تعيين بخشهاى مختلف نيتروزندار مواد خوراكى مورد استفاده نشخواركنندكان در استان خراسان

مكتسن فانش مسكران - نزهت حيلريان'
VA/Q/1 - تاريخ دريالك

קكيله0

 شُوينده خْثي ودر مكملهاى يووتثينى در بثشش محلول هر شوينده خنثى مشاهدهورذيد.

تــصسيح لازم بـراى خــا كســتر، هـروتثين و لِكـنـن مـىباثد)،

اماببخشبندى نيتروزن مـوبود در مـواد فـلـايـى (بــْصوص مـواد فلامي كبامى) منوز با سنوالاتـى مـواجـه استـ(4 و •1). اطـلامات ويزه در خصوص مهتويات نيتروزن مواد غلايفى به لهـاظ نـيترورن

OTOCNO

تــوسعه روشـهاى جــديد ارزشـيابى و بـرآورد احـتباجات غذايى نشُخواركندكان عمدتأ بر شـناختكــامل تر مـواد مـغذى و بخش بندى اجزاه Tنها المتوار كرديله است (ه، •1، اها و 18). مـر هـند كـه بـنخشهاى كـربوميدرانـها بـه لحـاظ وضعيت مـغمى در نشّخواركندكان تقريباً شناسايى و مشخخص شده اند (اين بخشس بندى عمدتً بر اساس الياف فير محلول در شوينده اسيلى (ديواره سلولى بدون ممىسلولز، (ADF)و شوينده خنتى (ديواره سلولى، NDF)با

تهيه شد. در مورد نمونههأى مربوط به كنجاله سـويا و „ـودرداهىى، ازمواد مـتداول مـورد اسـتفاده در اسـتان اسـتناده شــد. بـراى تـهـية
 كارخانجات قنداستان خراسان نمونه گيرى شده ونمونهاها به طور هم وزن بايكديگر منلوط و سه نمونه تهايى از هر يك انتخاب گُرديد تفاله سيب از كارخانه رضوى (آستأن قدس) تهيه شد. بـراي) يـودر گوشت از نمونههاى تولينى در داخل استان اسخان استفاده شد. شناسايى و توسعه روشهاى آزمايشُگاهى : برایى شناسايى روشهاي مورد استفاده در بخشبندى نـيتروزن درايـن هـرؤوهش از نمونههاى آلبومين، اوره، مخلوط اوره + كاه گندم و مخخلوط اوره +
 توسعه اين روشها عبارت بـودند از غـلظت مـواد شـيميايي، زمـان ماندگًارى نمونه ها و شرايط محيطى (عمدتاً دما). جگــونگیى تـاثير عوامل فوق برروشهاى يورد استفاده در قسمت نتايج و بحث مورد بررسى قراز خواهند گرفت. زوشهاى شيميايى مورد استفاده دزايسن هيزوهش به منظور تعيين بخشهاى نيتروزندار مـواء غـذايـى مـورد
 ليسترا' و همكاران (() تكميل و به كار گرفته شــد. ايـن روشـهـان عبارت بودند از:
الف) نيترورن غير پروتئينى (NPN) : ميزان ه/ ه گرم

 به مدت 1 ا ساعت در محيط آزمايشگاء گذازده شده تا اينكه نمونه
 مولار تانگستات سديم بر روى نهونه رينخته شد و برایى مــدت دوي
 مولار اسيد سولفوزيكك ميزان pH محلول به Y رسانيده شد و سِس
 سانتىگراد) گذارده شد. محلول به دست آمده با اسـتفاده از كـاغن صافى (شماره AFI) صاف گرديد و سِس ميزان نيتروزُن در رسوب باقى مانده با استفاده از روش كجئدال تعيين گرديد. ميزان NPN

قُ ندازد. زيرا كه مطالعات اخير نشـان مـىدهد كـه مـنابع مـختلف بروتئينى در صورت تغذيه متوازن؛ به لحاظ ميزان نتيروزن، دارأىى اثرأت دتفاوتى در خصوص هـضم و مـتابوليسم يـروتئين در مـايع
 يروتئن خالص دانشگاه كورنل (CNCPS) نيتروزن مواد غذايى بر
 يروتئينى و يزووتين حقيقى تقسيم مىشود (9 و • 1). در اين سيستم هرو تيّن حقيقى بر اساس درجـه مـحلوليتش بـه بــششهاى پـرو تئين حتیقى محلول در بافر (بـخش B1 B)، پـروتئين مـحلول در شـوينده
 بخش بندى مىگردد ((1)). بخشى از تركيبات نيتر وزن دار كـه در شوينده اسيدى محلول نيست (بخش C) نيز در اين روش مشخص. حواهد شد، و اين بخش به عنوان نيتروزن غير قابل هضم در دستگاه گُوارش نشخواركنندگان در هر يكك از سيستمهاى جديد ارزشيابيى مواد غذايى چذيرفته شده است ((1، 9 و • 1). براساس مطألعات انجام شده اين نوع بخش بندى تركيبات نيتروزندار مواد غذايى مىتواند 'سوالات موجود در ارتباط با مـ وزنى و مم زمانى نيتروزن و انرزى ئى،
 بـ منظوز دستابى به بهترين روش مناسب آزمايشگامى براى تـعيين
 أستان خراسان و عمحنين. تعيين كميّت هر يك از آنها انجام شد.

