
J. Dairy Sci. 89:3087–3095
© American Dairy Science Association, 2006.

Evaluation of Models to Describe Ruminal Degradation Kinetics
from In Situ Ruminal Incubation of Whole Soybeans

M. H. Fathi Nasri,* M. Danesh Mesgaran,* J. France,† J. P. Cant,† and E. Kebreab†1

*Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran 91775-1163
†Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada

ABSTRACT

Different mathematical models were evaluated as
candidates to describe ruminal dry matter (DM) and
crude protein (CP) degradation kinetics of raw and
roasted whole soybeans from data obtained using the in
situ polyester bag technique. Three models were used:
segmented with up to 3 straight lines (model I), negative
exponential (model II), and rational function or inverse
polynomial (linear over linear; model III). A fourth, a
generalized sigmoidal model, was also considered but
the data did not exhibit sigmoidicity, so it was dropped
from the analysis. Lagged and nonlagged versions of
each model were fitted to the DM and CP disappearance
curves of 6 different feeds (2 cultivars of raw or differ-
ently heat-processed whole soybean). The comparison
between lagged and nonlagged versions of each model,
based on statistical and behavior characteristics,
showed for all models that the discrete lag parameter
did not significantly improve the fit to ruminal DM
and CP disappearance curves. The comparison between
models (using nonlagged equations) showed that mod-
els I and II gave better goodness-of-fit than model III.
Based on biological characteristics, models II and III
underestimated the undegradable DM and CP frac-
tions, but there was no significant difference between
models for extent of degradation.
Key words: mathematical model, ruminal degradabil-
ity, in situ incubation, degradation kinetics

INTRODUCTION

In vivo and in situ incubation of feeds in the rumen
serves as a basic procedure in many feed evaluation
systems and the formulation of hypotheses concerning
underlying biological concepts has led to development of
different mathematical models describing the resultant
time course disappearance curves of feed fractions. The
use of models allows comparison of parameter esti-
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mates (or combinations thereof) that ideally reflect
these biological concepts, between feeds or feeding sys-
tems. Degradation and passage parameters are im-
portant aspects of rumen models (e.g., NRC, 2001; Ke-
breab et al., 2004; Thomas, 2004); therefore, accurate
estimates of degradation parameters are required for
incorporation into these systems. A number of method-
ological factors affecting the experimental measure-
ments of in situ disappearance of feed samples has re-
ceived due attention (Nocek, 1988; Huntington and Giv-
ens, 1995), but much less attention has been paid to
the choice of mathematical model to fit the curves and
goodness-of-fit of the model. In the present study, 3
different mathematical models (Ørskov and McDonald,
1979; France et al., 1990; and Lopez et al., 1999), which
were also used to evaluate gas production profiles in a
reparameterized form (France et al., 2005), were se-
lected. A fourth model (a generalized sigmoidal func-
tion) was also tested. The objective of the study was to
evaluate use of these models to determine DM and CP
degradability parameters of raw and roasted whole soy-
bean samples for fitting ability.

MATERIALS AND METHODS

Samples and Analyses

Two Iranian cultivars of soybeans (Sahar and Wil-
liams), raw, roasted, and steep-roasted, and considered
for evaluation of heat-processing effects on DM and
CP ruminal degradability in another experiment, were
used in this study. For heat processing of soybean seeds,
they were fed into a turning cylindrical tunnel (50 cm
in diameter, turning at a speed of 2.5 cycles per minute)
with a flame and blower at its end, so that the seeds
were exposed to burning air. The seeds traversed the
cylinder tunnel (4 m long), so that the temperature of
the beans exiting the roaster was 130 to 135°C. Then,
some seeds were gradually cooled (about 1 h), and the
rest were immediately placed in isolated barrels with-
out cooling, and covered with canvas for about 45 min
(steeping), and then cooled.

