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Introduction

In recent years, the application of laser beams with non-
Gaussian transverse intensity distributions has been of con-
siderable interest. Beams with Top Hat, Bessel-Gaussian, 
Laguerre-Gaussian, and Hermit-Gaussian intensity distribu-
tions are of great interest in this area. Among the beams with 
non-Gaussian intensity distributions, Laguerre-Gaussian 
beams carry orbital angular momentum, which can increase 
the bandwidth of information transmission in optical com-
munication [1, 2]. In fact, spin angular momentum is not 
the only type of angular momentum that an electromagnetic 
wave may carry along its propagation path. Like other par-
ticles, photons can also have orbital angular momentum. A 
transverse component of the photon’s linear momentum can 
lead to the generation of angular momentum in the propaga-
tion direction [3].
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Abstract
In this paper, a simple method is reported for the design and preparation of fork-shaped diffraction gratings with differ-
ent topological charges. First, the diffraction gratings were prepared using the computer-generated holography technique. 
Using the image processing methods in the MATLAB environment, the images of the generated holograms were first 
prepared in the gray level format, then converted into binary, and finally saved in the vector form. The vector images 
prepared from the holograms were printed on transparent sheets using a semi-industrial printer. By optimizing the groove 
distance of the gratings through experimental tests, the groove distance equal to 175 micrometers has been chosen as the 
optimal line distance for making the gratings. By designing and setting up a suitable optical arrangement, the prepared 
fork-shaped gratings were exposed to laser beams and Laguerre-Gaussian beams were generated. The results showed the 
desired generation of these types of beams with the simple method presented for making the gratings. In the following, 
by setting up a Mach-Zehnder interferometric setup, the topological charges of the generated Laguerre-Gaussian beams 
were also measured. The results indicated that the number of fork branches formed in the interference patterns was equal 
to the topological charge of the Laguerre-Gaussian beams. Using computer simulations, the experimental results obtained 
in this work have also been examined and tested.
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In this study, we focus on the generation of Laguerre-
Gaussian beams with specific properties. Laguerre-Gaussian 
beams are characterized by their azimuthal phase variation 
and carry orbital angular momentum. The optical field of a 
Laguerre-Gaussian beam can generally be expressed as [4]

LG(l)
p (r, ϕ, z) = A0 (r, z) exp (ilϕ)� (1)

where A0(r, z) is defined as
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where z represents the distance between the input plane and 
the receiver plane, r is the radial coordinate in a polar coordi-
nate system. l and p denote the topological charge and radial 
index, respectively. w (z) = w0

√
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2  is the beam 
width at distance (z), w0 is initial beam width (fundamental 
Gaussian beam radius), zR = πw2

0

/
λ  is the Rayleigh range, 

k = 2π/λ  is the wave number, λ is the wavelength, and 
L
(|l|)
p (.) is the associated Laguerre polynomial. Specifically, 

we are interested in beams with zero radial index (p = 0, i.e., 
no radial variation) and a non-zero azimuthal index ( l ). 
These beams exhibit a helical wavefront and possess unique 
properties due to their OAM. By controlling the azimuthal 
index, one can tailor the beam’s intensity profile and phase 
structure, making them valuable for various applications.

Various methods have been used for generation of 
Laguerre-Gaussian beams so far. For the first time, it was 
shown by Allen and his colleagues that a beam with a spiral 
phase front has a certain amount of orbital angular momen-
tum [5]. To convert the Hermite-Gaussian modes into 
the Laguerre-Gaussian ones, they used a set of precisely-
aligned cylindrical lenses. Another method for generation of 
orbital angular momentum beams was based on the use of a 
new tool called spiral phase plate to induce the spiral phase 
fronts on the impinging beams [5]. The spiral phase plate is 
an optical component that is made of glass with an optical 
thickness that increases with the azimuthal angle [6]. Due 
to this structural feature, when a uniform plane wavefront 
beam passes through this component, it transforms into a 
spiral wavefront. Another method has also been developed 
that creates a topological charge in the phase front of a beam, 
depending on the primary polarization state of the beam 
[7]. At the heart of this process is an anisotropic birefrin-
gence plate, which is made of liquid crystal and has a well-
defined topological charge in the transverse plane, which is 
known as the q-plane. Computer-generated holography also 