موأد ودوشها

تهيه نمونه : در ابتدا براساس وضعيت اقـليمى مـوجود در استان خراسان، اين الستان به سه زير بخشش شــمال، مـركز و جـنوب تقسيم گرديد. نمونههايى يونجه، جو، كاه گندم و كاه جو به تفكيك ائ از هر يكك انز اين مناطق تهيه شد (از هر مـنطقه • ا نــمونه بـراسـاس تفكيك بندى جزعتر مناطق اقليمى) و به طور هم وزن با يكديگر

 كنجاله تخخم ينبه از كارخانجات روغن كثـى داخل استان خـراسـان

كندم، مخلوط اوره +كاد كندم و مخلوط اوره + بودر يونجه استفاده

 آزمايشگاهمى مورد استفاده به عواملى مانند غـلظت مـواد شـيميايى

آغشته نمودن آنها با مواد شيميايى، توجه گرديد.

جهت شناسايى و توسعه روش تعيين نيتروزن غير يرو يروتينينى از نمونههاى يونجه و يونجه + اوره و يونجه ب

 يتيدى (با بيش از (

 F/F F

طريقتفاصلنيتروزنرسوبازكلنيتروزنمادهغذايى، بهدست آمد.

 دستگاه تكان دهنده در دماى معمولى آزمايشگاه تكاه
 گرديد و رسوب روى كاغذ صافى با آب مقطر دوبار تقطير سـرد

 NPN نيتروزن رسـوب از نـيتروزن غـير مـحلول در روش تـيني محاسبه شد.
ج) نيتروزن غير محلول در شوينده خنثى (NDIN) :با
 نيترورن موجود در رسوب روى كاغي محلول در شوينده خنتى مىيباشد. د) نيترورن غير محلول در شوينده اسيدى (ADIN) : با استفاده از روش تعيين فيبر غير محلول در شوينده اسيدى، رسوب
 جداگرديد. نيتروزن موجود در رسوب با با استفاده از روش كري كجلدال بيان گَر نيتروزن غير محلول در شوينده اسيدى است است كليه يافتهاى حاصل از اين آزمايش بالساري استفاده از نرم انزار مينى تب (Minitab) در قالب طرح آمارى كاملاً تصادفى باروش تجزيه و تحليل گرديدند.

نتايج وبحث

همانطور كه در بخش مواد و روشها نيز اشار، شــد، برايى
 موجود در اين آزمايشگاه) از نمونهانهاى آلبومين، اوره، يونجه، كاه
 مانند ثابت بودن pH محلول در زمان استفاده، درجهحرارت مناسب في (YV) فيزيولوزيكى ششكمبه را مورد توجه قرار دادهانن. نكته حائز الهميت دراين روش اين است كه نيتروزن غير هروتيتئى نيز همراه با بيروتئن محلول در بافر از نمونه جدا مى گردد، كه بدين منظور بايستى برایى تعيين پروتين حـقيقى مـحلول، مـيزان نـيتروزن غـير يـروتينيى را قبلاً محاسبه نمو2ه و سِس از آن كسر نمود. يكى ديگر از توجهاتى كه دراين روش بـايد مــد نـظر قـرار گـيرد، جـلوگيرى از فـعاليت انـي ميكروارگانيسمها در محلول است. بدين منظور ضرورى است كه از محلول آزايد سديم در زمان اخافه نمودن بافر به نمونه استفاده شوده در صوزت عدم استفاده از اين تركيب، بدليل مناسب بودن مسحيط بافرى، ميكروارگانيسمها در محلول رشد كرده و بااستفاده از نيتروزن
 شناسايى و توسعه روش تعيين يروتئن محلول مواردى از جمله زمان ماندگًارى نمونه در محلول بافرى، درجه حرارت محيط و و همحتينين حجم محلول مورد توجه قرار گرفت. نتايج حـاصل از آزمـايشات مختلف در نمونه آلبومين و يا مخلوط آلبومين و اوره نشان داد كه
 ميلى ليتر محلول بافرى و زمان حداقل ب ساعت بعد از اخافه نمودن
 دماى محيط آزمايشگاه مىباشد. از آنجائيكه براى تعيين نيتروزذ غير محلول در شويندههاى خنتى و اسيدى لازم است كه ميزان فيبر غير محلول در شوينده خنتى و اسيدى تعيين گردد(() ،) لذا با توجه به شناسايى كامل قبلى ايـن روش در اين آزمايشگاه، تالاش ديگرى براى توسعه روش مربوطه اتجام نگرفت.
غلظت بخشهاى مختلف نيتروزّن در عمدهترين علوفهها و مواد سيلويى مورد استفاده در استان خراسـان بـه صـورت گـرم در
 جداول ا و Y بشان داده شده است. نتايج حاصل از ارزيابيهاى انجام