Dry matter and CP of samples (6 feeds) before and
after incubations were determined using a forced-air
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Table 1. Dry matter and CP content (g/kg of DM; SD in parentheses) of heat-processed Sahar and Williams
cultivars of soybean seeds

Sahar Williams

Raw Roasted Steep-roasted Raw Roasted Steep-roasted

DM 920 (9.5) 970 (9.0) 975 (9.9) 910 (10.1) 985 (9.0) 970 (12.2)
CP 369 (21.9) 381 (25.0) 378 (23.1) 356 (28.1) 376 (37.5) 375 (22.0)

oven at 96°C for 48 h, and the Kjeldahl method (Kjeltec
2300 Autoanalyzer, Foss Tecator AB, Hoganas, Swe-
den), respectively (Table 1).

In Situ Procedure

Two ruminally fistulated (430 ± 10 kg) Holstein steers
fed a TMR twice daily (0900 and 1600 h) were used for
incubation of samples. The TMR included (on a DM
basis) 2.7 kg of alfalfa hay, 1.75 kg of corn silage and
2.25 kg of concentrate (barley 63.5, cottonseed meal 5.8,
beet pulp 17.3, wheat bran 10.0, limestone 1.0, salt 0.4,
vitamin-mineral supplement 0.5, and urea 1.5%) per
steer per day. To determine the DM and CP degradabil-
ity coefficients, 5 g of DM equivalent of each sample
(ground using 2-mm screen mill) was placed in individ-
ual polyester bags (made of artificial silk cloth with a
50-�m pore size and averaging 12 × 19 cm). Bags were
placed in the dorsal sac of the reticulorumen of each
steer after the 0900 h feeding. Replicate bags of each
feed sample were removed at 1, 2, 3, 4, 8, 16, 24, 36,
48, and 72 h of incubation and were hand washed thor-
oughly in cold running water until the rinsing water
was clear. Two bags of each sample were washed with-
out incubation in the rumen (0-h samples). The bags
were dried in a forced-air oven (58°C, 48 h) and weighed
to determine DM disappearance. The residues were an-
alyzed for N content. Degradability of DM and CP was
recorded at each incubation period for each of 6 feeds,
yielding a total of 12 disappearance curves for each
model.

Mathematical Models

Table 2 shows the 3 models, 1 piecewise linear and
2 diminishing returns, used to describe ruminal degra-
dation of DM and CP of the samples. Model I is a seg-
mented model with 3 spline-lines delimited by 2 nodes
or break points, constraining splines 1 and 3 to be hori-
zontal asymptotes, and follows zero-order degradation
kinetics (France et al., 1990). Model II is a negative
exponential equation (monomolecular or Mitscherlich)
assuming first-order kinetics and a constant fractional
rate of degradation (Ørskov and McDonald, 1979).
Model III is a rational function or inverse polynomial
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(linear over linear), which describes a rectangular hy-
perbola and assumes first-order kinetics with a variable
fractional rate of degradation that declines with time
(Lopez et al., 1999). This latter model is akin to the
Michaelis-Menten equation of enzyme kinetics. A dis-
crete lag parameter (L) was included in each model to
represent the time interval before degradation com-
mences. A reparameterized and generalized sigmoidal
model, the Richards (Thornley and France, 2006), was
also used to test whether the degradation profile could
be better described using an S-function. The Richards
equation was chosen because it encompasses the Gomp-
ertz, logistic, and monomolecular (diminishing returns)
when its additional parameter (n) has a value of 1, 0
and −1, respectively. In all of the profiles fitted, n was
not significantly different from −1; therefore, sigmoidal
analysis was dropped and piecewise linear and dimin-
ishing return models were used with and without a
lag parameter.

