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ABSTRACT

The concept of the Baer invariant is useful in classifying groups into isologism classes. In this paper two
sequences of varieties {rVn}n∈N0 and {�Vn}n∈N0 , are considered from a given variety V . The structure
of Baer invariants of some groups with respect to these varieties, are determined for some specific V .

1. INTRODUCTION

In 1945 R. Baer [1], generalized the well known notion of Schur multiplier to the
more general notion of Baer invariant, it gave rise to a vast amount of research in
group theory. In particular lots of facts and claims about the Schur multiplier can
be considered in connection to different varieties of groups.

One of the most interesting problems in this area is to compute the Baer invariants
of groups with respect to different varieties of groups, for example see [5,11,15].
Although determining the explicit formula for the Baer invariants is so valuable, it is
relatively hard, special cases excepted. Therefore it is clearly preferable to compute
the Baer invariant via structural properties.

In this article, we intend to reach a similar goal, namely computing the Baer
invariants of some groups. To do this we use a product of varieties. Using this
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product, from a given variety, we construct two sequences of varieties. It should be
recalled that Hekster [6] had introduced the notion of sequences, but he did used
them in a different manner. More precisely, Hekster applied these sequences from
point of view of isologism theory, for details see [6, Section 6]. Further information
about the mentioned product may be found in [9, Chapter 1].

In this paper we concentrate on Baer invariants of some groups with respect to
the terms of these sequences. To avoid unwanted complications, we impose some
conditions on groups, where wanted.

2. NOTATIONS AND PRELIMINARIES

Let F∞ be the free group on the set X = {x1, x2, . . .} and V ⊆ F∞ be a set of words.
We assume that the reader is familiar with the notion of the variety of groups defined
by a set of words, verbal and marginal subgroups. Throughout this article we assume
that V is the variety of groups defined by a set of words V and V (G) and that V ∗(G)

is the verbal and marginal subgroup of a group G with respect to V , respectively.
For a group G with a normal subgroup N , [NV ∗G] is defined to be the subgroup
generated by the set:

{
v(g1, g2, . . . , gin, . . . , gr )

(
v(g1, g2, . . . , gr )

)−1 | 1 � i � r, v ∈ V,

gi ∈ G, n ∈ N
}
.

One may easily show that [NV ∗G] is the least normal subgroup T , say, of G

contained in N , satisfying N/T ⊆ V ∗(G/T ).
Now let G be any group with a free presentation

E : 1 −→ R −→ F −→ G −→ 1,

then the (two) Baer invariants of G with respect to the variety V are defined as
follows:

VM(G) = R ∩ V (F)

[RV ∗F ] , VP(G) = V (F)

[RV ∗F ] .

It is a known fact that these are invariants of G, that is independent of the choice of
free presentation for G, see [9, Lemma 1.8], and that VM(G) is always abelian.

The following proposition contains some classic facts about varieties. We men-
tion it here, as it is of use later.

Proposition 2.1. Let G be any group with a normal subgroup N and let V be any
variety. Then

(i) V (G/N) = V (G)N/N , V ∗(G/N) ⊇ V ∗(G)N/N ;
(ii) V (N) ⊆ [NV ∗G] ⊆ N ∩ V (G), in particular V (G) = [GV ∗G];

(iii) If N ∩ V (G) = 1 then N ⊆ V ∗(G) and V ∗(G/N) = V ∗(G)N/N .

Proof. See [6, Proposition 2.3]. �
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3. PRODUCT VARIETIES

In this section we introduce the mentioned product of varieties and state some
lemmas to be used in the next sections.

Definition 3.1. Let V and U be varieties of groups defined by the set of words V

and U , respectively. The product U ∗ V is the variety of all groups G, such that
U(G) ⊆ V ∗(G).

See also Hekster’s paper [6, pp. 28 (bottom) and 29 (top)] and [9, p. 104].
The following proposition gives the verbal subgroup of this product variety.

