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Abstract

Let G be a finite p-group of exponent pe. The paper is devoted to

present a new bound for the exponent of the Schur multiplier of G,

when G is of class 3, 4 or 5 and e satisfies in some conditions.
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1. Introduction and Motivation

It has been conjectured that the exponent of the Schur multiplier of a fi-

nite p-group is a divisor of the exponent of the group itself. I.D.Macdonld,

J.W.Wamsley and others have constructed an example of a group of expo-

nent 4 whereas its Schur multiplier has exponent 8, namely, the conjecture

is not true in general. On the other hand M.R.Jones has shown in [3] that

the conjecture is true for p-groups of class 2 and emphasized that it is true

for some p-groups of class 3, but he did not characterize in which conditions

it may be true. He has also proved that if G is a p-group of class c ≥ 2 and

e(G) = pe , then e(M(G)) ≤ pe(c−1) (see [3, Corollary 2.7]), in which e(X)

denotes the exponent of a group X. A result of G.Ellis [2, Theorem B(i)]

shows that with these assumptions we have e(M(G)) ≤ p[c/2]e, where [c/2]

denotes the smallest integer n such that n ≥ c/2. Clearly the recent bound

sharpens the bound obtained by M.R.Jones.

In this paper we show that the conjecture is true for p-groups of class 4 and

5, when e is odd or p 6≡ −1 modulo 3 and 4 (Theorems 2.2, 2.5 and Remark
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2.8). It is also shown that for such e or p, we have; e(M(G)) ≤ pe (Corollaries

2.4, 2.7 and Remark 2.8). This sharpens (under some assumptions) the above

result of M.R.Jones [3] and also the results of J.Burns and G.Ellis [1] and

G.Ellis [2] for c=3, 4 and 5.

Notation. Let x and y be two elements of a group G, then [x, y], the

commutator of x and y, and xy denote the elements x−1y−1xy and y−1xy, re-

spectively. The commutator of higher weight is defined inductively as follows;

[x1, x2, . . . , xn−1, xn] = [[x1, x2, . . . , xn−1], xn] (n > 2) . The lower central se-

ries of a group G is denoted by γ1(G) = G ⊇ γ2(G) = G′ ⊇ γ3(G) ⊇ . . . ⊇

γn(G) ⊇ γn+1(G) ⊇ . . . , in which γn(G) = [G, n−1G] = [G, G, . . . , G], (G is

repeated n times), (n ≥ 2) ,Finally the minimume number of generators of

a group X is denoted by d(X). Other notations, where not explained, will

be standard.

Theorem 1.1. (Schur 1907) Let G be a finite group and 1 → R →

F → G → 1 be a free presentation for G. Then M(G) ∼= (R ∩ F ′)/[R,F ].

Definition 1.2. Let G be a group. An exact sequence 1 −→ A −→

G∗ −→ G −→ 1 (∗), where A ⊆ Z(G∗)∩G∗′ is called a stem-extension of G.

If furthermore A ∼= M(G), then (∗) is called a stem-cover of G and in this

case G∗ is said to be a covering group of G.
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It is known that such a G∗ always exists although need not be unique.

2. The Bound Obtained

In order to establish our main result, we need the following technical

lemma.

Lemma 2.1. Let X be a group and x, y ∈ X. Then for every positive

integer n, we have the following identity modulo γ7(X);

[x, yn] =
5∏

r=1

[x, ry](
n
r)

1∏
s=0

[x, y, [y, [x, y]], sy](
n

s+2) ,

in which [a, kb] is [a, b, b, . . . , b] (b is repeated k times).

Proof. The proof can be done using induction on n. 2

Theorem 2.2. Let G be a finite p-group (p > 3) of class 4 and e(G) = pe

in which e is an odd number. If G∗ is a covering group of G, then

e(G∗) | e(G) .

Proof. Suppose that G =< g1, g2, · · · , gd(G) > and f : G∗ → G is the

epimorphism satisfied in the definition of the covering group. Let ui ∈ G∗
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be such that f(ui) = gi for 1 ≤ i ≤ d(G). Since kerf ⊆ Φ(G∗), then

G∗ =< u1, u2, · · · , ud(G) >.