Each model was fitted to the DM and CP disappear-
ance curves by nonlinear regression using the PROC
NLIN of SAS (SAS Institute, 1999) to estimate ruminal
degradation parameters. Several possible starting val-
ues were specified for each parameter, so that the NLIN
procedure evaluated the model at each combination of
initial values on the grid, using for the first iteration
of the fitting process, the combination yielding the
smallest residual sum of squares. Rapidly soluble frac-
tion (a), slowly degradable fraction (b), degradation rate
constant (c), or time constant (T), and L were estimated
for each disappearance curve using each model. The
extent of degradation (E), for a given passage rate (0.06
and 0.08/h), was calculated from these estimated pa-
rameters as shown in Table 2. In calculating E, the
washout fraction was assumed to be completely degrad-
able; however, E can be readily calculated based on
other assumptions about degradability of the washout
fraction as described by Dhanoa et al. (1999). In model
III, for calculating E, the function

a + bk ∫
∞

L

⎛
⎜
⎝

t − L
t − L + T

⎞
⎟
⎠

e−kt dt

was coded in the advanced continuous simulation lan-
guage ACSL (Aegis Simulation, Inc., Huntsville, AL)
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Table 2. Candidate models for describing disappearance curves1

Fractional
degradation Disappearance Extent of degradation,

Model2 rate, � (/h) to time t, p (%) Nodes E (%)

I
c

b − c(t − L) a + c(t − L) L ≤ t < L +
b
c a +

c
k ln

kb + cekL

c − cL

II c a + b[1 − e−c(t−L)] L ≤ t a +
bce−kL

c + k

III
1

t − L + T a + b
t − L

t − L + T L ≤ t a + bk ∫
∞

L

⎛
⎜
⎝

t − L
t − L + T

⎞
⎟
⎠

e−kt dt

1a = rapidly soluble fraction (%); b = slowly degradable fraction (%); c = degradation rate constant (%/h,
model I; /h, model II); k = fractional passage rate (/h); L = lag time (h); T = time constant (h), such that L
+ T is the time taken for half of the slowly degradable fraction to disappear; t = time since start of incubation
(h).

2Model I, zero-order degradation (France et al., 1990); model II, first-order degradation, constant � (Ørskov
and McDonald, 1979); model III, first-order degradation, variable � (Lopez et al., 1999).

and solved using a fourth-order Runge-Kutta algorithm
with an integration interval of 0.1 h.

Statistical Analyses

Statistical comparison between lagged and non-
lagged versions of each model to test whether the addi-
tional parameter (L) improved the fit was performed
by F-test using the following equation (Motulsky and
Ransnas, 1987):

F = [(SS1 − SS2)/(df1 − df2)]/(SS2/df2)

where SS is the sum of squares, and df is the number
of degrees of freedom. The subscript 1 refers to the fit
with fewer parameters, the nonlagged version. Further-
more, the L parameter was tested to see if it was sig-
nificantly different from zero. Therefore, after fitting
the lagged version of each model to the disappearance
curves, the average of parameter L was calculated for
each model and its difference from zero tested (t-test).
To evaluate the ability of each model (both versions)
to describe the data without systematically over- or
underestimating any section of the curve, the number
of runs of sign of the residuals was calculated (Motulsky
and Ransnas, 1987). A run is a sequence of residuals
with the same sign (positive or negative). For this test,
the average residual of replicate observations was used
for each incubation time. Several statistics, including
mean square prediction error (MSPE), root of MSPE
(rMSPE) expressed as a percentage of the observed
mean (Theil 1966), coefficient of determination (R2),
Bayesian information criteria (BIC), and lack-of-fit test
(Draper and Smith, 1998) were used to evaluate general
goodness-of-fit (quality of prediction) of each model.
Mean square prediction error was calculated as the sum
of squared differences between observed and predicted
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values divided by the number of experimental observa-
tions. Root of MSPE was also calculated (MSPE divided
by the observations mean) so that the MSPE could be
expressed in the same units as the observed and pre-
dicted variables. The MSPE was decomposed into mean
bias or error in central tendency (ECT), slope bias or
error due to regression (ER), and random or error due
to disturbance (ED). These 3 components were calcu-
lated as follows (Bibby and Toutenburg, 1977):

