e




ist International Conference on
Concrete & Development
April 30- May 2, 2001, Tehran, Iran

OPTIMUM DESIGN OF GRAVITY RETAINING WALLS

Jafar Bolouri Bazaz, Assistant professor, Civil Engineering Department, Mashhad University,
Mashhad, Iran

ABSTRCT

This paper is concerned with the optimization of gravity walls that retain a horizontal backfill
material. The aim is to demonstrate how the traditional design process can be imitated
mathematically to obtain an optimum design, which conforms to the requirements of the wall
stability and strength.

The total cost, which must be minimized, includes the cost of concrete, i.e. the volume of the
wall per unit length. The optimization problem generally consists of four design variables,
which may be reduced to three in special cases. The minimum cost problem is formulated as a
non-linear programming problem, which is linearised by geometric programming and then
solved, by simplex method using a computer package developed in Standard FORTRAN 77.
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1. Introduction

The aim of this paper is to obtain the minimum weight design of three types of gravity retaining
walls in conformity with the requirements of ACI Code. The minimum weight design of gravity
wall is such that all its appropriate functional states (stability, strength, soil bearing capacity, etc.)
are within allowable performance limits,

Gravity walls, generally, are trapezoidal shaped and their dimensions must provide adequate
stability against sliding and overturning. The soil pressure beneath the footing of wall, which can
be computed from principals of solid mechanies for combined bending and axial stresses, must
not exceed allowable bearing capacity of the soil. Moreover, in order the footing to be fully
effective in bearing, i.e, to prevent a tensile-state beneath the soil and footing of gravity walls,
the vertical resultant of the forces acting downward requires to fall within the middle third of the
footing width,

The minimum weight design problem of pravity walls is formulated as a non-linear problem
whose solution may be attempted by several techniques [1], namely sequential linear
programumning {SLP} and sequential convex programming {SCP).

The optimization problem for three common types of gravity retaining walls is formulated in the
next sections.

R=W+W R=W:+H;

Figure 1: Forces on a gravity wall. (2} Rankin earth pressure. (b)
Stability against sliding and overtuming,

2. General Considerations

The forces on a gravity wall with a horizontal backfill are as illustrated in Figure 1. The active
earth pressure is computed by the Rankin method [2]. In this Figure P, is the active earth

1
pressure, Pa=£ };.HJKa.

Sliding and Overturning Stability: The wall must be safe against sliding. That is, sufficient
friction F.=fR+c,.B must be developed between the base slab and the soil that a safety factor SF
or stability number N, is
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Fr
SF=N;=—21.5102
Fa
all terms are illustrated in Figure 1. Note that the total force R acting on base is
R=W_+W,
The coefficient of friction between the base and the soil may be taken as
J=tang o 0.67 tang
and the cohesion between the so1l and footing c,, as
c,=05cwldT5c

Where @ and ¢ are the anple of internal friction and cohesion of the soil respectively. A retaining
wall must also be stable about the center of rotation (the toe) against overtumning. We can
compute a stability number N, against overtuming as:

No= i 21502
EMo
Allowable Bearing Capacity: Stability of the base against a bearing-capacity failure is achieved by
using a suitable safety factor with the ultimate bearing pressure:
B o

SF
Where the safety factor, SF, is usually taken as 2.0 for granular soils and 3.0 for cohesive soils
(2).
The intensity of soil pressure is computed for a rigid footing with the width B and length L= unit.
The linear soil pressure distribution is:

Ha

Fis
q=-—{1i‘6£}£qa
A B

Where € is the eccentricity, i.e.

F  EMr-ZMo
6= —=—
2 Wi

Also the base width should be adjusted until e<B/6 for maximum efficiency of footing and
minimum difference in soil pressure beneath the footing.

The optimization technique can be used to obtain the best shape for the gravity retaining walls.
The design process involves the satisfaction of safety factor requirements against sliding,
overturning and allowable soil bearing capacity constraints. These requirements, however, must
be met so that the volume (i.e. the weight) is minimized.

Strictly speaking if the weight of the gravity wall is the only criterion of design then the following
equation should be taken as the objective function:

Minimize: Z=d,.L.¥; (1)

Where 4, and ¥ are the cross section area of the wall and the specific gravity of concrete
respectively. L is the length of the wall which is taken as unit, i.e. Z=1. The requirements of wall
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stability apainst overturning and stability, sccentricity limitation and finally allowable bearing
capacity may be formulated as the following constraints:

EMr

AL Overturning stability constraint (2)
Mo
Fr z g 1
— 2z N Sliding stability constraint (3
Fa
B EIMr-IMo & - ;
e e e M o o Eccentricity constraint )
2 Wi 6
R e : A
Geax=—(l+6—)< ga Soil stress constraint (5)
A L

The optimization problem for three commeon types of gravity walls is formulated in the following
sections.