تانگستات بازاء ه / ت گرم نمونه نيز توصيه نمى گردد. زيراكه باافزايش مـقدار اسسيد هـيجگًونه تـغيرى در مـيزان رسـوب دادن تـركيبات نتتروزن دار ملاحظه نگر ديد. يكى ديگر از موارد مهمى كه در روش

 يونجه و آلبومين (بادرصد مشخص هيرو تئين حقيقى) و يـا مــخلوط آنها بااوره استفاده شد. از آنجائيكه اسيد در محيط مـحلول داراراى بهترين عملكرد خواهد بود، لذا زمان خيساندن نمونهها را به صور ان . براى YF ساعت خيس مىشدند، در بعد از F ساعت بس از اخافه كردن آب مقطر، نمونه در يخخجال گذاشته مى شد. ضمناً دراين روش بعد از اضافه كردن اسيدتانعستات، نمونهها به مدت د ه / • سـاعت برروى 2ستگاه تكان دهنده ا قرار داده شدند و يا بدون تكان انكان دادن در محيط آزمايشگاه رها گرديده شد. نتايج ارزيابى نمونهمانى مورد آزمايش نشان داد كه بهترين روش برانى جداسازى پروتئين حقيقى

مىباشد.

در روش تعيين نيتروزن غير هيووتينى مىبايستى كـه بـراتى صاف كردن نمونهها، از خلاء در ظرن زيرين كاغذ صافى استفاده گردد. بدين منظور تاثير استفاده از پمب خلاء و يا جريان آب بر برایى خلاء سازى مورد توجه قرار گُ.فت. نتايج به دست آمده نشان دادكه استفاده از خلاء بسيار ملايم توسط يمب كاملاً بـهتر از استفاده از جريان آب براى خاء سازى مىباشد. علاوه براين زمان جداسازى رسوب از بخش محلول در صورت استفاده از يمب كو تاه مى گردد كه اين خود نيز حائز امميت است.
 هيروتئين محلول از نمونههاى آلبومين، اوره و يا مخلوط آلبومين + اوره استفاده گرديذ. يروتئين محلول به آن بخشت از تركيبات نيتروزن الن دار اطلاق مى گردد كه در شرايط اسيد وباز شكـمبه در مـحلولهانى بافرى حل مىگردد. تاكنون روشهاى متفاوتى برایى تعيين هـروتئين

[^0]مقايسه يونجه خشكك بـا سـيلوى يـونجه نشـان داد كـه در صورت سيلو كردن يونجه بخش قابل توجهى از هروتئين حقيقى آن به نيتروزن غير پروتئينى تبديل مىتردد (جدول ()) به نظر مىرسد كه در طى فرايند تخمير در يونجه سيلو شـده، بـخشى از پـروتئين يونجه به آهونياكك تبديل گردد(Y (Y). بدين لحاظ ضروري اسر است كه
 يروتئين حقيقى استفاده گردد(• Y). نكته حـائز اهـميت در مـقايسه يونجه خشكك با يونجه سيلو شده عدم تغيير در غلظت نيتروزن غير محلول در شوينده اسيدى است(جدول Y). عدم تغيير در اين بخش از نيتروزن، بيانگر اين واقعيت است كه ميكروارگَانيسمها در طـى فرآيند مواد سيلويى قادر به نجزيه اين بخش از نيتروزن مواد غذايى
 محلول در شوينده حنثى را تجزيه نمايند، به گونهاثى كه ميزان آن در

شده نشأ داد كه كاه گندم در مقايسه باكاه جو، دارايى مقادير بيشتر و قابل توجهترى از يروتئين حقيقى و پروتئين مـحلول در بـافر است (جدول (). نكته حائز اهميت در مقايسه اين دو كـاه بـا يكــديگر، تفاوت در مقادير نيتروزن غير محلول در شوينده اسيدى است. ميزان نيتروزن غير محلول در شويندهاسيدى دركاهكتندم
 كمتر از كاه گندم مىباشد (جدول ()). همانطور كه در جلدول نشان داده شده است، غلظت نيتروزن غير محلول در شوينده اسيدى به صورت گرم به ازایى گرم كل نيتروزّن دركاه گَندم به طور معنى
 توجه داشت كه افزايش غلظت نـيتروزن غـير مـحلول در شـوينده اســيدى مــوجب كـاهش تـابليتهضمنيتروزندردستگاهگـوارش نشخواركنندگان مىگردد (Y) Y Y Y Y). بدين لحاظ بهنظر مىرسد كه
 بازدهى نيتروزن بهتر از كاد جو است.