provides another method to generate the Laguerre–Gauss-
ian beams that carry orbital angular momentum [8]. If an 
oblique spiral beam interferes with a plane-wave reference 
beam, the resulting interference pattern will be called a 
fork-shaped hologram. This hologram can be used for gen-
eration of an orbital angular momentum beam. When the 
fork-shaped hologram is illuminated by a TEM00 beam, 
the original optical power is transferred to the diffraction 
orders. In the first two diffraction orders, spiral beams with 
opposite signs ​​of angular momentum will be generated. 
Due to the availability of commercial spatial light modula-
tors (SLM), the transferred computer-generated holograms 
to these devices are now being widely used for real-time 
generation and detection of orbital angular momentum 
beams [9, 10]. Fork-shaped gratings can be prepared using 
straightforward computer-generated holography techniques 
[11]. Unlike some other methods that require complex opti-
cal setups or specialized components, they can be fabricated 
using standard laboratory equipment [12]. Fork-shaped 
gratings can also produce different optical vortex beams in 
different diffraction orders, allowing for versatility in appli-
cations [13]. These advantages make fork-shaped gratings 
a compelling choice for generating optical vortex beams in 
various contexts.

Due to their unique features, the orbital angular momen-
tum beams have been used in various fields. As one of the 
first applications, the orbital angular momentum carry-
ing Laguerre–Gaussian beams were used for rotation and 
aligning of microscopic objects [14]. Some years later, the 
first clear demonstration of the transfer of orbital angular 
momentum of light to microscopic objects with optical 
tweezers was taken place [15]. Apart from the classical 
applications, the orbital angular momentum of light is also 
favored from the quantum viewpoint. Spin angular momen-
tum is inherently a binary quantity and hence, only one bit 
of information can be encoded in the photon carrying this 
type of momentum. However, orbital angular momentum 
has infinite degrees of freedom. Therefore, more alphabets 
are available for writing in the orbital angular momen-
tum space. It is shown that the multidimensionality of the 
orbital angular momentum space can be used for encoding 
information in free space communications [2]. Detection, 
high-resolution microscopy, quantum cryptography, radio 
telecommunications, and optical communication based on 
free space propagation and in optical fibers are other appli-
cations of angular momentum beams [5, 16, 17].

In this paper, the design, preparation, and characteriza-
tion of fork-shaped diffraction gratings with different topo-
logical charges have been reported. The gratings have been 
prepared in a simple and reproducible way using computer-
generated holography and their groove distance has been 
optimized. In the following, the functional capabilities of 
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the prepared gratings have been investigated using suit-
able optical arrangements. By computer simulations, the 
obtained experimental results in this work have also been 
examined and tested.

Methods

Design of fork-shaped gratings by computer-
generated holography

With the advancement of computer technology and related 
devices such as digital printers, the computer-generated 
holography field has greatly progressed in the last decade 
since with a computer, the hologram of any object can be 
calculated, even if this object does not exist externally [18]. 
In this work, the computer holograms have been designed 
by calculating and plotting the interference patterns result-
ing from the superposition of an inclined plane wave and 
Laguerre–Gaussian waves. According to the holography 
theory, if this computer hologram is made physically and is 
illuminated by the primary plane wave beam, the Laguerre–
Gaussian waves will be reconstructed and exit from the 
other face of the hologram. The general form of a plane 
wave can be written as:

E1 = e−i
−→
k.−→r � (3)

where −→k  is the wave vector and −→r  is the position vec-
tor. Consider the wave vector of the inclined plane wave as 
−→
k = kx

−→
i + kz

−→
k  (to simplify the expression, the y compo-

nent is omitted), this plane wave can be written as follows:

