Journal of Optics
https://doi.org/10.1007/512596-024-02154-9

RESEARCH ARTICLE ——

®

Check for
updates

A simple method to prepare and characterize optical fork-shaped
diffraction gratings for generation of orbital angular momentum
beams

Mohammad Reza Rashidian Vaziri'©® - Abolfazl Hosseini?® - Ebrahim Gholami Hatam? - Reza Azmoodeh Sorodi*®

Received: 14 July 2024 / Accepted: 5 August 2024
© The Author(s), under exclusive licence to The Optical Society of India 2024

Abstract

In this paper, a simple method is reported for the design and preparation of fork-shaped diffraction gratings with differ-
ent topological charges. First, the diffraction gratings were prepared using the computer-generated holography technique.
Using the image processing methods in the MATLAB environment, the images of the generated holograms were first
prepared in the gray level format, then converted into binary, and finally saved in the vector form. The vector images
prepared from the holograms were printed on transparent sheets using a semi-industrial printer. By optimizing the groove
distance of the gratings through experimental tests, the groove distance equal to 175 micrometers has been chosen as the
optimal line distance for making the gratings. By designing and setting up a suitable optical arrangement, the prepared
fork-shaped gratings were exposed to laser beams and Laguerre-Gaussian beams were generated. The results showed the
desired generation of these types of beams with the simple method presented for making the gratings. In the following,
by setting up a Mach-Zehnder interferometric setup, the topological charges of the generated Laguerre-Gaussian beams
were also measured. The results indicated that the number of fork branches formed in the interference patterns was equal
to the topological charge of the Laguerre-Gaussian beams. Using computer simulations, the experimental results obtained
in this work have also been examined and tested.

Keywords Optical diffraction - Computer-generated holography - Orbital angular momentum - Quantum
communications

Introduction

In recent years, the application of laser beams with non-
Gaussian transverse intensity distributions has been of con-
siderable interest. Beams with Top Hat, Bessel-Gaussian,
Laguerre-Gaussian, and Hermit-Gaussian intensity distribu-
tions are of great interest in this area. Among the beams with
non-Gaussian intensity distributions, Laguerre-Gaussian
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beams carry orbital angular momentum, which can increase
the bandwidth of information transmission in optical com-
munication [1, 2]. In fact, spin angular momentum is not
the only type of angular momentum that an electromagnetic
wave may carry along its propagation path. Like other par-
ticles, photons can also have orbital angular momentum. A
transverse component of the photon’s linear momentum can
lead to the generation of angular momentum in the propaga-
tion direction [3].
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In this study, we focus on the generation of Laguerre-
Gaussian beams with specific properties. Laguerre-Gaussian
beams are characterized by their azimuthal phase variation
and carry orbital angular momentum. The optical field of a
Laguerre-Gaussian beam can generally be expressed as [4]

LGY (r,p,2) = Ay (r, 2) exp (il) ©)