For each x1 ∈ G∗ we have [ui, uj, x1]
pe ∈ Z(G∗), (1 ≤ i, j ≤ d(G)),

therefore [[ui, uj, x1]
pe

, x2] = 1, for all x2 ∈ G∗. Now using Lemma 2.1, one

can easily check that

[ui, uj, x1, x2]
pe

= 1 ; ∀x1, x2 ∈ G∗. (1)

A similar argument shows that:

[ui, uj, x1, x2, x3]
pe

= 1 ; ∀x1, x2, x3 ∈ G∗. (2)

On the other hand for all x ∈ G∗ ; [ui, uj, x]p
e

= 1 , (1 ≤ i, j ≤ d(G)). By

applying Lemma 2.1, it is concluded that

[ui, uj, x]p
e

[ui, uj, x, x]p
e(pe−1)/2[ui, uj, x, x, x]p

e(pe−1)(pe−2)/6 = 1 . (3)

Clearly (pe − 1)/2 ∈ Z, hence [ui, uj, x, x]p
e(pe−1)/2 = 1, by (1). Also if

p ≡ 1 (mod 3), then 3|pe − 1 and so 6|pe − 1, and if p ≡ −1 (mod 3), then

3|pe − 2 (since e is odd)and hence 6|(pe − 1)(pe − 2). Therefore in any case

we have [ui, uj, x, x, x]p
e(pe−1)(pe−2)/6 = 1, by (2). Now (3) follows that

[ui, uj, x]p
e

= 1 , ∀x ∈ G∗. (4)

In the following we intend to prove that [ui, uj]
pe

= 1.
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The property of covering group implies that uj
pe ∈ Z(G∗) and so [ui, u

pe

j ] =

1. Therefore by Lemma 2.1 and the above comments it is enough to show

that

[ui, 4uj]
pe(pe−1)(pe−2)(pe−3)/24 = 1,

and by (2), we must illustrate that 24|(pe − 1)(pe − 2)(pe − 3).

(Note that :

[ui, uj, [uj, [ui, uj]]]
pe

= 1 ,

[ui, uj, [uj, [ui, uj]], uj] = 1 .)

We consider two cases :

Case 1. p ≡ 1 (mod 4). If p ≡ 1 (mod 3), then 12|pe − 1 and since pe − 3

is even, hence 24|(pe − 1)(pe − 3). If p ≡ −1 (mod 3), then 3|pe − 2. But

4|pe − 1 and 2|pe − 3. Whence we are done.

Case 2. p ≡ −1 (mod 4). It follows that 4|pe− 3. If p ≡ 1 (mod 3) , then

6|pe − 1 and so 24|(pe − 1)(pe − 3). Let p ≡ −1 (mod 3), then 3|pe − 2 and

also 2|pe− 1, 4|pe− 3. They therefore follow that 24|(pe− 1)(pe− 2)(pe− 3),

as required.

(Recall that p is odd and so p 6≡ 2 (mod 4)). 2

The argument which is done in the proof of Theorem 2.2, shows that in

some cases, it can be omitted the extra condition to be odd for e. In other

words we have;
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Corollary 2.3. Let G be a finite p-group (p > 3) of class 4 and p 6≡ −1

modulo 3 and 4. Suppose also that G∗ is a covering group of G, then

e(G∗) | e(G) . 2

As it is mentioned in the introduction, the following corollary sharpens

the bound of M.R.Jones [3, Corollary 2.7] and J.Burns and G.Ellis [1, Theo-

rem 6] and G.Ellis [2, Theorem B (i)] on the exponent of the Schur multiplier

of some prime-power groups.

Corollary 2.4. Let G be a finite p-group (p > 3) of class 4 and e(G) = pe.

Then

e(M(G)) ≤ pe ,

when one of the following conditions hold:

(i) e is an odd number.

(ii) p 6≡ −1 modulo 3 and 4.

(Note that ≤ can be taken to mean “divides”).

In the next theorem we show that our above results can be extended to

p-groups of one class more.
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Theorem 2.5. Let p > 5 be a prime and G be a finite p-group of class

5 with e(G) = pe, in which e is odd. If G∗ is a covering group of G, then

e(G∗) | e(G).