E1 = e−i(kxx+kzz)� (4)

The Laguerre–Gaussian beam equation can also be written 
in the following simple form:

E2(r, θ, z) = E0e
ilθe−ikzz � (5)

where l represents the topological charge of the optical 
vortex and θ = tg−1(y/x) is the azimuthal angle. Using 
Eqs. (3) and (4), the superposition of these two waves can 
be expressed mathematically as [19]:

H = 1 + |E0|2 + 2 |E0| cos (kxx− lθ)� (6)

The component of the wave vector in the x direction can be 
written as follows:

kx =
2π

Λ
� (7)

Which Λ  is the spatial periodicity of the formed interfer-
ence pattern, or the groove distance when it is used as a 
diffraction grating. Using the relationx = r cos θ , Eq.  (5) 
converts into the following form:

H = 1 + |E0|2 + 2 |E0| cos
(
2π

Λ
r cos θ − lθ

)
� (8)

Equation  (6) represents an amplitude hologram. The con-
stant terms and coefficients can be omitted to be able to con-
vert it to the following simpler form:

H = cos

(
2π

Λ
r cos θ − lθ

)
� (9)

In comparison with the amplitude holograms that modulate 
the amplitude of the incident light, phase holograms modu-
late the phase of light and leave the amplitude unchanged. 
Because the intensity of the light transmitted through the 
hologram is proportional to the square of the modulus of the 
amplitude and not the phase, the phase holograms are ide-
ally without absorption and the diffracted light from them 
has higher intensities and hence is more applicable. To con-
vert the amplitude hologram (9) into a phase hologram, it is 
enough to put the corresponding term in the argument of an 
exponential function:

PH = e−iH = ei cos(lθ−
2π
Λ r cos θ)� (10)

This equation has been used to create the computer-gener-
ated holograms in this work. The topological charge or the 
order of the generated Laguerre-Gaussian mode is deter-
mined by the integer parameter l. The groove distance is 
also determined by the parameter Λ.

Image binarization and preparation of the gratings

Binary images are widely used in image processing and 
almost most of the images must be converted to these types 
of images before further processing. To convert a gray-level 
image to a binary image, the intensity values between 0 and 
256 for each pixel must be converted to values between 0 
and 1. For this, a threshold limit should be defined, in such 
a way that values less than this threshold limit are replaced 
by zero, and values greater than it are replaced by one. If 
f (x, y)represents the gray image matrix and g (x, y)be its 
equivalent binary image matrix, they are related as follows:

g (x, y) =

{
1 if f (x, y) � T

0 if f (x, y) < T
� (11)

1 3



Journal of Optics

the incident Gaussian beam from the fork-shaped gratings 
plays the leading role. As mentioned in section Design of 
fork-shaped gratings by computer-generated holography, 
the fork-shaped diffraction gratings are designed by mathe-
matically interfering an oblique plane wave with Laguerre–
Gaussian beams. Therefore, to simulate the diffraction from 
the designed fork-shaped gratings, a plane wave must be 
irradiated on the surface of these gratings. However, due 
to the similarity of the far-field Gaussian beam wavefront 
with the plane wave, the Gaussian beam can also be used for 
this purpose. The mathematical calculation of this process 
is done by multiplying the Gaussian beam wave function by 
the fork-shaped diffraction function, Eq. (9), and perform-
ing the Fourier transform of the resulting product [22, 23]:

I = F (Ψ1 × PH)� (12)

where I indicates the intensity distribution in the viewing 
plane, Ψ1 is the Gaussian beam wave function and PH is 
the fork-shaped grating function. To simulate this process, 
the fast Fourier transform algorithm is used in the MAT-
LAB environment. The Fourier transformation yields 
the Fraunhofer diffraction orders, which will be different 
depending on the magnitude of the topological charge of the 
fork-shaped grating.