where 4 (r, z) is defined as
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where z represents the distance between the input plane and
the receiver plane, 7 is the radial coordinate in a polar coordi-
nate system. / and p denote the topological charge and radial
index, respectively. w (z) = wow] /1+ (z/zH)2 is the beam
width at distance (z), w, is initial beam width (fundamental
Gaussian beam radius), zz = mw] / A is the Rayleigh range,
k =2n/X is the wave number, 4 is the wavelength, and
Lgm (.) is the associated Laguerre polynomial. Specifically,
we are interested in beams with zero radial index (p =0, i.e.,
no radial variation) and a non-zero azimuthal index ( /).
These beams exhibit a helical wavefront and possess unique
properties due to their OAM. By controlling the azimuthal
index, one can tailor the beam’s intensity profile and phase
structure, making them valuable for various applications.
Various methods have been used for generation of
Laguerre-Gaussian beams so far. For the first time, it was
shown by Allen and his colleagues that a beam with a spiral
phase front has a certain amount of orbital angular momen-
tum [5]. To convert the Hermite-Gaussian modes into
the Laguerre-Gaussian ones, they used a set of precisely-
aligned cylindrical lenses. Another method for generation of
orbital angular momentum beams was based on the use of a
new tool called spiral phase plate to induce the spiral phase
fronts on the impinging beams [5]. The spiral phase plate is
an optical component that is made of glass with an optical
thickness that increases with the azimuthal angle [6]. Due
to this structural feature, when a uniform plane wavefront
beam passes through this component, it transforms into a
spiral wavefront. Another method has also been developed
that creates a topological charge in the phase front of a beam,
depending on the primary polarization state of the beam
[7]. At the heart of this process is an anisotropic birefrin-
gence plate, which is made of liquid crystal and has a well-
defined topological charge in the transverse plane, which is
known as the g-plane. Computer-generated holography also
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provides another method to generate the Laguerre—Gauss-
ian beams that carry orbital angular momentum [8]. If an
oblique spiral beam interferes with a plane-wave reference
beam, the resulting interference pattern will be called a
fork-shaped hologram. This hologram can be used for gen-
eration of an orbital angular momentum beam. When the
fork-shaped hologram is illuminated by a TEM,, beam,
the original optical power is transferred to the diffraction
orders. In the first two diffraction orders, spiral beams with
opposite signs of angular momentum will be generated.
Due to the availability of commercial spatial light modula-
tors (SLM), the transferred computer-generated holograms
to these devices are now being widely used for real-time
generation and detection of orbital angular momentum
beams [9, 10]. Fork-shaped gratings can be prepared using
straightforward computer-generated holography techniques
[11]. Unlike some other methods that require complex opti-
cal setups or specialized components, they can be fabricated
using standard laboratory equipment [12]. Fork-shaped
gratings can also produce different optical vortex beams in
different diffraction orders, allowing for versatility in appli-
cations [13]. These advantages make fork-shaped gratings
a compelling choice for generating optical vortex beams in
various contexts.

Due to their unique features, the orbital angular momen-
tum beams have been used in various fields. As one of the
first applications, the orbital angular momentum carry-
ing Laguerre—Gaussian beams were used for rotation and
aligning of microscopic objects [14]. Some years later, the
first clear demonstration of the transfer of orbital angular
momentum of light to microscopic objects with optical
tweezers was taken place [15]. Apart from the classical
applications, the orbital angular momentum of light is also
favored from the quantum viewpoint. Spin angular momen-
tum is inherently a binary quantity and hence, only one bit
of information can be encoded in the photon carrying this
type of momentum. However, orbital angular momentum
has infinite degrees of freedom. Therefore, more alphabets
are available for writing in the orbital angular momen-
tum space. It is shown that the multidimensionality of the
orbital angular momentum space can be used for encoding
information in free space communications [2]. Detection,
high-resolution microscopy, quantum cryptography, radio
telecommunications, and optical communication based on
free space propagation and in optical fibers are other appli-
cations of angular momentum beams [5, 16, 17].

In this paper, the design, preparation, and characteriza-
tion of fork-shaped diffraction gratings with different topo-
logical charges have been reported. The gratings have been
prepared in a simple and reproducible way using computer-
generated holography and their groove distance has been
optimized. In the following, the functional capabilities of
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the prepared gratings have been investigated using suit-
able optical arrangements. By computer simulations, the
obtained experimental results in this work have also been
examined and tested.