Proof. We keep all the notations used in the proof of Theorem 2.2. By a

similar argument which is applied in the proof of Theorem 2.2 and repeated

use of Lemma 2.1, one can prove that;

[ui, tuj]
pe

= 1 (2 ≤ t ≤ 5), (5)

[ui, uj, [uj, [ui, uj]]]
pe

= 1 , (6)

[ui, uj, [uj, [ui, uj]], uj]
pe

= 1 . (7)

(Note that in Theorem 2.2, γ6(G
∗) = 1 whereas our recent assumption

implies that γ7(G
∗) = 1.)

On the other hand, since [ui, u
pe

j ] = 1 , (1 ≤ i, j ≤ d(G)), then by Lemma

2.1 we deduce that;

5∏
r=1

[ui, ruj]
(pe

r )
1∏

s=0

[ui, uj, [uj, [ui, uj]], suj]
( pe

s+2) = 1 (8)

Since
(

pe

s+2

)
/pe ∈ Z , (s = 0, 1), it is immediately follows, from the

relations (6) and (7) that both terms of the second product is identity. We

have also shown in Theorem 2.2 that
(

pe

r

)
/pe ∈ Z for r = 2, 3 and 4. Whence

by (5) it is concluded that:

[ui, ruj]
(pe

r ) = 1 (2 ≤ r ≤ 4).
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We claim that
(

pe

5

)
/pe ∈ Z.

Case 1. p ≡ 1 (mod 5). Hence 5|pe− 1. We know from the previous that

24|(pe− 1)(pe− 2)(pe− 3). Consequently 120|(pe− 1)(pe− 2)(pe− 3)(pe− 4).

Case 2. p ≡ 2 (mod 5). If e ≡ 1 (mod 4), then we can write e = 4k + 1,

for some k ∈ Z. Hence by Fermat theorem pe ≡ p (mod 5) and therefore

5|pe − 2. Now similar to case 1 we deduce that
(

pe

5

)
/pe ∈ Z. But if e ≡ 3

(mod 4), then similar previous, it is concluded that 5|pe − 3 and so again

similar to case 1, the required assertion follows.

Case 3. p ≡ 3 (mod 5). Similar to case 2, e ≡ 1 (mod 4) implies that

5|pe − 3, and e ≡ 3 (mod 4) implies that 5|pe − 2. In each case we are in a

position like case 1.

Case 4. p ≡ 4 (mod 5). Then 5|pe − 4 and the assertion follows immedi-

ately.

Now clearly we have [ui, 5uj]
(pe

5 ) = 1, by (5). It therefore follows from

(8) that [ui, uj]
pe

= 1 , as required. 2

The above process shows that the condition of being odd for e can be

replaced with the other condition, as follows:

Corollary 2.6. Suppose that G is a finite p-group (p > 5) of class 5 and

p 6≡ −1 modulo 3 and 4. Then for every covering group G∗ of G, we have
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e(G∗) | e(G).

Proof. Let pe be the exponent of G. By the assumption 24|(pe− 1)(pe−

2)(pe − 3). Now if in addition to cases considered in the proof of the Theo-

rem 2.5, we pay attention to the two cases e ≡ 0 or 2 modulo 4 (when e is

even), then with a similar argument to Theorem 2.5, the required assertion

follows. 2

We are at last in a position to attain our other main objective, which is

similar to Corollry 2.4.

Corollary 2.7. If G is a finite p-group (p > 5) of class 5 and exponent

pe. Then

e(M(G)) ≤ pe ,

when one of the following conditions hold:

(i) e is an odd number.

(ii) p 6≡ −1 modulo 3 and 4. 2

Corollary 2.7 shows that the bounds p4e and p3e which are obtained for

the exponent of the Schur multiplier of p-groups of class 5 in [3] and [2] re-

spectively, can be reduced to pe for some p-groups.
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Remark 2.8. As we mentioned in the introduction, M.R.Jones has stated

in [3] that the bound pe can be obtained for the exponent of the Schur

multiplier of some p-groups of class 3. But it has not been exactly determined

for which groups it is true. By repeating the argument stated in the proof

of Theorem 2.2, one can easily check that e(M(G)) ≤ pe, for every p-group

(p > 3) of class 3, when e is an odd number.
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