Proposition 3.2. Using the above notations and definitions, the verbal subgroup of
a group G with respect to variety U ∗ V is [U(G)V ∗G].

Proof. See [9, Proposition 1.5]. �
The next proposition gives a set of defining words for this product variety. It can

be used in computations with the words and is used to obtain Example 4.6.

Proposition 3.3. Using the above notations and definitions, assume u(x1, . . . , xr )

and v(x1, . . . , xs) are words, and for each i (1 � i � s)

v(i)u = v
(
x1, . . . , xi−1, xiu(xs+1, . . . , xs+r ), xi+1, . . . , xs

)(
v(x1, . . . , xs)

)−1 and

v(i)u = v
(
x1, . . . , xi−1, u(xs+1, . . . , xs+r ), xi+1, . . . , xs

)

× (
v(x1, . . . , xi−1,1, xi+1, . . . , xs)

)−1
.

Then U ∗ V is defined by each of the following sets:

W = {
v(i)u | v(x1, . . . , xs) ∈ V, u ∈ U, 1 � i � s < ∞};

W ′ = {
v(i)u | v(x1, . . . , xs) ∈ V, u ∈ U, 1 � i � s < ∞}

.

Proof. See [9, Proposition 1.5]. �
This product ∗ featuring in U ∗ V is not commutative and it is not associative as

well (see [9, p. 106, Example 2] and [6, Example 3.7]). Non-commutativity of this
product makes it somewhat difficult to work with. On the other hand, the interesting
fact about this product is its non-associativity and this is to some extent a lucky
occurrence, it presents us to two kinds of powers for a variety, to be called the left
and right sequences.

Some relations between the verbal and marginal subgroups of this product variety
as stated in the following lemma may be found in [6, Theorem 3.2 and Lemma 3.3].

Lemma 3.4. Let U and V be two varieties, W = U ∗V and let G be any group with
a normal subgroup N . Then:
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(i) V ∗(G) ⊆ W ∗(G);
(ii) W ∗(G)/V ∗(G) ⊆ U∗(G/V ∗(G)) ⊆ W ∗(G/V ∗(G));

(iii) [[NU∗G]V ∗G] ⊆ [NW ∗G].

Some interesting inclusion relations exist between the multiple product varieties
as follows:

Lemma 3.5. Let U , U1, V , V1 and W be varieties for which U ⊆ U1 and V ⊆ V1.
Then:

(i) U ∗ (V ∗W) ⊆ (U ∗ V) ∗W ;
(ii) U ∗ V ⊆ U1 ∗ V1.

Proof. See [6, Propositions 3.5 and 3.6]. �
4. SEQUENCES OF VARIETIES

In the previous section we recalled and presented some information about the
product variety and now we are ready to introduce the sequences of varieties which
is the main subject to be discussed in the rest of this article.

Given a variety V , two sequences �Vn and rVn may be defined as follows:

(1) �V0 = T and �Vn+1 = V ∗ �Vn,
(2) rV0 = T and rVn+1 = rVn ∗ V

in which T is the variety of trivial groups. Let us call {rVn}n∈N0 and {�Vn}n∈N0 the
right and the left sequence, respectively.

The introduction of these sequences causes arising several questions and prob-
lems about them. Some of them (such as relations between these sequences and their
verbal and marginal subgroup) are easily established from the facts stated earlier
about the product, but the others (like Baer invariants and some further ones) are
not so routine. The main purpose of this work concerned with some works on Bear
invariants.

As one can see in [6, Lemma 6.11], it holds that �Vn 	= rVn in general. So it is
preferable to state lemmas and theorems for each sequence, separately.

Some useful properties of the left sequence are listed in the following.

Lemma 4.1. Let V be any variety and let G be any group with a normal
subgroup N . Then:

(i) �Vn+1(G) = [V (G)�V ∗
n G];

(ii) �V ∗
n+1(G)/�V ∗

n (G) ⊆ V ∗(G/�V ∗
n (G));

(iii) �Vn(G)/�Vn+1(G) ⊆ V ∗(G/�Vn+1(G));
(iv) [[NV ∗G]�V ∗

n G] ⊆ [N�V ∗
n+1G].
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Proof. (i) Can be easily obtained by considering the definition of �Vn and Proposi-
tion 3.2(ii).