Measurement of the topological charges

As mentioned in section   Design of fork-shaped gratings 
by computer-generated holography, the superposition of a 
Laguerre–Gaussian beam with a certain topological charge 
with an oblique plane wave will lead to the formation of a 
fork-shaped diffraction grating whose number of branches 
is exactly equal to the magnitude of the topological charge. 
Now, suppose that we have a Laguerre–Gaussian beam 
whose topological charge, which is equal to the magni-
tude of the angular momentum of its photons, is unknown. 
The interferometry technique is usually used for measur-
ing the magnitude of the unknown topological charge of 
a Laguerre–Gaussian beam. By interfering this Laguerre–
Gaussian beam with a plane wave and by counting the 
number of fork branches formed in the resulting interfer-
ence pattern, the magnitude of the topological charge of the 
Laguerre–Gaussian beam can be easily determined. In this 
work, the experimental interferometer setup, whose design 
is shown in Fig. 1, is used to measure the magnitude of the 
topological charge of the generated Laguerre–Gaussian 
beams. In this setup, the two reference and object beams 
are produced by irradiating the cubic beam splitter with a 
He-Ne laser beam (Melles Griot 3225 H-PC, 632.8 nm, 10 
mW). The first beam creates the diffraction pattern including 
the Laguerre–Gaussian beams after hitting the fork-shaped 

where T is the threshold limit. Therefore, using this math-
ematical relation for each pixel of a gray-level image, it 
can be converted to a binary. There are different methods to 
determine the threshold value. The best way to convert an 
image into binary is to determine the value of the threshold 
limit using the histogram of the image and its final opti-
mization by trial and error. In this work, by trial and error, 
the threshold limit equal to 0.6 has been found and used as 
the optimal limit for producing the same width of black and 
white lines in the binary images of the fork-shaped gratings.

In this work, generation of computer-generated holo-
grams and their binarization is performed in the MATLAB 
environment. To be able to print and transfer such digital 
binary images on the surface of transparent sheets, they 
must first be appropriately stored in the computer memory. 
Digital images can be stored as vector or raster formats. 
Raster images are composed of tiny squares called pixels. 
These pixels collectively form detailed images, such as 
photographs. When one zoom in on a raster image, sees 
individual pixels, which can make the image appear grainy 
or blurry. Indeed, Raster images lose quality when resized 
because the pixel grid remains fixed. Vector images, on the 
other hand, use mathematical equations to define shapes, 
lines, and curves. There are no pixels in a vector file. The 
beauty of vector images lies in their scalability. One can 
resize, rescale, and reshape them infinitely without any loss 
of quality. Their resolution remains consistent regardless of 
size changes [20]. Since it is sometimes necessary to resize 
and zoom the images during the transfer process, to avoid 
the usual blurring of pixel images during such enlarge-
ments, the images have been saved in the vector form using 
the export_fig code. This code has been developed to avoid 
the common errors that sometimes occur during the stor-
ing of digital images in MATLAB [21]. This user-friendly 
code allowed us to convert our grayscale images (which 
are initially raster-based) into vector format. By exporting 
the images as vectors, we ensured that their quality would 
remain intact even when resized, which is crucial for our 
high-resolution printing process. Finally, a commercial dig-
ital printer (model HP LaserJet Enterprise M806DN) was 
used to transfer the binary vector images on the surface of 
transparent sheets.

Simulation of Gaussian Beam diffraction from the 
fork-shaped diffraction gratings

For generation of Laguerre–Gaussian beams, usually, a laser 
beam with Gaussian spatial distribution is irradiated on the 
surface of fork-shaped gratings. The Laguerre–Gaussian 
beams are formed due to optical diffraction and become vis-
ible in the far field. Therefore, in simulating the generation 
of Laguerre–Gaussian beams, the Fraunhofer diffraction of 
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of the Laguerre–Gaussian beam that is used in the design of 
the hologram.