ECT = (P − A)2

ER = (SP − r × SA)2

ED = (1 − r2) × S2
A

and expressed as a percentage of MSPE. The entities
P and A are the averaged predicted and observed val-
ues, respectively; SP and SA are the standard deviations
of the predicted and observed values, respectively; and
r is the coefficient of correlation between predicted and
observed values. Error in central tendency indicates
how the average of predicted values deviates from the
average of observed values. Error due to regression (re-
gression bias) measures deviation of the least squares
regression coefficient (r × SA/SP) from 1, the value it
would have been if the predictions were completely ac-
curate. When large, it indicates inadequacies in the
ability of the model to predict the variable in question.
Error due to disturbance represents the variation in
observed values unexplained after the mean and the
regression biases have been removed. The BIC was cal-
culated using the nonlinear mixed procedure (PROC
NLMIXED) of SAS (SAS Institute, 1999) and was used
as another statistic for testing of the quality of fit. For
the lack-of-fit test, percentage of curves with significant
lack-of-fit within each version of each model was cal-
culated.
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Figure 1. Plots of DM (A) and CP (B) in situ disappearance curves for all the experimental feeds.

RESULTS AND DISCUSSION

Test Feeds

Figure 1 shows plots of all the observed DM and CP
disappearance data, including replicates, across the 6
feeds against incubation times. Variability in disap-
pearance was related to washout fraction of the feeds
and effect of heat processing on changing the fractional
degradation rate and hence ruminal degradability pat-
tern of the feeds, so that heat-processed soybeans had
lower DM and CP disappearance (%) over a given incu-
bation time than raw soybeans. The effect of heat pro-
cessing on the disappearance rate of highly degradable
feeds is well known (NRC, 2001) and use of raw and
roasted soybeans in this study allowed different models
to be evaluated over a wider range of data.

Model Behavior

All curves could be fitted by the 3 models using non-
linear regression and utilizing the PROC NLIN of SAS
(SAS Institute, 1999) because convergence to a solution
occurred in all cases. Tables 3 to 5 show the estimated
parameter values for models I, II, and III, respectively.
With model III when unconstrained, (a + b) tended to
a value larger than 1 (for both DM and CP in the non-
lagged version and CP in the lagged version), which is
unacceptable biologically; therefore, the sum of these 2
parameters was constrained to be no greater than
unity. The nonlagged versions reached the constraint
limit, so the value of U was zero with no associated
error. For CP in the lagged version of model III, the
solution was not met when restricted as above, so the
constraint was lifted and solution was found with (a +
b) being slightly above 1 (but not significantly higher).
In all nonlagged versions of the models, L was con-
strained to be zero. In addition to the fitting problems
observed when using model III, a larger number of iter-
ations was required and greater sensitivity to starting
values was observed, especially when the lagged form
was used, which is symptomatic of an ill-conditioned
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or inappropriate model (Lopez et al., 1999). In spite of
the fact that model I is a segmented model with 2 or 3
straight lines and needs a sufficient number of observa-
tions in each segment to obtain a consistent solution,
and that model II is a exponential model, which is some-
times inadequate for describing ruminal disappearance
curves (Dhanoa et al., 1995; Van Milgen and Baumont,
1995), the behavior of these 2 models demonstrated
their suitability for fitting the DM and CP degradability
data generated by our samples. Lopez et al. (1999)
pointed out that disappearance of some feed compo-
nents, particularly structural carbohydrates, exhibits
a larger variety of forms than does CP. With some feeds,
especially forages, the assumption that ruminal degra-
dation follows zero-order or simple first-order kinetics
may not be appropriate and therefore, sigmoidal models
are more suitable.

Statistical Evaluation

There are different statistical tests for ranking and
evaluating models. Sometimes results from these differ-
ent tests seem contradictory, so an overall assessment
is needed in this situation. The number of runs of sign
of residuals, MSPE, rMSPE, R2, BIC, plot of residuals
against predicted values and lack-of-fit test are the
most widely used statistical criteria for comparing mod-
els. The number of runs of sign from fitting the lagged
and nonlagged versions of each model did not tend to
be different and this criterion could not resolve whether
the lag parameter was necessary in each model (Table
6). However, between models, model III gave a high
percentage of curves with 3 or fewer runs (for both DM
and CP components) indicating that the residuals were
not randomly distributed over the incubation times and
this model was not as good as the other 2 for fitting
data. In addition to parameters estimated, MSPE and
R2 for each model are shown in Tables 3 to 5. Each model
was run with or without the lag for each disappearance
curve for both DM and CP components. The F-values
indicated that the more complex version (lagged) did
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Table 3. Parameter estimates for lagged and nonlagged versions of model I (SE in parentheses), and
statistics calculated for comparison of the 2 equations

