. 6a, b, and c), indicate transcriptional upregulation as a
primary regulatory mechanism under moderate freezing stress. In a similar manner, the CAT,
POD, and APX genes respond to abiotic stresses, including salt, drought, and cold, across
diverse plant species [61, 56; 62, 63]. These genes are essential for improving plant abiotic
resistance by modulating antioxidant defense systems and osmotic regulation [56, 64, 65,
66]. Recent transcriptomic analyses in chickpea confirm that the CBF pathway indirectly
strengthens antioxidant responses by increasing the expression of genes for peroxidases,
glutathione S-transferases, and other ROS scavengers, thereby reducing oxidative stress
during freezing [53]. Overexpression of CBFs has also been demonstrated to elevate CAT
and POD activities, thereby establishing a link between the CBF regulon and enhanced ROS

detoxification in cold-tolerant chickpea [67].

The comprehensive membership function ordered MCC911 highest (D=0.737) and KAKA
lowest (D=0.222), validating our physiological and biochemical findings (Table 2). These
findings indicate that MCC911 and MCC901 may be promising candidates for breeding cold-
tolerant chickpea cultivars. Nevertheless, further field studies under real-world conditions

are essential to confirm these results.

5. Conclusions



In this study, applying multivariate data analysis with PCA, PLS-SEM, correlation matrix,
and comprehensive membership function techniques enabled effective discrimination among
the various treatments, thereby substantiating the impact of freezing stress on the targeted
traits and ranking the genotypes. The results underscore the importance of enzyme
activation in autumn chickpeas' freezing tolerance. Discovering important traits (ELL, ELC,
Chla, TP, PC, TPC, TSC, CAT, POD, APX, DW, OP, Fv'/Fm’', and the antioxidant genes caAPX,
caCAT, and caPOD) and recognizing chickpea types that can handle freezing conditions will
support researchers in developing chickpea varieties better suited for planting in the fall and
winter. Furthermore, this study helps us understand how guided and unguided statistical
analysis can provide more information about chickpea plants' physiological and chemical

responses and how freezing temperatures affect them.
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