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Abstract. This paper develops a discrete-time linear–quadratic control
framework with box-constrained inputs under bounded parametric uncertain-
ties. Using the discrete-time Pontryagin Maximum Principle, a closed-form
state-feedback law is obtained via backward Riccati recursion, guaranteeing
satisfaction of input constraints. Simulation results show that the closed-loop
system remains stable and converges to the origin under moderate uncertain-
ties, with control inputs staying within prescribed bounds. The proposed
method offers a simple and practical solution without requiring a full robust
control design.

1. Introduction
Designing constrained discrete-time optimal controllers for linear systems is a classical

problem with wide-ranging applications. In practice, exact system parameters are often
uncertain due to modeling errors or variations, which can degrade performance or destabilize
the system. To address this, we propose a linear–quadratic framework with bounded inputs
that effectively handles moderate parametric uncertainties without requiring a full robust
control design.
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The framework uses the discrete-time Pontryagin Maximum Principle (PMP) to derive
optimality conditions. For linear dynamics and quadratic costs, these conditions reduce to
explicit algebraic expressions, allowing a saturated state-feedback law that guarantees input
constraints and preserves stability. Bounded parametric deviations in system matrices are
considered, and the framework ensures that the closed-loop system remains stable under
small to moderate uncertainties.

Simulation results for a two-dimensional system show that the states converge to the
origin and control inputs remain within bounds across all considered scenarios. Total cost
analysis confirms acceptable performance under varying uncertainty levels, highlighting the
framework’s simplicity and practical effectiveness for real-world applications.

2. Problem Formulation
Let Rn denote the n-dimensional Euclidean space and Rm×n the set of real matrices. The

transpose of X is X⊤, and ∥·∥ denotes the Euclidean norm. The discrete-time index is k ∈ Z
with finite horizon [k0, kf ]. We consider the discrete-time nonlinear system

xk+1 = gk(xk,uk), k = k0, . . . , kf − 1, (1)

where gk : Rn × Rm → Rn is continuously differentiable. The initial condition xk0 = x0 is
given. When unambiguous, the time index k is omitted. The control inputs satisfy compo-
nentwise bounds

U = {uk | u ≤ uk ≤ u, k = k0, . . . , kf − 1}, (2)

where u,u ∈ Rm ∪ {±∞}. Unless stated otherwise, U is assumed to be time-invariant,
convex, and compact. The finite-horizon cost functional is

J =

kf−1∑
k=k0

fk(xk,uk) + ϕ(xkf ), (3)

with continuously differentiable stage cost fk and terminal cost ϕ. For the linear–quadratic
case used in explicit Riccati recursions, we adopt

fk(xk,uk) =
1
2
x⊤
k Qkxk +

1
2
u⊤
k Rkuk, (4)

ϕ(xkf ) =
1
2
x⊤
kf
Fkfxkf , (5)

where Qk ⪰ 0, Rk ≻ 0, and Fkf ⪰ 0. For linear dynamics

gk(xk,uk) = Akxk +Bkuk (6)

the pair (Ak,Bk) is stabilizable.
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3. Optimality Condition
Applying the discrete-time PMP, we introduce adjoint variables {λk} associated with the

system dynamics. These yield the backward costate recursion and the pointwise optimality
condition under bounded control inputs. For completeness, the discrete-time PMP is restated
in the notation adopted in this paper.

Theorem 3.1. Consider the minimization of the discrete-time optimal control problem (3),
subject to the system dynamics (1) and the bounded control constraints (2). Let(x∗

k,u
∗
k) denote

an optimal state control trajectory. Then there exists a corresponding adjoint sequence {λk}
kf
k0

satisfying the backward recursion

λk = fkxk
(x∗

k,u
∗
k) + λk+1gkxk

(x∗
k,u

∗
k), k = k0, . . . , kf − 1, (7)

with the terminal condition

λ∗
kf

=
∂ϕ(xkf )

∂xkf

∣∣∣∣
∗
. (8)

Furthermore, the following pointwise optimality condition holds for all k ∈ {k0, . . . , kf − 1}:
u∗
k = u, if ∂H

∂uk

> 0,

u∗
k ∈ U , if ∂H

∂uk

= 0,

u∗
k = u, if ∂H

∂uk

< 0,

(9)

where H is the Hamiltonian

H(k,xk,uk, λk+1) = fk(xk,uk) + λk+1gk(xk,uk).