Lagged version Nonlagged version

Item DM CP DM CP

Parameter estimates1

a 50.27 (2.523) 43.64 (4.686) 47.96 (1.464) 43.07 (3.737)
b 45.95 (2.753) 50.72 (1.828) 47.72 (2.645) 51.35 (2.525)
c 0.012 (0.0027) 0.013 (0.0030) 0.015 (0.0078) 0.016 (0.092)
U 3.79 (2.241) 5.64 (3.606) 4.32 (1.423) 5.58 (3.084)
L 1.30 (2.195) 0.0 (8.2 × 10−7) — —
E (k = 0.06) 73.40 (4.206) 69.31 (6.584) 74.07 (4.820) 70.63 (8.658)
E (k = 0.08) 70.50 (4.223) 66.22 (6.624) 71.18 (4.734) 67.62 (8.719)

R-squared (%) 98.79 (2.250) 97.06 (3.82) 97.40 (0.782) 96.32 (2.613)
rMSPE2 4.17 (1.341) 5.36 (1.795) 4.36 (0.666) 5.66 (1.894)
MSPE analysis3 (%MSPE)
ECT 0.16 (0.209) 5.74 (6.411) 0.01 (0.012) 4.31 (7.647)
ER 1.49 (2.202) 1.11 (1.755) 0.03 (0.009) 4.69 (8.048)
ED 98.35 (2.263) 93.15 (7.140) 99.96 (0.020) 91.00 (15.687)

1a = rapidly soluble fraction (%); b = slowly degradable fraction (%); c = degradation rate constant (%/h)
U = undegradable fraction (%), calculated as (1 − a − b); L = lag time (h); E = extent of degradation (%);
k = fractional passage rate (/h).

2Root of mean square prediction error (% observed mean).
3ECT = Error in central tendency; ER = error due to regression; and ED = error due to disturbance.

not fit the data (disappearance curves for both DM and
CP components) significantly better than the simpler
(nonlagged) version (data not shown). In addition, the
value of rMSPE was not significantly different between
the 2 versions for both components and was sufficiently
small to show that both forms are able to estimate
model parameters accurately. Moreover, decomposition
of MSPE gave similar values of ECT, ER, and ED for
both versions of each model, and was mainly dominated
by the disturbance component, which indicates that

Table 4. Parameter estimates for lagged and nonlagged versions of model II (SE in parentheses), and
statistics calculated for comparison of the 2 equations

Lagged version Nonlagged version

Item DM CP DM CP

Parameter estimates1

a 49.04 (3.331) 45.03 (4.454) 45.31 (2.351) 40.44 (3.250)
b 49.34 (4.611) 51.73 (3.449) 54.53 (2.190) 59.23 (3.352)
c 0.057 (0.0364) 0.065 (0.0386) 0.050 (0.0269) 0.051 (0.0339)
U 1.63 (1.481) 3.24 (2.362) 0.17 (0.371) 0.33 (0.370)
L 2.43 (4.256) 2.17 (4.115) — —
E (k = 0.06) 70.97 (7.250) 64.57 (10.880) 68.94 (5.680) 65.0 (9.970)
E (k = 0.08) 67.19 (7.010) 60.75 (10.786) 65.40 (5.483) 61.36 (9.874)

R-squared (%) 97.47 (0.910) 96.38 (1.671) 96.81 (0.911) 95.97 (1.041)
rMSPE2 4.30 (0.787) 5.76 (1.405) 4.85 (0.543) 6.17 (0.865)
MSPE analysis3 (%MSPE)
ECT 0.11 (0.271) 0.72 (1.636) 0.05 (0.027) 0.85 (1.964)
ER 0.41 (1.012) 0.30 (0.727) 0.21 (0.322) 1.49 (2.929)
ED 99.37 (1.234) 98.98 (2.360) 99.74 (0.380) 97.60 (4.866)

1a = rapidly soluble fraction (%); b = slowly degradable fraction (%); c = fractional degradation rate (/h);
U = undegradable fraction (%), calculated as (1 − a − b); L = lag time (h); E = extent of degradation (%);
k = fractional passage rate (/h).