Methods

Design of fork-shaped gratings by computer-
generated holography

With the advancement of computer technology and related
devices such as digital printers, the computer-generated
holography field has greatly progressed in the last decade
since with a computer, the hologram of any object can be
calculated, even if this object does not exist externally [18].
In this work, the computer holograms have been designed
by calculating and plotting the interference patterns result-
ing from the superposition of an inclined plane wave and
Laguerre—Gaussian waves. According to the holography
theory, if this computer hologram is made physically and is
illuminated by the primary plane wave beam, the Laguerre—
Gaussian waves will be reconstructed and exit from the
other face of the hologram. The general form of a plane
wave can be written as:

By - b7 3)

where ? is the wave vector and 7 is the position vec-
tor. Consider the wave vector of the inclined plane wave as
- kw? + kg? (to simplify the expression, the y compo-
nent is omitted), this plane wave can be written as follows:

El _ e—i(k?,,,;):-o—l,:;z) (4)

The Laguerre—Gaussian beam equation can also be written
in the following simple form:

E2<r7 67 Z) = E()eiw@iikzz (5)

where [ represents the topological charge of the optical
vortex and # = tg~'(y/xz) is the azimuthal angle. Using
Egs. (3) and (4), the superposition of these two waves can
be expressed mathematically as [19]:

H =1+ |E|* +2|Eo| cos (kya — 10) (6)

The component of the wave vector in the x direction can be
written as follows:

ky = — (N

Which A is the spatial periodicity of the formed interfer-
ence pattern, or the groove distance when it is used as a
diffraction grating. Using the relationy = rcosd, Eq. (5)
converts into the following form:

2
H =1+ |E|* + 2| E| cos (%rcos&—l@) 3)

Equation (6) represents an amplitude hologram. The con-
stant terms and coefficients can be omitted to be able to con-
vert it to the following simpler form:

H = cos (2%1" cosf — lc9> 9

In comparison with the amplitude holograms that modulate
the amplitude of the incident light, phase holograms modu-
late the phase of light and leave the amplitude unchanged.
Because the intensity of the light transmitted through the
hologram is proportional to the square of the modulus of the
amplitude and not the phase, the phase holograms are ide-
ally without absorption and the diffracted light from them
has higher intensities and hence is more applicable. To con-
vert the amplitude hologram (9) into a phase hologram, it is
enough to put the corresponding term in the argument of an
exponential function:

PH = efiH _ e/ﬁ(:os(/f)—%’r(‘oxﬁ) (]0)

This equation has been used to create the computer-gener-
ated holograms in this work. The topological charge or the
order of the generated Laguerre-Gaussian mode is deter-
mined by the integer parameter /. The groove distance is
also determined by the parameter A.

Image binarization and preparation of the gratings

Binary images are widely used in image processing and
almost most of the images must be converted to these types
of images before further processing. To convert a gray-level
image to a binary image, the intensity values between 0 and
256 for each pixel must be converted to values between 0
and 1. For this, a threshold limit should be defined, in such
a way that values less than this threshold limit are replaced
by zero, and values greater than it are replaced by one. If
f(z, y)represents the gray image matrix and ¢ (z, y)be its
equivalent binary image matrix, they are related as follows:

(11)

it f(z,y) > T
9(r.9) = 0if f(z,y) < T
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where T is the threshold limit. Therefore, using this math-
ematical relation for each pixel of a gray-level image, it
can be converted to a binary. There are different methods to
determine the threshold value. The best way to convert an
image into binary is to determine the value of the threshold
limit using the histogram of the image and its final opti-
mization by trial and error. In this work, by trial and error,
the threshold limit equal to 0.6 has been found and used as
the optimal limit for producing the same width of black and
white lines in the binary images of the fork-shaped gratings.