The shown images in Fig. 2 are gray-level images. There-
fore, the visible black and white fringes in these images are 
not completely black and white at every point. This means 
that, for example, the black fringes have values between 0 
and 256, and when moving from a black fringe to its adja-
cent white fringe, the intensity of the image pixels varies 
between these values. Printing such images by digital print-
ers that only have the states of zero and one (without ink and 
with ink), will yield the gratings that the distance between 
their lines is different from what is considered in their 
design phase. For this reason, the gray-level images of the 
gratings have been binarized using the method mentioned in 
section Image binarization and preparation of the gratings. 
Figure 3 shows the binary images of the fork-shaped diffrac-
tion gratings.

After preparation of the binary images and their vector-
ization, they have been transferred to the CorelDraw graph-
ics software environment. In this software, the dimensions 
of the page were adjusted according to the dimensions of an 
A4 paper and the imported images were placed next to each 
other in a mosaic form. In this way, it is possible to obtain a 
larger number of diffraction gratings with different topologi-
cal charges with a single print.

When a laser beam impinges normally on the surface of a 
diffraction grating, the angular separation distance between 
the different diffraction orders is inversely proportional to 
the distance between the grating lines (or the groove dis-
tance). Therefore, if the groove distance is reduced, the 
angular separation distance between the diffracted out-
put beams from the fork-shaped grating will increase. It 
should be noted that in preparation of diffraction gratings, 

diffraction grating. The first order of diffraction is sepa-
rated from the pattern by a circular aperture and the other 
orders are blocked. The separated diffraction order, i.e. the 
Laguerre–Gaussian mode, reaches the surface of the CCD 
(DMK23G445, The imaging source) after passing through 
the second beam splitter (the combining beam splitter). The 
reference beam also reaches the light-sensitive surface of 
the CCD after two consecutive reflections from the flat mir-
rors and one more reflection from the combining beam split-
ter. The CCD records the interference pattern resulting from 
the superposition of these two beams and transfers it to the 
computer. By counting the number of fork branches in the 
resulting interference pattern, the topological charge of the 
Laguerre–Gaussian beam can be measured.

Results

Figure  2 shows the fork-shaped diffraction gratings 
designed by computer-generated holography with topologi-
cal charges equal to 1 to 4. As can be verified, the number of 
fork branches in each case is equal to the topological charge 

Fig. 3  The binary form of the fork-shaped diffraction gratings shown 
in Fig. 2

 

Fig. 2  The designed fork-shaped diffraction gratings with different val-
ues of topological charge equal to (a) 1, (b) 2, (c) 3, and (d) 4

 

Fig. 1  The Mach-Zehnder interferometric setup used to measure the 
topological charge of the Laguerre–Gaussian beams
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directed by a flat mirror towards the grating, which is placed 
inside the holder. The diffracted light from the grating is 
imaged by a convex lens with a focal length of 7  cm on 
the CCD camera. The images are recorded by the camera 
and transferred to the computer in real-time. Figure 7 shows 
the images of the recorded diffraction patterns of the fork-
shaped gratings. The central intense circular pattern in the 
figures is the result of zero-order diffraction, which must 
have the original Gaussian distribution of the used laser 
beam. However, due to some overlap with its adjacent next 

it is desirable to have the smallest groove distance, since 
in applications that require the use of these gratings these 
diffracted beams will not interfere with each other at short 
distances from the gratings. However, the groove distance 
cannot be reduced unlimitedly. In practice, the minimum 
value of the groove distance is limited by the resolution of 
the method used for preparation of the grating. The printer 
used for preparation of the fork-shaped gratings was semi-
industrial and of high quality, capable of printing with a 
real resolution of 1200 dpi. However, it should be noted 
that this resolution depends on variables such as the type 
of paper used for printing, the life of the cartridge, etc. In 
this work to obtain the desired gratings with the smallest 
groove distance, first, only the gratings with the topological 
charge of one and with different groove distances from 150 
micrometers to 250 micrometers with 25 micrometer steps 
were prepared. After preparation, their surface have been 
investigated by an optical microscope. In order to check the 
conformity of the groove distances obtained after the prepa-
ration with the ones considered initially in the design phase 
of the gratings, the groove distances have been measured 
using the taken optical microscope images.