2Root of mean square prediction error (% observed mean).
3ECT = error in central tendency; ER = error due to regression; and ED = error due to disturbance.
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ruminal degradation of DM and CP of samples was
well represented by both lagged and nonlagged forms.
However, Mitchell and Sheehy (1997) argue that MSPE
has limitations as an indicator of model performance
because it weights the deviations by their squares, giv-
ing more influence to larger deviations. Therefore, the
difference between parameter L and zero was tested
by t-test within each model (P < 0.05). No significant
difference was found for any of 3 models, suggesting
that the parameter was unnecessary in this case, so the
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Table 5. Parameter estimates for lagged and nonlagged versions of model III (SE in parentheses), and
statistics calculated for comparison of the 2 equations

Lagged version Nonlagged version

Item DM CP DM CP

Parameter estimates1

a 47.67 (1.672) 45.17 (4.088) 41.08 (4.062) 36.88 (2.769)
b 52.16 (1.625) 55.25 (3.014) 58.92 (4.062) 63.12 (2.769)
U 0.17 (0.410) −0.42 (1.578) 0.00 0.00
T 11.80 (3.784) 13.83 (5.562) 12.99 (5.732) 15.60 (7.216)
L 2.65 (2.850) 2.81 (2.833) — —
E (k = 0.06) 64.23 (8.786) 58.46 (9.937) 69.29 (4.839) 65.17 (7.856)
E (k = 0.08) 60.37 (8.326) 55.09 (9.556) 66.13 (4.725) 61.82 (7.529)

R-squared (%) 93.18 (4.041) 93.20 (5.491) 92.64 (1.054) 91.94 (1.046)
rMSPE2 6.92 (1.993) 7.70 (2.799) 7.41 (0.034) 8.76 (0.630)
MSPE analysis3 (%MSPE)
ECT 8.67 (7.797) 4.56 (5.010) 5.46 (1.571) 7.00 (6.096)
ER 8.08 (16.253) 9.65 (16.622) 8.97 (2.426) 8.17 (5.180)
ED 83.24 (23.408) 85.79 (20.884) 85.57 (2.115) 86.16 (4.755)

1a = rapidly soluble fraction (%); b = slowly degradable fraction (%); U = undegradable fraction (%),
calculated as (1 − a − b); T = time constant (h), such L + T is the time taken half of the slowly degradable
fraction to disappear; L = lag time (h); E = extent of degradation (%); k = fractional passage rate (/h).

2Root of mean square prediction error (% observed mean).
3ECT = error in central tendency; ER = error due to regression; and ED = error due to disturbance.

nonlagged version was chosen for comparing models.
In contrast to Lopez et al. (1999), who concluded that
inclusion of lag was a considerable improvement to the
fit of nonsigmoidal models, our data were best described
by nonlagged, nonsigmoidal models. This is because of
a delay in disappearance at the beginning of incubation
with forages, so a sigmoidal trend is more noticeable,
and a lag is more likely. However, with a concentrate
such as soybeans, disappearance is fast from the start
of incubation and an extended lag is not observed.