In this work, generation of computer-generated holo-
grams and their binarization is performed in the MATLAB
environment. To be able to print and transfer such digital
binary images on the surface of transparent sheets, they
must first be appropriately stored in the computer memory.
Digital images can be stored as vector or raster formats.
Raster images are composed of tiny squares called pixels.
These pixels collectively form detailed images, such as
photographs. When one zoom in on a raster image, sees
individual pixels, which can make the image appear grainy
or blurry. Indeed, Raster images lose quality when resized
because the pixel grid remains fixed. Vector images, on the
other hand, use mathematical equations to define shapes,
lines, and curves. There are no pixels in a vector file. The
beauty of vector images lies in their scalability. One can
resize, rescale, and reshape them infinitely without any loss
of quality. Their resolution remains consistent regardless of
size changes [20]. Since it is sometimes necessary to resize
and zoom the images during the transfer process, to avoid
the usual blurring of pixel images during such enlarge-
ments, the images have been saved in the vector form using
the export_fig code. This code has been developed to avoid
the common errors that sometimes occur during the stor-
ing of digital images in MATLAB [21]. This user-friendly
code allowed us to convert our grayscale images (which
are initially raster-based) into vector format. By exporting
the images as vectors, we ensured that their quality would
remain intact even when resized, which is crucial for our
high-resolution printing process. Finally, a commercial dig-
ital printer (model HP LaserJet Enterprise M806DN) was
used to transfer the binary vector images on the surface of
transparent sheets.

Simulation of Gaussian Beam diffraction from the
fork-shaped diffraction gratings

For generation of Laguerre—Gaussian beams, usually, a laser
beam with Gaussian spatial distribution is irradiated on the
surface of fork-shaped gratings. The Laguerre—Gaussian
beams are formed due to optical diffraction and become vis-
ible in the far field. Therefore, in simulating the generation
of Laguerre—Gaussian beams, the Fraunhofer diffraction of
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the incident Gaussian beam from the fork-shaped gratings
plays the leading role. As mentioned in section Design of
fork-shaped gratings by computer-generated holography,
the fork-shaped diffraction gratings are designed by mathe-
matically interfering an oblique plane wave with Laguerre—
Gaussian beams. Therefore, to simulate the diffraction from
the designed fork-shaped gratings, a plane wave must be
irradiated on the surface of these gratings. However, due
to the similarity of the far-field Gaussian beam wavefront
with the plane wave, the Gaussian beam can also be used for
this purpose. The mathematical calculation of this process
is done by multiplying the Gaussian beam wave function by
the fork-shaped diffraction function, Eq. (9), and perform-
ing the Fourier transform of the resulting product [22, 23]:
I=F (¥, x PH) (12)
where / indicates the intensity distribution in the viewing
plane, ¥, is the Gaussian beam wave function and PH is
the fork-shaped grating function. To simulate this process,
the fast Fourier transform algorithm is used in the MAT-
LAB environment. The Fourier transformation yields
the Fraunhofer diffraction orders, which will be different
depending on the magnitude of the topological charge of the
fork-shaped grating.

Measurement of the topological charges

As mentioned in section Design of fork-shaped gratings
by computer-generated holography, the superposition of a
Laguerre—Gaussian beam with a certain topological charge
with an oblique plane wave will lead to the formation of a
fork-shaped diffraction grating whose number of branches
is exactly equal to the magnitude of the topological charge.
Now, suppose that we have a Laguerre—Gaussian beam
whose topological charge, which is equal to the magni-
tude of the angular momentum of its photons, is unknown.
The interferometry technique is usually used for measur-
ing the magnitude of the unknown topological charge of
a Laguerre—Gaussian beam. By interfering this Laguerre—
Gaussian beam with a plane wave and by counting the
number of fork branches formed in the resulting interfer-
ence pattern, the magnitude of the topological charge of the
Laguerre—Gaussian beam can be easily determined. In this
work, the experimental interferometer setup, whose design
is shown in Fig. 1, is used to measure the magnitude of the
topological charge of the generated Laguerre-Gaussian
beams. In this setup, the two reference and object beams
are produced by irradiating the cubic beam splitter with a
He-Ne laser beam (Melles Griot 3225 H-PC, 632.8 nm, 10
mW). The first beam creates the diffraction pattern including
the Laguerre-Gaussian beams after hitting the fork-shaped
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Fig. 1 The Mach-Zehnder interferometric setup used to measure the