جدول ا- بخشهاى متفاوت نيتروزن در علوفهها و مواد سيلويى مورد استفاده در استان خراسان (گرم نيتروزن بازاء كيلوگرم ماده خشك)

SEM	***					بخشهاى نيترورن دار
	سيلازٌ	سيلارً يونجه	يونجه	كاه جو	كاه گندم	
- /rr	9/ro	ra/af	r8/A9	F/9Y	V/Vs	CP
- /ff	f/ly	ls/IV	T/DS	r/f	1/f9	NPN
- /ra	Q/IA	Q/VY	re/rur	r/09	giry	TP
- $/ T$.	f/re	sIDV	rr/as	r/99	D/lv	BIP
- $/ \mathrm{r}$.	01.9	19/ry	F/Vr	-19\%	r/fr	BSP
- /r.	r/Mr	1/9.	r $/$ 。	1/79	ris.	NDIN
- /ry	r/ir	f/9\%	$19 / 1$.	r/v.	r/av	BIP-NDIN
-119	- /AT	-1.	l/rr	- /ft	1/f.	NDIN-ADIN
.1.8	$1 / 1$	$1 / 11$	I/VA	- / AV	$1 / \mathrm{r}$.	ADIN

 CP =
NPN = نيترورن غير بروتئينى
TP = يروتئين حقيقى
BIP = شروتئين غير محلول در بافر
BSP = يروتئين محلول در بافر بافر
NDIN = نيترورن غير محلول در شوينده خنتى در دينى
BIP-NDIN = نيتروثن غير محلول در بافر اما محلول در شوينده خنتى دينى
NDIN-ADIN = نيترورز محلول در شوينده اسيدى دينى
ADIN = نيترورن غير محلول در شوينده اسيدى

جدول r- بخشهاى متفاوت نيتروزن در علونها و مواد سيلويى مورد استفاده در استان خراسان (گرم نيتروزن بازاء گرم كل نيتورثن)

SEM	مواد خوراكى*					بخشهاى نيتروزن دار
	سيلاز ذرت	سيلاز يونجه	يونجه	كاه جو	كاه كُندم	
$\cdot i \cdot \Delta$.	- ifys	- 18 Hr	.1.90	- Ifar	- 1197	NPN
.1.1V	- IDSF	- MVY	$\cdot 19 \cdot \gamma$	- \|orl	-1A.Y	P
-	- /f00	- K¢.	- /atf	- in.r	-1985	BIP
.	- 10 ff	- NFEA	- 11 VO	-190	- Mir	BSP
. ${ }^{\text {r }}$	- ITry	-1	-1110	-1r09	-	NDIN
--r.	- Mry					BIP-NDIN
-1. rV	- /rys	- 1191	- VI .	-lofr	- /ry	BP-NDIN
.1.19	-1.AV	-	-149.	. 1. Af	- ハ入•	NDIN-ADIN
$\cdot 1 \cdot . \mathrm{V}$	- Mf.	.1.99	.1.94	- /1Y0	- $/ \ \Delta F$	ADIN

NPN = نيتروزن غير یروتئيني
TP = يروتئين حقيقى
يروتئين غير محلول در بافر = BIP
BSP = يروتئين محلول در بافر
NDIN = نيتروثن غير محلول در شوينده خنتثى
BIP-NDIN = نيترزثن غير محلول در بافر اما محلول در شوينده خنتث
NDIN-ADIN = نيتروزن محلول در شوينده أسيدى
ADIN = نيتروزّن غير محلول در شوينده اسيدى

 معنىدار نشان داد (جدول

 است(ا

افزايشغلظتنيتروزنمربوطبهيروتينينمحلولدربافريونجهسيلوشده،

 بدلـ / / / FF بدليل اينكه اين گیاه به لحاظ انر انر

تفاله سيب درختى يكى از يس مـاندهماى كـارخانجأتا
 متعدد عصار

 شوينده اسيدى در تفاله سيب درختى، وجـود غـلظت بـالاى تـالـانـن دراين ماده خوراكى است.

 طور دقيق به اين نكته توجه نمود.