The results of comparison between models are shown
in Tables 7 and 8. After fitting each model to each
disappearance curve, statistics were calculated. To con-
duct a multiple comparison, ANOVA was performed
using PROC GLM of SAS (SAS Institute, 1999) to detect
significant differences between models in MSPE,
rMSPE, R2, and BIC values. The averages of statistics
were then compared using the Duncan Multiple Range

Table 6. Percentage of curves (both DM and CP) for each number of runs of sign of the residuals observed
when fitting lagged and nonlagged versions of each model1

Model I Model II Model III

Lagged Nonlagged Lagged Nonlagged Lagged Nonlagged
Number of
runs of sign DM CP DM CP DM CP DM CP DM CP DM CP

≤3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 66.7 66.7 66.7
4 0.0 0.0 0.0 16.7 0.0 0.0 0.0 16.7 16.7 33.3 33.3 0.0
5 16.7 16.7 33.3 16.7 16.7 33.3 16.7 33.2 16.6 0.0 0.0 16.7
6 66.7 16.7 33.3 16.7 16.7 16.7 33.3 16.7 0.0 0.0 0.0 16.6
≥7 16.6 66.6 33.4 50.0 66.6 50.0 50.0 33.4 0.0 0.0 0.0 0.0

1Model I, zero-order degradation (France et al., 1990); model II, first-order degradation, constant � (Ørskov
and McDonald, 1979); model III, first-order degradation, variable � (Lopez et al., 1999).
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test. Root of MSPE as an indicator of model accuracy
showed that models I and II gave significantly (P < 0.01)
better fits to both feed components than model III. In
addition, based on BIC values, models I and II showed
the best fit to the data on DM disappearance, but models
II and III were not significantly different for the CP
data. The value of R2 indicated that the proportion of
variation explained was high for models I and II and
that these models fit the DM and CP disappearance
curves better than model III. The plot of residuals
against predicted values is also useful visually and pro-
vides an easy to use approach for assessing model suit-
ability that is valid for both linear and nonlinear regres-
sion (Draper and Smith, 1998). As Figure 2 shows, the
horizontal band in plots for models I and II indicated
no abnormality in residuals, but plots for model III
indicated abnormality for both DM and CP, suggesting
model inadequacy and the need for extra terms in the
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Table 7. Comparison between models of goodness-of-fit and parameter estimates for DM degradability

Model I Model II Model III SEM P-value

Statistical criteria1

R-squared (%) 97.40a 96.81a 92.64b 0.038 ***
MSPE 0.001b 0.001b 0.003a 0.000005 ***
rMSPE 4.36b 4.85b 7.41a 0.22 ***
BIC −46.90b −58.27b 2.40a 14.58 *

Parameter estimates2

a 47.96a 45.31a 41.08b 1.16 ***
b 47.72c 54.53b 58.92a 1.25 ***
U 4.32a 0.17b 0.00b 0.35 ***
E (k = 0.06) 74.07 68.94 69.29 2.09 0.188
E (k = 0.08) 71.18 65.40 66.13 2.02 0.120

a–cMeans in the same row with no common superscript letters differ.
1MSPE = mean square prediction error; rMSPE = root of MSPE; BIC = Bayesian information criteria

(smaller value means a better model).
2a = rapidly soluble fraction (%); b = slowly degradable fraction (%); U = undegradable fraction (%),

calculated as (1 − a − b); E = extent of degradation (%); k = fractional passage rate (/h).
*P < 0.05; ***P < 0.001.

fitted equation (e.g., square or cross-product terms) or
for transformation of the observations before analysis
(Draper and Smith, 1998). Linear and quadratic rela-
tionships between residuals and predicted values were
assessed and results (not reported) showed statistically
significant linear and quadratic trends (P < 0.001) for
model III, but not for models I and II. The lack-of-fit
test results (Figure 3) showed that both versions of
model I fit the DM and CP disappearance data well
with less than 20% of curves showing significant lack-
of-fit. Model II showed about 35% of the curves with
significant lack-of-fit, but in the nonlagged CP analysis
this lack-of-fit reached 50%. Model III showed the
largest percentage of curves with a significant lack-of-
fit, which together with residual plots (Figure 2) con-
firmed inadequacy of this model for this particular
study.