W
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Fig.2 The designed fork-shaped diffraction gratings with different val-
ues of topological charge equal to (a) 1, (b) 2, (¢) 3, and (d) 4

—_—

diffraction grating. The first order of diffraction is sepa-
rated from the pattern by a circular aperture and the other
orders are blocked. The separated diffraction order, i.c. the
Laguerre—Gaussian mode, reaches the surface of the CCD
(DMK23G445, The imaging source) after passing through
the second beam splitter (the combining beam splitter). The
reference beam also reaches the light-sensitive surface of
the CCD after two consecutive reflections from the flat mir-
rors and one more reflection from the combining beam split-
ter. The CCD records the interference pattern resulting from
the superposition of these two beams and transfers it to the
computer. By counting the number of fork branches in the
resulting interference pattern, the topological charge of the
Laguerre—Gaussian beam can be measured.

Results

Figure 2 shows the fork-shaped diffraction gratings
designed by computer-generated holography with topologi-
cal charges equal to 1 to 4. As can be verified, the number of
fork branches in each case is equal to the topological charge

N A
\VIN7

Fig. 3 The binary form of the fork-shaped diffraction gratings shown
in Fig. 2

of the Laguerre—Gaussian beam that is used in the design of
the hologram.

The shown images in Fig. 2 are gray-level images. There-
fore, the visible black and white fringes in these images are
not completely black and white at every point. This means
that, for example, the black fringes have values between 0
and 256, and when moving from a black fringe to its adja-
cent white fringe, the intensity of the image pixels varies
between these values. Printing such images by digital print-
ers that only have the states of zero and one (without ink and
with ink), will yield the gratings that the distance between
their lines is different from what is considered in their
design phase. For this reason, the gray-level images of the
gratings have been binarized using the method mentioned in
section Image binarization and preparation of the gratings.
Figure 3 shows the binary images of the fork-shaped diffrac-
tion gratings.

After preparation of the binary images and their vector-
ization, they have been transferred to the CorelDraw graph-
ics software environment. In this software, the dimensions
of the page were adjusted according to the dimensions of an
A4 paper and the imported images were placed next to each
other in a mosaic form. In this way, it is possible to obtain a
larger number of diffraction gratings with different topologi-
cal charges with a single print.

When a laser beam impinges normally on the surface of a
diffraction grating, the angular separation distance between
the different diffraction orders is inversely proportional to
the distance between the grating lines (or the groove dis-
tance). Therefore, if the groove distance is reduced, the
angular separation distance between the diffracted out-
put beams from the fork-shaped grating will increase. It
should be noted that in preparation of diffraction gratings,
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it is desirable to have the smallest groove distance, since
in applications that require the use of these gratings these
diffracted beams will not interfere with each other at short
distances from the gratings. However, the groove distance
cannot be reduced unlimitedly. In practice, the minimum
value of the groove distance is limited by the resolution of
the method used for preparation of the grating. The printer
used for preparation of the fork-shaped gratings was semi-
industrial and of high quality, capable of printing with a
real resolution of 1200 dpi. However, it should be noted
that this resolution depends on variables such as the type
of paper used for printing, the life of the cartridge, etc. In
this work to obtain the desired gratings with the smallest
groove distance, first, only the gratings with the topological
charge of one and with different groove distances from 150
micrometers to 250 micrometers with 25 micrometer steps
were prepared. After preparation, their surface have been
investigated by an optical microscope. In order to check the
conformity of the groove distances obtained after the prepa-
ration with the ones considered initially in the design phase
of the gratings, the groove distances have been measured
using the taken optical microscope images.