Figure 2: A symmetric trapezoid shape gravity
wall

3. Formulation Procedure

Type I: Consider a symmetric trapezoid shape gravity wall shown in Figure 2, which retains a
horizontal embankment of height A. While the wall is constant in height other dimensions should
be adjusted so that all requirements are met and minimum amount of concrete is consumed per
unit length of the wall, i.e., the minimum cross section area of the wall is reached. Referring to
Figure 2, the minimum area of the wall is, therefore, the objective function of the problem and
must be minimized, so
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1
Minimize: Z= 5 BHl+a+faf (la)

To compute overturning stability it is necessary to evaluate resisting and overturning moments as
follow:

> 1 1
M, =B [~ . (1+espofr— 1 (1-0)(1-0.6+0)

1
M, g B Hy, (l-a).(1-B.05+8

And then the overturning constraint is

M B 6pll+a+B-af)+p(l-a)(1-FX5+5) 5
_— = o
M. HJ 4}{,.‘:&1

(2a)
Also the sliding stability can be obtained by dividing the resisting forces against sliding to the
driving forces. Consequently the sliding constraint is:

Fo 2B.co+ BH[Je(1+a+f-ap)+05)(l - a)l - §)).tagd 1
Py

Ns (3a)
H Y ko

The maximum eccentricity of the resultant vertical forces is e=B/6 which results in the soil-
pressure for the entire footing area to be effective with no soil tensile stresses beneath it. For this
case the eccentricity constraint is:

P e Ka— B (1 - a)(1- B2
L, A ke - BIp(-a)1-$)2+H) B G

C6B[2)e(l+a+B-af)+ K(l-aXi-F) 6

Finally, the maximum intensity of soil pressure beneath the footing must be equal or less than the
allowable soil pressure. The stress constraint is, therefore, as:

_ H’YiKa

g mx =

> +%H}’s{1+a+ﬁ-qﬁ}—H}’c{1-a}{l—ﬁ}£qa (Sa)
B

In addition the above constraints (2a), (3a), (42) and (5a) on overturning stability, sliding stability,
eccentricity limit and allowable soil pressure, the designer may wish to prescribe constraints on
the geometry of the gravity wall for practical purposes and prevention of stress concentration, e.g.
the vertical portion of the wall, & (see Figure 1), may be limited to a minimum value K. These
constraints may be written as

a=K, (6‘3}
B2 K (7a)
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For all three cross-sectional shapes gravity walls, described in this and the following sections, the
minimization problem consists of three design vanables, say B, ¢ and B, and up to six design
constraints which is a non-linear programming problem.

If p is assumed to be known, the problem consists of only two variables B and o and thus it is
possible to obtain the optimum solutien graphically. Figure 3 illustrates a typical solution for this
program. Any pair of values for B and o that satisfies constraints in equations (2a) to (7a) are
called feasible solutions. Among the various answers, however, we are interested in the one that
gives the minimum value for the objective function (Eq. 1a).
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Figure 3: Graphical solution of the non-lincar programming
problem.

It is worth pointing out that from amongst the various possible points, attention was drawn to
nodes X, Y and Z. This is because it can be proved that in any non-linear programming problem,
the optimum solution is always given by a node where two or more constraints intersect [2]. As
mentioned carlier the original non-linear programming can be solved by first linearising the non-
linear functions using various methods and then to be solved by simplex method. Numerical
example is discussed later.
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Figure 4: Second type of gravity wall

Type II: The second type of gravity wall considered here is shown in Figure 4. The volume of
this type wall whose face in contact with soil is vertical, is the same as the first type wall. The
objective function, therefore, can be written as:

Minimize: Z= % BH(I+arfaf) {1b)

Although the constraints for this type of gravity wall is not the same as the first type but they are
similar. Thus we can write:

2 2
B ¥ Bat(-a)2426-5 ),

(2b)
H: ¥ Ka
2B.ca+ B H Yo.(1+ @ + f - af).tagd > Ns (3b)
H .y Ka
2H Yo Ka+ B pea - 1)1+ 8-28
o :P’; + j{{n« i 'I',.|'3I ﬁ}EE (‘ﬂj}
6B ye(1+a+ f- af) ¢
3
R T e
B
& (6b)
s (7h)
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Type II: Shown in Figure 5 is the third type of gravity wall. The objective function for this type
wall is also similar to the previous ones, i.e.