Table 8. Comparison between models of goodness-of-fit and parameter estimates for CP degradability

Model I Model II Model III SEM P-value

Statistical criteria1

R-squared (%) 96.32a 95.97a 91.94b 0.007 ***
MSPE 0.002 0.006 0.004 0.0003 0.521
rMSPE 5.66b 6.17b 8.76a 0.52 **
BIC −24.85b −8.4ab 14.48a 10.87 *

Parameter estimates2

a 43.07a 40.44a 36.88b 1.368 *
b 51.35c 59.23b 63.12a 1.220 ***
U 5.58a 0.33b 0.00b 0.730 ***
E (k = 0.06) 70.63 65.00 65.17 3.667 0.483
E (k = 0.08) 67.62 61.36 61.82 3.648 0.418

a–cMeans in the same row with no common superscript letters differ.
1MSPE = mean square prediction error; rMSPE = root of MSPE; BIC = Bayesian information criteria

(smaller value means a better model).
2a = rapidly soluble fraction (%); b = slowly degradable fraction (%); U = undegradable fraction (%),

calculated as (1 − a − b); E = extent of degradation (%); k = fractional passage rate (/h).
*P < 0.05; **P < 0.01; ***P < 0.001.
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Van Milgen and Baumont (1995) pointed out that a
greater number of incubation points per curve than
recorded under normal experimental conditions might
be necessary to compare different disappearance mod-
els. Lopez et al. (1999) found most statistical tests for
goodness-of-fit are of limited value in comparing nonlin-
ear models; however, our results showed that the se-
lected statistical criteria could discriminate between
models and based on the data set used in this study,
models I and II were more suitable for fitting DM and
CP disappearance curves than model III.

Estimates of Degradation Parameters

Results of the ANOVA performed to check whether
the use of different models resulted in similar or differ-
ent estimates of the DM and CP degradation parame-
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Figure 2. Plot of residuals against predicted values for DM and CP in situ disappearance curves for the 6 different feeds for model I,
model II, and model III. Key: raw Sahar (�), roasted Sahar (�), steep-roasted Sahar (×), raw Williams (+), roasted Williams (�), and steep-
roasted Williams (◆) soybeans.

ters are shown in Tables 7 and 8. For DM and CP,
estimates of the soluble fraction (a) were lower with
model III than with models I and II, but estimates of
the insoluble potentially degradable fraction (b) were
higher with this model. Models II and III gave lower
estimates of the DM and CP undegradable fractions
(U) than did model I. It is possible that these models
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underestimated that fraction, because the values ob-
tained were much lower than the 72-h incubation resi-
dues. The U value by definition needs to be no greater
than the 72-h incubation residue value, because the U
is obtained at time infinity, so underestimation of the
undegradable fraction with these models would be a
drawback to their use. Estimates of the extent of degra-
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Figure 3. Percentage of curves with a significant lack-of-fit to DM
and CP data for both lagged and nonlagged versions of models I, II,
and III. Model I = zero-order degradation (France et al., 1990); model
II = first-order degradation, constant � (Ørskov and McDonald, 1979);
model III = first-order degradation, variable � (Lopez et al., 1999).

dation (E) of DM and CP, which is the important entity,
were higher at both passage rates of 0.06 and 0.08/h
with model I than with models II and III. Although this
numerical difference is of nutritional interest, it was not
statistically significant. Results of the study by Lopez at
al. (1999), in which different models were compared
using incubation data for different forages, showed no
significant differences between estimates of E by the
different models. However, differences in E as deter-
mined by different models in the present study were
larger than those observed by Lopez et al. (1999), proba-
bly due to different evaluated feeds, but in both studies
the segmented model with up to 3 spline-lines showed
higher estimates of E. It should be noted that the ex-
pression for E for model III is an integral with no analyt-
ical solution, making the model slightly more difficult to
use. Ability to obtain good estimates of all degradation
parameters and ease of application are important in
choice of a model.

CONCLUSIONS

To assess the validity of mathematical models to de-
scribe the degradation pattern of a given feed, their
behavior, statistical performance, and biological char-
acteristics should be evaluated. The results of this study
based on various statistical tests showed that the
piecewise linear and exponential models are well suited
to describing the degradability patterns obtained for
whole raw and roasted soybeans. In all the models
tested, the parameter estimates for lag phase were not
significant, suggesting that the nonlagged version of the
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models are suitable to describe degradation patterns in
soybeans.
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