 گستردهاىاستفاده مى گردند، لذا توجه خاص به وضعيت نيتروزنذردر

فراهم مى گردد. غلظت نيتروزن غير محلول در شوينده اسيدى ذرت

 شده است. مهمترين موادى كه در اين دسته از خور خاكها مور مورد توجه

 قابل توجه در اين مواد خوراكى، غلظت بيشتر و و معنى دار بار برو
 . ها /
 بالاى پروتين غير محلول در بافر آن است. توجه به بخشهاى نيتروزن دار تـفاله خشك

 نيتروزن دراين ماده خوراكى تقريباً معادل جو و ذرت برت بود (جدول

 احتمالاً بالا بودن غلظت نيتروزن غير ميلوري

 درشكمبه استفاده گردد (7 و ^).

جدول r－بخشهاى متفاوت نيتروزن دار مواد متراكم انرزى زاى مورد استفاده در استان خراسان（گرم نيتروزن بازاء كيلوگرم ماده خشك）

SEM	مواد خوراكى					بخشهاى نيتروثن دار	
	ماس	ترخاله سيب	تنالد خشك جيندرقند	دانه ذرت	دانه جو		
．$/ 1$	r．／As	GNT	$19 / 4$.	1r／ar	10／10	CP	
．／r9	r．irr	－is．	9101	1199	r／ar	NPN	
．$/$ ．	．／f．	9π.	$9 / 4$.	11／48	IT／r	TP	
－ハV	$1 / \mathrm{ff}$	v／l．	9／F4	$1 . / 8 r$	9／1s	BIP	
－ハ＾	19／41	－．	919.	r／f．	dre．	BSP	
．／48	－	F／11	NFTr	$1 / 89$	inf	NDIN	
．$/ 4$	＿	r／99	． 199	$9 . \%$	NII	BIP－NDIN	
－／r	＿	．／．	r／9A	\％	．／fv	NDIN－ADIN	
1.9	＿	fior	4／4s	$1 / 94$	I／ry	ADIN	
．							
CP＝							
NPN＝نيترون							
TP＝برونيّ							
BSP＝بروتثين محلول در بافر							
	رحلول در شوري	نيتّنروثن					ADIN＝نتتروثن غير محلول در شوينده اسيدى

جدول \＆－بخشهاى متفاوت نيتروزن دار مواد متراكم انرزى زای مورد استفاده در استان خراسان（گرم نيترورَن بازاء گرم كل نيترورذن）

SEM	مواد خوراكى＊＊					بخشهاى نيترورن
	هلاس	تقاله سيب درختى	تفاله خشك جغندرقند	دانه ذرت	دانه جو	
－i．18	．1980	－Mr．	－17．r	－／1r9	－ 1197	NPN
．1．1F	．1．19	． 19 rr	－1090	－／AV．	－10．V	TP
．1．18	．1．99	$11 . \Delta 8$	－10YA	－Mar	－180．	BISP
11.9	－19r．	－	－／frur	－ハ へ 人	－irfa	BSP
－1．．r	－	－1811	－1017	－ 1110	． 1.97	NDIN
．1．19	－	－／fF．	－1．9．	． 1891	－／ara	BIP－NDIN
．1．10	－	－	－／rff	－	－1．r｜	NDIN－ADIN
\cdots	－	－191－	－／tvr	． 1149	． $1 \cdot 1.15$	ADIN

NPN＝نيترورن غير پروتئيني（هار
TP＝يروتئين حقيقى
BIP＝يروتئين غير محلول در بافر
BSP＝يروتينين محلول در بافر
NDIN＝نيتروزن غير محلول در شوينده خنتثى
BIP－NDIN＝نيترورن غير محلول در بافر اما محلول در شوينده خنتثى
NDIN－ADIN＝نيتروزن محلول در شوينده اسيدي
ADIN＝نيترورن غير محلول در شوينده اسيدي

مطابقت دارد(1) (I).
سبوس از منابع خوراكى است كه به طور گسترده در خوراكك نشخواركنندگان، بخصوص گاوهأى شيرى، در كل كشور اسـتفاده مى گردد. براساس ارزيابيهاى انجام شده دراين ثزوهش مشخر
 متمركز شده است (جدول 7). شايد يكى از دلايل اصلى آن اسيدهاى آمينه آزاد دراين منبع خوراكى باشد (9 ا). علاوه برايـن

 محسوب مى گردند كه بدين دليل به ميزان بسيار ناهيزى در خوراكي
 نشان داد كه استفاده از اين منابع خوراكى، به دليل مطلوب نــو
 موجب افزايش كمى و كيفى توليد مىگرددد(Y). ارزيـابيهاى انــجام
 در يودرگوشت حدود 7 \& / • گرم نيتروزن بازاه كل نيتروزن است. اين بخش از نيتروزن در يودر مـاهى كـمتر از هـودر گـوشت است
 جيرههاى مناسب قابل توجه مىباشد. شايد يكـى از دلايـل اصـلى بالا بـودن ايـن بـخش از نـيتروزن درايـن مـنابع خـوراكــى وجـوـي