The measured groove distances and their comparison
with the ones considered in the design phase are presented
in Fig. 4. It should be kept in mind that in the ideal case, the
graph should have a linear shape corresponding to the bisec-
tor of the first quadrant of the Cartesian coordinate system.
Indeed, if the graph matches with the bisector of the first
quadrant, exactly the same distance that is considered in the
design phase is obtained in the experimental phase and after
the preparation of the gratings. However, in practice, the
lack of coordination between the printer software and the
software containing the graphic files results in the difference
between what is considered in the design phase and the ones
obtained in the preparation phase. To continue the work,
the smallest groove distance that yields a suitable resolu-
tion in the microscopic images should be selected. Keeping
this condition in mind, the optimal groove distance of 175
micrometers has been selected for the preparation of other
fork-shaped diffraction gratings.

After the determination of the optimal groove distance,
fork-shaped gratings with topological charges of 1 to 4 have
been prepared using this optimal distance. Figure 5 shows
the optical microscope images of the prepared fork-shaped
gratings.

To characterize the gratings, generation of Laguerre—
Gaussian beams after laser light diffraction from them has
been studied using the experimental setup shown in Fig. 6.
In this arrangement, a helium-neon laser with linear polar-
ization output is used. In order to avoid the occurrence of
thermal effects in the grating, a polarizer has been used to
adjust and decrease the incident laser power. The light is
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Fig. 4 The measured experimental groove distance for the gratings
made with the topological charge of one versus the groove distance
considered in their design phases

Fig. 5 Optical microscope images of fork-shaped gratings with the
groove distance of 175 micrometers and topological charges equal to
(@)1, (b)2,(c) 3, and (d) 4

directed by a flat mirror towards the grating, which is placed
inside the holder. The diffracted light from the grating is
imaged by a convex lens with a focal length of 7 cm on
the CCD camera. The images are recorded by the camera
and transferred to the computer in real-time. Figure 7 shows
the images of the recorded diffraction patterns of the fork-
shaped gratings. The central intense circular pattern in the
figures is the result of zero-order diffraction, which must
have the original Gaussian distribution of the used laser
beam. However, due to some overlap with its adjacent next
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Fig. 6 (a) Experimental setup
used for generation of Laguerre—
Gaussian beams. (b) Schematic
representation of the setup (P:
polarizer, M: flat mirror, and L:
imaging lens)

Fig. 7 Diffraction patterns recorded for fork-shaped gratings with
topological charges equal to (a) 1, (b) 2 and (¢) 3

orders of diffraction, the Gaussian distribution has been
somewhat changed.

Hollow circular intensity distributions indicate the pro-
duced first-order Laguerre—Gaussian modes, which are also
known as donut modes or optical vortices. The topological
charges of these modes have opposite signs. At the distance
where the digital camera was placed, the transverse distribu-
tions of the diffraction orders have slightly overlapped. The
diffraction orders appear as concentric rings with a dark spot
at the center. The number of rings corresponds to the topo-
logical charge of the grating. These patterns are symmetric
with respect to the center of the grating. The intensity of
the diffracted beams decreases with increasing diffraction
order. The diffraction efficiency of the gratings is approxi-
mately 29%. However, this efficiency decreases with higher
topological charges of the grating. These findings are con-
sistent with previous studies [5, 6], which also observed
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Fig. 8 The separated Laguerre—Gaussian beam from the diffraction
pattern of a fork-shaped grating with a topological charge equal to 1
by an adjustable aperture

a) b)

Fig.9 The interference patterns obtained for Laguerre-Gaussian beams
with topological charges equal to (a) 1, (b) 2, and (¢) 3

similar diffraction patterns and efficiencies for fork-shaped
gratings.

By removing the CCD from the optical setup in Fig. 6
and recording the diffraction patterns at far distances, more
than 3 m for the prepared gratings in this work, the first
diffraction order can be separated from the rest by an adjust-
able aperture (Fig. 8). The separated Laguerre-Gaussian
beams in this way can be used in applications that require
the use of this type of beams.