The measured groove distances and their comparison 
with the ones considered in the design phase are presented 
in Fig. 4. It should be kept in mind that in the ideal case, the 
graph should have a linear shape corresponding to the bisec-
tor of the first quadrant of the Cartesian coordinate system. 
Indeed, if the graph matches with the bisector of the first 
quadrant, exactly the same distance that is considered in the 
design phase is obtained in the experimental phase and after 
the preparation of the gratings. However, in practice, the 
lack of coordination between the printer software and the 
software containing the graphic files results in the difference 
between what is considered in the design phase and the ones 
obtained in the preparation phase. To continue the work, 
the smallest groove distance that yields a suitable resolu-
tion in the microscopic images should be selected. Keeping 
this condition in mind, the optimal groove distance of 175 
micrometers has been selected for the preparation of other 
fork-shaped diffraction gratings.

After the determination of the optimal groove distance, 
fork-shaped gratings with topological charges of 1 to 4 have 
been prepared using this optimal distance. Figure 5 shows 
the optical microscope images of the prepared fork-shaped 
gratings.

To characterize the gratings, generation of Laguerre–
Gaussian beams after laser light diffraction from them has 
been studied using the experimental setup shown in Fig. 6. 
In this arrangement, a helium-neon laser with linear polar-
ization output is used. In order to avoid the occurrence of 
thermal effects in the grating, a polarizer has been used to 
adjust and decrease the incident laser power. The light is 

Fig. 5  Optical microscope images of fork-shaped gratings with the 
groove distance of 175 micrometers and topological charges equal to 
(a) 1, (b) 2, (c) 3, and (d) 4

 

Fig. 4  The measured experimental groove distance for the gratings 
made with the topological charge of one versus the groove distance 
considered in their design phases
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orders of diffraction, the Gaussian distribution has been 
somewhat changed.

Hollow circular intensity distributions indicate the pro-
duced first-order Laguerre–Gaussian modes, which are also 
known as donut modes or optical vortices. The topological 
charges of these modes have opposite signs. At the distance 
where the digital camera was placed, the transverse distribu-
tions of the diffraction orders have slightly overlapped. The 
diffraction orders appear as concentric rings with a dark spot 
at the center. The number of rings corresponds to the topo-
logical charge of the grating. These patterns are symmetric 
with respect to the center of the grating. The intensity of 
the diffracted beams decreases with increasing diffraction 
order. The diffraction efficiency of the gratings is approxi-
mately 29%. However, this efficiency decreases with higher 
topological charges of the grating. These findings are con-
sistent with previous studies [5, 6], which also observed 

Fig. 7  Diffraction patterns recorded for fork-shaped gratings with 
topological charges equal to (a) 1, (b) 2 and (c) 3

 

Fig. 6  (a) Experimental setup 
used for generation of Laguerre–
Gaussian beams. (b) Schematic 
representation of the setup (P: 
polarizer, M: flat mirror, and L: 
imaging lens)
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measure the topological charge of generated Laguerre–
Gaussian beams, the interferometer arrangement shown in 
Fig. 1 is used. Figure 9 shows the recorded interference pat-
terns for different Laguerre–Gaussian beams. As mentioned 
earlier, by counting the number of fork branches formed in 
each pattern, the magnitude of the topological charge of its 
corresponding Laguerre–Gaussian beam can be obtained. 
Indeed, when a Laguerre–Gaussian beam with a topological 
charge l interferes with a plane wave, the phase singularity 
of the beam causes a dislocation in the interference fringes. 
This dislocation manifests as a fork-shaped pattern, where 
the number of branches in the fork is equal to |l|. The results 
are consistent with the findings reported in similar studies 
on the topic [1, 2].