مىباشد(9) 19).
در خاتمه، براساس ارزيابيهاى انجام گرفته در اين پزوهش،
مى توان نكات ذيل را بيان داشت. 1 - يراكنش نيتروزن در بخشهای مختلف منابع خـوراكـى

يكسان نبوده و براساس نوع منبع خوراكى متفاوت مىىاشدل
 وضعيت تجزيه شكمبهاى و بازدهى يروتتين منابع خوراكى، بايد كه براى تنظيم جيرههأى مناسب حتماً به آنها توجه گردد.
 در شكمبه بسيار سريع است،لذا بايستى ضمن تـعيين مـقدار آن در هريكت از منابع خوراكى و جيره، تصميم مناسب براى مكمل سازى إى

اين مواد مىتواند بازدهى خوراكك را افزايش دهـد. شـايد يكـي از دلايل اصلى اختلاف بين مشاهدات حاهرل از هزووهشها بیى كه در آنها منابع پروتئينى براسـاس مـيزان پـروتئين خـام و يــا تـجزيهيه يـذيرى جايگزين يكديگر شدهاند، شدم توجه به تفاوت در بخشهاى نيتزون در اين منابع خوراكى باشد(1). دراين ثئوهش سبوس نيز به لـحاظ اينكه دارایى مقدأر قابل توجهى نيتروزن است، دراين گـروه مـورد ارزيابى قراز مىگيرد.
مقايسه كنجاله سويا با كنجاله تخم ينبه نشان مىدهـد كه مي ميزان نيتروزْ كنجاله سويا تقريباً Y برابر كنجاله تخم رينبه است. البته در برخى از منابع ميزان نيتروزن كنجاله تخم هنبه بيشتر از مقدار به دست آمده دراين بزوهش تزارش شده است (1). تجربيات نـويسندگان اين گزارش نشان مىدهد كه كنجالههاى تخم پنبه توليدى در استان خراسان هموازه دالرايى مقادير بسيار هايِن تر نيتروزّن نسبت به مقادير

 كنجاله سويا و كنجاله تخم پنبه). غلظت نيتر وزن غير پـروتئينى در كنجاله سويا تقريباً دو براير كنجالنه تخم ینبه است و اختاله

 يكى ازدلايل اصلى پايين بودن پتانسيل تجزيه كنجاله تخم پينبه نسبت بهكنجاله سويا ((1) وجود غلظت بالاى اين بخش الز بي مواد نيتروزندار در كنجاله تخم پنبه است. نكته قابل توجه در خصوص مقايسه اين دو منبع بيوتئينى غلظت قابل توجه نيتروزلن غـير مـحلول در شـوينده
 درحدود ها درصد از كل نيتروزن در كنجاله تخم پنبه را تشكيل
 به صورت دست نخورده دستگاه گوارش حيوان را تركى كـرده و علاوه براين موجب كاهش قابليت هضـم كل نيترورّن خوراكك نـيز مى شوينده اسيدى كنجاله سويا حدود V =رصد بود

جدول ه－بخشهاى متفاوت نيتروزندار مكملهاى پروتئينى مورد استفاده در استان خراسان（گرم نيتروزذ بازاء كيلوگرم ماده خشك）

SEM	مواد خوراكى＊＊					بخشهاى نيتروزن دار
	«وبردماهى	يودر كوشت	سبوس	كنجالهتخم رينبه	كنجالدسويا	
－140	1．Y／FF	gr／af	rive	rNas	vrig．	CP
1／rr	QNIS	DG／DF	NTY	－199	D／A．	NPN
1／r．	F9／1」	rr／r．	1r／ff	ry／qs	gV／A）	TP
－19r	－	－	lidar	rV／9）	98199	BISP
－19A	－	－	$9 / 19$	$1 / 79$	vist	BSP
－ 11	－	－	r／qs	V／．r	$9 / \mathrm{T}$ ．	NDIN
－／vr	－	－	$9 / 11$	r．1A9	Q9／VA	BIP－NDIN
－／＾	－	－	r／MA	r／qA	fisd	NDIN－ADIN
－ハ1	－	－	－／fy	five	$1 / \Delta \Delta$	ADIN

CP＝هروتئين خام
NPN＝نيتروثن غير يروتئينى
TP＝
BIP＝بروتئين غير محلول در بافر

NDIN＝نيترورث غير محلول در شوينده خنتى دينى
BIP－NDIN＝نيترورّن غير محلول در بافر اما محلون در شوينده خنتى
NDIN－ADIN＝نيترورن محلول در شوينده اسيدي
ADIN＝نيتروثن غير محلول در شوينده اسيدي

جدول צ－بخشهاى متفاوت نيتروزن دار مكملهاى پروتئينى مورد استفاده در استان خراسان（ترم نيتروزن بازاء گرم كل نيتروزن）