Reinspecting Fig. 7, it is obvious that is impossible to
determine the topological charge of the Laguerre-Gauss-
ian beams from their transverse intensity distributions. To
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measure the topological charge of generated Laguerre—
Gaussian beams, the interferometer arrangement shown in
Fig. 1 is used. Figure 9 shows the recorded interference pat-
terns for different Laguerre—-Gaussian beams. As mentioned
earlier, by counting the number of fork branches formed in
each pattern, the magnitude of the topological charge of its
corresponding Laguerre-Gaussian beam can be obtained.
Indeed, when a Laguerre—Gaussian beam with a topological
charge / interferes with a plane wave, the phase singularity
of the beam causes a dislocation in the interference fringes.
This dislocation manifests as a fork-shaped pattern, where
the number of branches in the fork is equal to |/|. The results
are consistent with the findings reported in similar studies
on the topic [1, 2].

In section Simulation of Gaussian beam diffraction from
the fork-shaped diffraction gratings, the method of simulat-
ing the diffraction of a Gaussian beam (or a plane wave)
from fork-shaped diffraction gratings has been described.
Figure 10 shows the effect of changing the groove distance
of the fork-shaped gratings in changing the obtainable
far-field diffraction patterns when the Gaussian beam hits
the surface. As can be verified, by decreasing the groove
distance, the separation distance between the different dif-
fraction orders increases. The zero-order diffraction in the
center of the images is actually the original Gaussian beam
that exits the grating without diffraction. Diffraction orders
of +1 and — 1 indicate the Laguerre—Gaussian beams with
topological charges of + 1 and — 1. Diffraction orders of +2
and —2 also indicate the Laguerre—Gaussian beams with
topological charges of +2 and —2. The important point is
that with increasing the diffraction order, its intensity gradu-
ally decreases so that in the present simulation the diffrac-
tion orders of +3 and —3 are invisible. In experimental
conditions, it is difficult to record the low-intensity diffrac-
tion orders and as can be verified in Fig. 7, diffraction orders
higher than + 1 and — 1 cannot be seen for the gratings made
in this work.

In Fig. 11, the effect of variation of the beam waist of the
irradiated Gaussian beam on the surface of a fork-shaped
grating in changing its far-field diffraction patterns is inves-
tigated. As can be seen in the figure, by reducing the waist
size, Laguerre—Gaussian beams with a larger cross-sectional
area can be obtained at a specified distance. This result can
be justified by considering the fact that for a Gaussian beam,
by reducing the waist size larger spot sizes will be obtained
upon propagation due to the natural diffraction.
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Fig. 10 Diffraction patterns of a
single-branch fork-shaped grating
for the groove distances of (a)

20 pm, (b) 50 um and (c¢) 100 pm

=3
N

Fig. 11 Diffraction patterns of a
single-branch fork-shaped grating
for the Gaussian beam waist sizes
of (a) 0.5 mm, (b) | mm and (c)
1.5 mm. The groove distance of
the grating is kept constant at

100 pm during the simulations

S
—

N —
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Conclusion

In this paper, a simple, low-cost, and reproducible method
for the preparation of fork-shaped diffraction gratings is pre-
sented. The generation of Laguerre—-Gaussian beams by the
prepared gratings has also been confirmed. Considering the
success of the presented simple method in the generation of
these types of beams, it can be more optimized to be able to

further reduce the groove distance of the prepared gratings
through employing other higher resolution printing meth-
ods. For example, optical lithography can be used to transfer
the designed gratings by the computer-generated hologra-
phy method on transparent plates or glasses. The generated
optimized Laguerre-Gaussian beams can be used in the
fields of optical telecommunications and free space opti-
cal communications. Moreover, other types of diffraction
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gratings can also be prepared by the presented method for
the generation of other structured optical beams, such as
Top Hat, Bessel-Gaussian, and Hermit-Gaussian beams.
The designed computer-generated holograms can be trans-
ferred to spatial light modulators to be able to generate these
structured light beams in real-time.
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