3.1. Quadratic Performance Index and Linear Dynamics

A widely studied special case of Problem (3) arises when the system dynamics are linear
and the cost functional is quadratic. Although this structure is classical, it plays a central role
in constrained optimal control because the PMP conditions derived in Theorem 3.1 reduce
to simple algebraic expressions that can be evaluated efficiently in real time. We therefore
summarize only the elements required for the subsequent development, without re-deriving
standard LQR results.

Consider the cost functional (3) with that utilized in (4) – (5) and dynamical system
(1) that is in linear form Under this structure, the costate equation (7) becomes the linear
backward recursion

λk = Qkxk +A⊤
k λk+1, (10)
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and the optimality condition of Theorem 3.1 yields the unconstrained minimizer

uunc
k = −R−1

k B⊤
k λk+1.

When subject to the box constraint (2), the optimal control becomes the projection of the
unconstrained minimizer onto the admissible interval:

u∗
k = min

{
max{uunck , u}, u

}
. (11)

which is exactly the sign pattern established in Theorem 3.1 for a minimization problem.
The closed-loop dynamics induced by (11) are therefore piecewise affine, with the interior-

region dynamics given by
x∗
k+1 = Akx

∗
k −BkR

−1
k B⊤

k λ
∗
k+1,

and bounded modes replacing the control term by Bku or Bku when the bounds are active.
Crucially, the purpose of this subsection is not to re-derive the classical LQR framework,

but to highlight that the general PMP conditions of Theorem 3.1 collapse to explicit algebraic
expressions in the quadratic-linear case.

3.2. Closed-Loop Control for Free Final State

In this section, Pk denotes the discrete-time Riccati matrix associated with problems
having a free terminal state and defines the linear state–costate relation λk = Pkxk. For
fixed-terminal-state problems, the corresponding inverse Riccati matrices are denoted by
Mk. These matrices encode the state–costate relationship and enable closed-form expressions
for the optimal control. Under linear–quadratic dynamics with box-constrained inputs, the
optimal control admits a closed-form solution, and the first-order conditions are sufficient for
global optimality due to the strict convexity induced by Rk ≻ 0.

Theorem 3.2. Consider the discrete-time optimal control problem with dynamics (6) and
cost functional (3), subject to the control constraints (2). Assume that Rk ≻ 0 for all k, and
that the pairs (Ak,Bk) are stabilizable and (Q

1/2
k ,Ak) are detectable in the standard LQR

sense. Then there exists a symmetric sequence {Pk} satisfying the backward Riccati recursion

λk = Qkxk +A⊤
k λk+1, (12)

together with the terminal condition (8). In particular, the matrices Pk satisfy

Pkxk = Qkxk +A⊤
k Pk+1xk+1, (13)

and, for the unconstrained problem, the optimal feedback control law is

uunc
k = −Kkxk, Kk =

(
Rk +B⊤

k Pk+1Bk

)−1
B⊤

k Pk+1Ak. (14)
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Equivalently, the Riccati matrices satisfy the standard recursion

Pk = Qk +A⊤
k Pk+1Ak −A⊤

k Pk+1Bk

(
Rk +B⊤

k Pk+1Bk

)−1
B⊤

k Pk+1Ak, (15)

with terminal condition Pkf = Fkf . Whenever Pk+1 is nonsingular, (15) is equivalently
expressed as

Pk = Qk +A⊤
k

(
P−1

k+1 + Ek

)−1
Ak, (16)

where Ek = BkR
−1
k B⊤

k . Under the bounded control constraint (2), the optimal control law is
given by Theorem 3.1. In particular, the corresponding closed-loop control takes the form

u∗
k = min

{
max{−Kkx

∗
k, u}, u

}
. (17)