SEM	مواد خوراكى＊					بخشهاى نيتروزن دار
	پودرماهی	یودر گوشت	سبوس	كنجالهتخمينبه	كنجالهسويا	
$\cdot 1 \cdot \Delta 1$	－ 10 FI	－18F．	－Mat	－1．Mf	$\cdot 1 \cdot \mathrm{VA}$	NPN
． 1.41	－If $\Delta \lambda$	－｜rg｜	－1818	－ 197	9／r）	TP
．1．45	－	－	－IDFO	－／98F	－1199	BISP
．1．19	－	－	－／fat	－1．FF	－／1．r	BSP
．1．．r	－	－	－MTY	－MFF	．1．AF	NDIN
．1．45	－	－	－／fir	－MrI	－／AIT	BIP－NDIN
\cdots	－	－	－ノ1．．	．1．9r	．1．9r	NDIN－ADIN
$\ldots 1$	－	－	.1 .51	－ 1149	．1．51	ADIN

NPN＝نيتروثن غير يروتنينى
TP＝يروتئين حقيقى
BIP＝يروتئين غير محلول در بافر
BSP＝يروتئين محلول در بافر
NDIN＝نيتروزن غير هحلول در شوينده خنتي

NDIN－ADIN＝نيترورن محلول در شوينده اسيدى
ADIN＝نيتروثن غير محلرل در شوينده اسيدى

هزينه اين بـزوهش از مـسل اعـتبارات مـعاونت بـروهشى دانشكاه فردوسى مشـهد تأمين شـده است، بـدينوسيله از شـوراى يزوهشى دانشكده كثاورزى دانشگـاه نـردوسى مشـهـد تـدردانـى مىیردد.
آن با منابع انرزىى زا را اتخاذ نود.

1- Agricultural and Food Research Council (AFRC). 1992. Technical committee on response to nutrients, report No 9. Nutritive requirements of ruminants animal: Protein. Nutr. Abstr. Rev., (SeriesB), 62. (12), 787-835, CAB internation Walling ford, Oxon.
2- Baldwin, B.L., W.Y. Kim. 1994. Lactation In: Forbes, J.M., J. France, Quantative Aspects of Ruminant Digestion and Metabolism. CAB international.
3- Bergen. W.C., E.H. Cash and H.E. Henderson. 1974. Changes in nitrogenous compounds of the whole corn plant during ensiling and subsequent effect of dry matter intake by sheep. J. Anim. Sci. 39:629-637.
4- Broderick, C.A., and R.J. Wallace. 1988. Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluorescamine reactive peptides in the sheep rumen. J. Anim. Sci. 66:2233-2238.
5- Broderick, G.A., S.M. Abrams, C.A. Rotz. 1992. Effect of heat - treating alfalfa hay on its utilization by lactating diary cows. J. Dairy. Sci. 75:2400-2776.
6- Cromwell, G.L., K.L. Herkeiman and T.S. Stahly. 1993. Physical, chemical, and nutritional characteristics of distillers dried grains with solubles for chicks and pigs.I. Anim. Sci. 71: 679-868.
7- Crooker, B.A., G.J. Sniffen, W.H. Hoover and L.L. Johnson. 1978. Solvents for soluble nitrogen measurements in feedstuffs. J. Dairy. Sci., 61:437-447.
8-Depeters, E.I. and S.J. Tylor. 1985. Effects of feeding corn or barley on composition of milk and diet digestibility. J. Dairy. Sci. 68: 2027-2032.
9- Fox, D.G., G.J. Suiffen, J.D. O'Connor, J.B. Russel, and P.J. Van. Soest. 1992. A Net Carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. J. Anim. Sci. 70:3578-3596.
10- Fox, D. G.,M.C. Barry, R.E. Pitt, D.K. Roseler and W.C. Stone. 1995. Application of the Cornell net carbohydrate and protein model for cattle consuming forages. J. Anim. Sci. 73:267-277.
11-Goh-Y.G and B.J. Hong. 1991. Effect of heat and formaldehyde treatment on the protein degradability of soybean meal by in situ [method]. Korean J. dairy. Sci. 13:31-40.
12- Greenberg, N. A. and W.P. Shipe. 1979. Comparison of the abilities of trichloroacetic, picric, sulfosalicylic, and tungsic acids to procipitate protein hydrolysates and proteins. J. Food Sci. 44: 735-737.
13- Keyserlingk, M. A. G., M.L. Swift, T. Puchala and J.A. Shelford. 1996. Degradability characteristics of dry matter and crude protein of forages in ruminants. Anim. Feed Sci. Technol. 57:291-311.
14- Krishnamoorthy, U., T.V. Muscato., T. V., Sniffen, C. J. and P.J. Van Soest. 1982. Nitrogen fractions in selected feedstuffs. J. Dairy. Sci. 65:217-255.
15-Licitra, G. and T.M. Hernandezb, P.J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57: 347-358.
16- Marais, J. P. and T.K. Evenwell. 1983. The Use of trichloroacetic acid as precipitant for the determination of "true protein" in animal feeds. South African. J. Anim. Sci., 13:138-139.
17- Marais, J. P. and T.K. Evenwell. 1983. The use of trichloroacetic acid as precipitant for the determination of true protein. Anim. Feed

Sci. Technol. 9:19-28.