For (ii) and (iii) use the definition of �Vn.
For (iv) see (iii) of Lemma 3.4. �
Parts (ii) and (iii) of the above lemma allow us to spot two sequences of verbal

and marginal subgroups of an arbitrary group G, as follows:

V (G) = �V1(G) ⊇ �V2(G) ⊇ · · · ⊇ �Vn(G) ⊇ �Vn+1(G) ⊇ · · · ,
V ∗(G) = �V ∗

1 (G) ⊆ �V ∗
2 (G) ⊆ · · · ⊆ �V ∗

n (G) ⊆ �V ∗
n+1(G) ⊆ · · · .

The following lemma, which is stated for the right sequence, shows the influence of
non-associativity of the product. Although it resembles Lemma 4.1, there are some
basic differences to absence between the Lemmas 4.1 and 4.2.

Lemma 4.2. Let V be any variety and let G be any group with a normal
subgroup N . Then:

(i) rVn+1(G) = [rVn(G)V ∗G];
(ii) rV ∗

n+1(G)/rV ∗(G) ⊆ rV ∗
n (G/rV ∗(G));

(iii) rVn(G)/rVn+1(G) ⊆ V ∗(G/rVn+1(G));
(iv) rV ∗

n (G/V ∗(G)) ⊆ rV ∗
n+1(G/V ∗(G));

(v) [[N rV ∗
n G]V ∗G] ⊆ [N rV ∗

n+1G].

Proof. It can be done similar to Lemma 4.1. �
The above lemma provides a sequence of verbal subgroups for the right sequence

as we had it for the left one:

V (G) = rV1(G) ⊇ rV2(G) ⊇ · · · ⊇ rVn(G) ⊇ rVn+1(G) ⊇ · · · .

It is of interest to see some examples of these sequences in order to show
applications of the sequences. But before this, showing some relations between the
terms of the sequences may be helpful.

Lemma 4.3. For any variety V we have �Vn ⊆ rVn, for all n ∈ N0.

Proof. For each n � 0 we have

V ∗ rVn+1 = V ∗ (
rVn ∗ V

) ⊆ (
V ∗ rVn

) ∗ V ⊆ rVn+1 ∗ V = rVn+2,

which implies V ∗ rVn ⊆ rVn+1 (n � 0). Therefore induction on n provides

�Vn+1 = V ∗ �Vn ⊆ V ∗ rVn ⊆ rVn+1. �
An immediate consequence of this lemma is the following corollary.
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Corollary 4.4. Let G be any group and let V be any variety. Then, for each n � 0
we have rVn(G) � �Vn(G).

Of course occurrences under which equality holds may be of interest. One of
these is to be found in the following lemma which is not straightforward enough to
work with, in some sense.

Lemma 4.5. Let V be any variety. Then, �Vn+1 = �Vn ∗V , for all n � 0, if and only
if �Vm+n = �Vm ∗ �Vn, for all m,n � 0.

To illustrate applications of these sequences, we state some examples in the
following.

Example 4.6. (1) If A is the variety of abelian groups, then the left and right
sequences coincide. In fact in this case �An = rAn = Nn, the variety of nilpotent
groups of class at most n.

Many papers are devoted to the variety of nilpotent groups, so according to the
above example, each conclusion in this work can be regarded as a generalization of
work on nilpotent varieties.

Another usage is generalizing some theorems stated for Nc, in two directions, for
the left and right sequence separately.

(2) As a slight generalization, starting with Nc one may easily show that the left
and right sequence are the same and the nth term is Ncn, so considering the previous
example, it provides no more information.