In section Simulation of Gaussian beam diffraction from 
the fork-shaped diffraction gratings, the method of simulat-
ing the diffraction of a Gaussian beam (or a plane wave) 
from fork-shaped diffraction gratings has been described. 
Figure 10 shows the effect of changing the groove distance 
of the fork-shaped gratings in changing the obtainable 
far-field diffraction patterns when the Gaussian beam hits 
the surface. As can be verified, by decreasing the groove 
distance, the separation distance between the different dif-
fraction orders increases. The zero-order diffraction in the 
center of the images is actually the original Gaussian beam 
that exits the grating without diffraction. Diffraction orders 
of + 1 and − 1 indicate the Laguerre–Gaussian beams with 
topological charges of + 1 and − 1. Diffraction orders of + 2 
and − 2 also indicate the Laguerre–Gaussian beams with 
topological charges of + 2 and − 2. The important point is 
that with increasing the diffraction order, its intensity gradu-
ally decreases so that in the present simulation the diffrac-
tion orders of + 3 and − 3 are invisible. In experimental 
conditions, it is difficult to record the low-intensity diffrac-
tion orders and as can be verified in Fig. 7, diffraction orders 
higher than + 1 and − 1 cannot be seen for the gratings made 
in this work.

In Fig. 11, the effect of variation of the beam waist of the 
irradiated Gaussian beam on the surface of a fork-shaped 
grating in changing its far-field diffraction patterns is inves-
tigated. As can be seen in the figure, by reducing the waist 
size, Laguerre–Gaussian beams with a larger cross-sectional 
area can be obtained at a specified distance. This result can 
be justified by considering the fact that for a Gaussian beam, 
by reducing the waist size larger spot sizes will be obtained 
upon propagation due to the natural diffraction.

similar diffraction patterns and efficiencies for fork-shaped 
gratings.

By removing the CCD from the optical setup in Fig. 6 
and recording the diffraction patterns at far distances, more 
than 3  m for the prepared gratings in this work, the first 
diffraction order can be separated from the rest by an adjust-
able aperture (Fig.  8). The separated Laguerre-Gaussian 
beams in this way can be used in applications that require 
the use of this type of beams.

Reinspecting Fig.  7, it is obvious that is impossible to 
determine the topological charge of the Laguerre–Gauss-
ian beams from their transverse intensity distributions. To 

Fig. 9  The interference patterns obtained for Laguerre-Gaussian beams 
with topological charges equal to (a) 1, (b) 2, and (c) 3

 

Fig. 8  The separated Laguerre–Gaussian beam from the diffraction 
pattern of a fork-shaped grating with a topological charge equal to 1 
by an adjustable aperture
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further reduce the groove distance of the prepared gratings 
through employing other higher resolution printing meth-
ods. For example, optical lithography can be used to transfer 
the designed gratings by the computer-generated hologra-
phy method on transparent plates or glasses. The generated 
optimized Laguerre–Gaussian beams can be used in the 
fields of optical telecommunications and free space opti-
cal communications. Moreover, other types of diffraction 

Conclusion

In this paper, a simple, low-cost, and reproducible method 
for the preparation of fork-shaped diffraction gratings is pre-
sented. The generation of Laguerre–Gaussian beams by the 
prepared gratings has also been confirmed. Considering the 
success of the presented simple method in the generation of 
these types of beams, it can be more optimized to be able to 

Fig. 11  Diffraction patterns of a 
single-branch fork-shaped grating 
for the Gaussian beam waist sizes 
of (a) 0.5 mm, (b) 1 mm and (c) 
1.5 mm. The groove distance of 
the grating is kept constant at 
100 μm during the simulations

 

Fig. 10  Diffraction patterns of a 
single-branch fork-shaped grating 
for the groove distances of (a) 
20 μm, (b) 50 μm and (c) 100 μm
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gratings can also be prepared by the presented method for 
the generation of other structured optical beams, such as 
Top Hat, Bessel-Gaussian, and Hermit-Gaussian beams. 
The designed computer-generated holograms can be trans-
ferred to spatial light modulators to be able to generate these 
structured light beams in real-time.
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