3.3. Parametric Uncertainty

In practical applications, the exact values of the system matrices Ak and Bk are often not
perfectly known due to modeling errors or parameter variations. To account for such effects,
we consider the discrete-time system with parametric uncertainty

xk+1 = (Ak +∆Ak)xk + (Bk +∆Bk)uk, (18)

where ∆Ak ∈ Rn×n and ∆Bk ∈ Rn×m are unknown but bounded perturbations, satisfying

∥∆Ak∥ ≤ αk, ∥∆Bk∥ ≤ βk,

for given nonnegative scalars αk and βk that quantify the magnitude of the parametric un-
certainty [7].

Importantly, the closed-loop control law previously defined in (17) can still be applied
directly to the uncertain system. Specifically, the bounded state-feedback

u∗
k = min

{
max{−Kkx

∗
k, u}, u

}
remains well-defined for all admissible (∆Ak,∆Bk) within the prescribed bounds. For small
to moderate uncertainties, the nominal LQR gain Kk ensures that the interior dynamics re-
tain stability, and the box constraints naturally limit the control action, preventing excessive
deviation caused by parameter variations [4].

Although the proposed control law is not a robust controller in the classical sense (i.e., it is
not specifically designed to compensate for all possible parametric variations), it is neverthe-
less capable of maintaining stability and satisfactory performance for bounded uncertainties
of moderate size. The inherent structure of the bounded state-feedback limits the control
action and prevents large deviations caused by the unknown but bounded perturbations ∆Ak

and ∆Bk. In this way, the framework provides a simple yet effective approach for handling
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parametric uncertainties while respecting input constraints, without requiring a full robust
control design [4].

4. Simulation
In this section, we illustrate the performance of the proposed framework under bounded

parametric uncertainties in the system matrices. We consider the discrete-time linear system
(18), where the nominal system matrices are chosen as

A =

[
1 1

0 1

]
, B =

[
0

1

]
,

and the cost functional is given by (4)-(5) with Q = diag(10, 1), R = 1, and the control
bounded by |u| ≤ 1. Three scenarios of parametric uncertainties (α, β) are considered,
corresponding to increasing deviations from the nominal dynamics. The bounded control
law defined in (17) is applied.

Figure 1. Trajectories of states x1, x2 and control input uk for three scenarios
of parametric uncertainty (α, β).

Figures 1show the state and control trajectories for all three scenarios over N = 30 sim-
ulation steps. As expected, the trajectories remain bounded due to input, and the state
converges to the origin in all cases. Increasing uncertainty levels result in slightly faster con-
vergence, which is a consequence of the particular choice of ∆A and ∆B. Notably, despite
the bounded uncertainties, the control input never exceeds its prescribed limits.The total
cost is computed for each scenario and summarized in Table 1. The results highlight that,
while the control law handles input bounded effectively, the total cost does not necessarily
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increase monotonically with the uncertainty levels. This observation reflects that the pro-
posed method is not robust in the classical sense but remains a simple and practical approach
for bounded parametric deviations.

Table 1. Total cost for each parametric uncertainty scenario.

α β Total Cost J

0.06 0.02 12.249
0.09 0.04 12.352
0.12 0.06 12.481

The simulation results indicate that the proposed framework guarantees input constraints,
ensures convergence to the origin, and provides acceptable performance under moderate
parametric uncertainties.

5. Conclusion
This paper presented a discrete-time linear–quadratic framework with bounded state-

feedback to handle input constraints and moderate parametric uncertainties. By leveraging
the discrete-time PMP, the optimality conditions were reduced to explicit algebraic expres-
sions, enabling a simple and computationally efficient saturated control law. Simulation
results demonstrated that the proposed framework guarantees convergence to the origin,
respects control limits, and provides acceptable performance under varying levels of uncer-
tainty. While not a fully robust design, the method offers a practical and effective approach
for real-world applications where moderate parameter variations are present. Future work
may extend this framework to more complex nonlinear systems or to formally incorporate
robustness against larger uncertainties.
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