(3) Suppose S� is the variety of solvable groups of length at most �. Then an
straightforward computation shows that for any group G,

r (S�)n(G) =

[
G(n),

(n−1)-times
︷ ︸︸ ︷
G,G′,G′′, . . . ,G(n−1)

︸ ︷︷ ︸,G,G′,G′′, . . . ,G(n−1)

︸ ︷︷ ︸, . . . ,G,G′,G′′, . . . ,G(n−1)

︸ ︷︷ ︸
];

here G(i) denotes the ith term of the derived series of G.
(4) Assume that Am is the variety of abelian groups of exponent m. It is known

that the defining set of words for this variety is {[x1, x2], xm
3 }. By induction we see

that the defining set of laws for the nth term of the left sequences is

{
x1mn

1 ,
[
x2

1 , x2
2

]mn−1
,
[
x3

1 , x3
2 , x3

3

]mn−2
, . . . ,

[
xn

1 , xn
2 , . . . , xn

n

]m
,

[
xn+1

1 , xn+1
2 , . . . , xn+1

n+1

]}
.

It is of interest to know which outer commutator varieties can be the terms of the
left and right sequences.

(5) Let N1,2 be the polynilpotent variety of class row (1,2), that is the variety
defined by the set {[[x1, x2], [x3, x4], [x5, x6]]}. Then for any group G we have
(N1,2)2(G) = [G′,G′,G′,G,G′,G′].
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(6) Let N2,1 be the polynilpotent variety of class row (2,1), that is the variety
defined by the set {[[x1, x2, x3], [x4, x5, x6]]}. Then for any group G we have
(N2,1)2(G) = [γ3(G), γ3(G),G,G,γ3(G)].

(7) Let V be the variety defined by the set of words {[[x1, x2, x3], [x4, x5]]}. Then
for any group G we have

V2(G) = [
γ3(G), γ2(G),G,G,γ2(G)

][
γ3(G), γ2(G),G,

[
G,γ2(G)

]]
.

5. APPLICATION IN BAER INVARIANTS

This section contains computations of some Baer invariants using the sequences of
varieties as an instrument. We restrict our attention to V-perfect groups. A group G

is called V-perfect if V (G) = G. One may find some information on perfect groups
in [7], and on V-perfect groups, in [8,12]. V-perfect groups are so well-behaved
in computing Baer invariants. The following theorem of Ellis [3, Proposition 2.11]
justifies it.

Theorem 5.1. Let G be any perfect group. Then there are two isomorphisms as
follows

NcP (G) ∼= P(G), NcM(G) ∼= M(G);

in which M(G) and P(G) are the introduced Baer invariants of G with respect to
the variety of abelian groups.

Now since the variety of nilpotent groups of class at most c, Nc, is both the cth
term of the left and right sequences of A, so the above theorem can be generalized
(Theorem 5.2). On the other hand, bearing in mind Example 4.6, one sees that
computing Baer invariants with respect to some outer commutator varieties are
very complicated, and so, obtaining a method to compute these Baer invariants,
is valuable. The following theorem provides the above purpose.

Theorem 5.2. Let V be any variety with the property Z(H) ⊆ V ∗(H) for any V-
perfect group H . Then the following isomorphisms hold for any V-perfect group G;

�VnM(G) ∼= VM(G) ∼= rVnM(G),

�VnP (G) ∼= VP(G) ∼= rVnP (G) ∀n ∈ N.

In order to prove Theorem 5.2, we need some notations from [8] and the following
easily deduced fact.

Lemma 5.3. Let V be any variety and let G be any group. Then the following are
equivalent:
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(i) G is rVi -perfect (�Vi -perfect) for some i;
(ii) G is rVi -perfect (�Vi -perfect) for each i.

The following theorems and lemmas are all taken from [8] and play an important
role in the proof of Theorem 5.2.

Theorem 5.4. Let V be any variety and let G be any group. If G is V-perfect then
so is VP(G).

The second author in his paper [8], using a universal property of some ex-
tensions, showed the uniqueness of a kind of exact sequence which he called
V-perfect-marginal extension. The following is a brief description of what he stated.