1
Minimize: Z= = BH(I+a+faf) (lc)
The constraints for this type of the gravity walls can be driven in a similar way to the other types.
These constraints are as follow:

2 2
B 3}"5‘-!-{}’:*—}’:}{]-&](2-215-,3}ENG

B (20)
e Ys. Ka
2Beat+ BH[pe(l+a+f-aff)+)s(l -a-f+af).lag¢ > N (3c)
¥ H' Ka
2 2 :
o M pKa-B (e-y)(1-a)1+f-26) B (4c)
6B[ye(l+a+f-af)+p(l-a)i-p) 6
H' % Ka
g=—"——+ Hpp(a- 1= )+ Hyell + f.0 - a1 - f)] S ga (5¢)
B
az=K; (6
pz K> kfe)

4. Numerical Examples

In order to illustrate the application of the algorithm, the following example is discussed.

Consider the design of a gravity wall which is to retain an embankment of H=9 m. The wall is on
a soil of ¢=23° and ys=1.8 tm®. The backfill soil has
also the same properties as the base soil. The
allowable  bearing capacity of the soil is ¢,/~3.2
kg/em®. The stability requirements againsl overturmning
and sliding are respectively N,;=2 and N;=2. The
specific  gravity of concrete is yo=2.4 tm’. For
practical purposes o and B design variables are limited
to k=k=0.1

The objective
wall is identical and

function for all three types gravity
therefore can be written as:

Z=4.5B (1 +a+faf) (1)

the design variables are B, crand g
determined so that the feasible
minimum in volume, meets all

Minimize:

It can be seen that
which must be
design  which is

Figure 5: Third type of gravity wall
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strength and serviceability requirements. All constraints for three types gravity walls may be
obtained by substituting the known values in equations (2) to (3).

e A L ) G O g
]

o1 0.2 03 04 0.5 0.6 0y

Figure 6: Yariation of cross section of the gravity wall with .

The nature of the minimization problem is non-linear programming problem whose solution is
attempted by linearisation of the problem by geometric programming and then solving by simplex
method [4]. This has been done by developing a Code in standard FORTRAN 77 by the Author.

The problem, however, may be solved graphically (see Figure 3) if one of the design variables,
e.g. P, is assumed to be known. For this purpose different values are assigned to B and then the
two other design variables, & and B, have been evaluated so that the volume of the wall (per unit
length) is minimized for these particular values of & and B, Figure 6 illustrates the volume of the
wall (i.c. the objective function, Eq. 1) against p. Also summarized in Table 1 is the optimum
distribution of the design variables.

Table 1: The optimum values of design variables and minimum cross section area of the wall,

Wall Type B (m} i Fil Z fnr;')
I 4.359 0.1 0.1 23.342

1 4.495 0.116 0.1 24362

I 6.466 0.1 0.1 34.625
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It can be seen that, except wall type 11, the limits on « and [} control the design. It means that the

cross section area of the wall may even be reduced if it was practically possible to reduce o and p
further.

5. Conclusions

Based on the problem formulation and optimality criteria developed in Section 3 of this paper, a
numerical approach and a computer Code are developed to solve the minimization problem. The
cost to be minimized involves the concrete volume used in unit length of the gravity wall. The
design constraints includes limits on safety factor against overturning, sliding, eccentricity and
soil bearing capacity.

Following the actual construction practice of this type structure with regard to stress
concentration, proper limits are imposed on K; and K; Practical ‘examples are solved to
demonstrate the usefulness of the problem. It is shown that employing optimization approaches
leads to a design much more economical than a design obtained by traditional methods.

6. Notation

Cross section area of gravity retaining wall
Width of gravity retaining wall

Cohesion of soil

Resisting forces against sliding

Height of gravity retaining wall

Active earth pressure coefficient

Length of gravity retaining wall=unit
Resisting moment against overturning
Crverturning moment

Active earth pressure

Allowable soil pressure

Volume of retaining wall per unit length (objective function)
Angle of internal friction of scil

Specific gravity of concrete

Specific gravity of backfill soil

x

ST B TN

R e NI R E
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