18- Mascarenhas - Ferreira, A., J. Kerstens and C.H. Gast. 1983. The study of several modifications of the neutral - detergent fibre procedure. Anim. Feed Sci. Technol. 9:19-28.

19- McDonald, P., R.A. Edwards and J.F.D. Greenhalgh. 1995. Animalnutrition, (5th Edition), John Wiley \& Sons, Inc., USA.

- Mckersie, B. D. 1985. Effect of pH on proteolysis in ensiled legume forage. J. Agron. 77:81.

21-Merchen, N. R. and L. D. Satter. 1983. Changes in nitrogenous compounds and sites of digestion of alfalfa harvested at different moisture levels. J. Dairy. Sci. 66:789-801.
22- Mesgaran, M. D. and D. S. Parker. 1996. Influence of dipeptide structure on hydrolysis by rumen fluid and blood of sheep. Anim. Sci. 62.

23- Mesgaran, M. D. and D. S. Parker. 1998. The effect of dietary protein and energy sources on microbials nitrogen entering duodenum and urinary excretion of purine derivatives. The 8th world Conference on Animal production, June 28- July 4.
24- Mesgaran, M. D. and D. S. Parker. 1995. The effect of dietary protein and energy sources on ruminal accumulation of low molecular weight peptides in Sheep. Proceeding of British Society of Aninmal Science.
25- Muck., R.E. 1987. Dry matter level effects on alfalfa silage quality. I. Nitrogen Transformations. Transaction of the ASAE. 30:7:14.
26- Nakamaura, T., T. J. Klopfenstein and RA. Britton. 1994. Evalution of acid detergent insoluble nitrogen as an indicator of protein quality in nonforage proteins. J. Anim. Sci. 72:1043-1048.

27- National Research Council. 1989. Nutrient requirements of dairy cattle. 6th rev.ed. Natl. Acad. Science., Washington, DC.
28- Russell, J.R., S. J. Yoder and S.J. Marley. 1990. The effects of bale density, type of binding and storage surface on the chemical composition, nutrient recovery and digestibility of large round hay bales. Anim. feed Sci. Technol. 29:131-145.
29-Russell, J.R., N. A. Irlbeck, A. R. Hallauer and D. R. Buxlon. 1992. Nutritive value and ensiling characteristic of maize herbage as influenced by agronomic factors. Anim. Feed. Sci. Technol. 38:11-24.
30-Siddons, R. C., D. E. Beever and A. G. Kaiser. 1982. Evaluation of the effect of formic acid and level of formaldehyde application before ensilling on silage protein degradability. J. Sci. Feed. Agric. 33:609.

31- Waldo, D. R. and H. K. Goering. 1979. Insolubility of proteins in ruminant feed by four methods. J. Anim. Sci., 49:1560-1568.
32- Waters, G. J. and M. A. Kitcherside and A. J. F. Webster. 1992. Problems associated with estimating the digestibility of undegraded dietary nitrogen from acid - detergent insoluble nitrogen. Anim. Feed Sci. Technol. 39: 279-291.
33- Woht, J. E., C. J. Sniffen and W. H. Hoover. 1973. Measurement of protein solubility in common feedstuffs. J. Dairy. Sci., 56:1052-1057.

The nitrogen fractionation of Khorassan ruminant feeds

M. D. Mesgaran - N. Heydarian ${ }^{1}$

Abstract

Procedures for nitrogen fractionation of Khorassan ruminant feeds have been developed and examined. Nitrogen fractions were non protein nitrogen (NPN), true protein (TP), true soluble protein (BSP), insoluble protein (BIP), neurtarl detergent insoluble nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN). Feeds were wheat and barley straws, alfalfa hay and silage, corn silage, barley and corn grains, sugar beet pulp, apple pulp, molasses, soybean and cottonseed meals, wheat bran, meat and bone meal and fishmeal which divided in 3 groups of forages and silages, energy feeds and protein feeds. The procedures used in this study have been examined for reproducibility, so this paper recommends the reliable procedures. The nitrogen fraction concentrations was notably different in each group. The highest concentration of nitrogen in forages and silages was observed in neutral and acid soluble fractions, while in energy feeds was in neutral soluble and insoluble fractions and in protein feeds was in neutral fraction.

[^1]
[^0]: 1. Shaker
[^1]: 1. Contribution from College of Agriculture, Ferdowsi University of Mashhad