Definition 5.5. Let V be any variety defined by a set of laws V and let G be
any group. An exact sequence E : 1 → A → H → G → 1 is called a V-marginal
extension by G if A ⊆ V ∗(H). It is said that a V-marginal extension E covers
(uniquely covers) another V-marginal extension E1 : 1 → A1 → H1 → G → 1, if
there exists a homomorphism (resp. a unique homomorphism) θ :H → H1 such
that the diagram

1 A H G 1

1 A1 H1 G 1

commutes.

Definition 5.6. An extension E′ : 1 → A → B → G → 1 by a group G is called
V-perfect if B is V-perfect. If in addition E′ is a V-marginal extension, then it is
said to be a V-perfect-marginal extension. A V-marginal extension by a group G

is called universal if it uniquely covers any V-perfect-marginal extension by the
group G.

Remark 5.7. Let V be any variety and let G be any V-perfect group. Then the
sequence 1 → VM(G) → VP(G) → G → 1 is both V-marginal and A-marginal
extension.

The following theorem is essential for the proof of Theorem 5.2.

Theorem 5.8. Let G be any V-perfect group and let 1 → A → H → G → 1 be a
universal V-perfect-marginal extension by G. Then A ∼= VM(G) and H ∼= VP(G).

Proof. See [8, Corollary 3.11]. �
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Proof of Theorem 5.2. We state the proof only for the right sequence. The proof of
the left one being similar. It suffices to show that for an arbitrary natural number n,
the exact sequence

E : 1 −→ rVnM(G) −→ rVnP (G) −→ G −→ 1

is a universal V-perfect-marginal extension by G. Hence the result follows by
Theorem 5.8. As before mentioned the above sequence is central so rVnM(G) ⊆
Z(rVnP (G)). But by the assumption we have Z(rVnP (G)) ⊆ V ∗(rVnP (G)) and so
E is a V-perfect-marginal extension. On the other hand, each V-perfect-marginal
extension is a rVn-perfect-marginal extension too. So it is uniquely covered by E

and the result holds. �
The next theorem contains some conditions under which VM(G) is trivial. To

express the importance of triviality the Baer invariants, it is necessary to state the
notion of V-covering groups.

Definition 5.9. Let G be a group, and let E be the following exact sequence

E : 1 −→ A −→ G∗ −→ G −→ 1,

in which A ⊆ V ∗(G∗)∩V (G∗) and A ∼= VM(G). Then G∗ is said to be a V-covering
group of G.

In general, the problem of existence and uniqueness of V-covering group
is unsolved. Computing covering groups is also interesting but certainly not
straightforward in many cases (for more information see [10]).

In the special case VM(G) = 1, the mentioned problem is completely solved.
The following result is worthy enough to be considered.

Theorem 5.10. Let G be any group with Gab free. If M(G) = 0 then so are
NcM(G) for all c � 1.

Proof. See [3, Theorem 3.2]. �
Considering Nc as the right sequence of A, we can state the following general-

ization of Theorem 5.10.

Theorem 5.11. Let G be an arbitrary group for which the group G/V (G) is a free
V-group and VM(G) = 0. Then for all n � 1 we have rVnM(G) = 0.

Before preparing to prove the theorem, it is necessary to show that the condition
of being V -free for G/V (G) is essential which the following remark shows.

Remark 5.12. It is a well-known fact that M(S3) = 1 [7, Corollary 2.1.12], and the
second author in his joint paper [14, Theorem 5.6], showed that N2M(S3) 	= 1.
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To prove the latest theorem we need some further information which are listed
below.

It was Fröhlich [4] who proved that for any variety V and any group G with a
normal subgroup N , there exists an exact sequence as follows:

VM(G) −→ VM(G/N) −→ N/[NV ∗G] −→ G/V (G) −→ G/NV (G) −→ 1.

The next lemma is a key to prove Theorem 5.10.

Lemma 5.13. Let f :A → B be a group homomorphism such that induces an
isomorphism A/V (A) ∼= B/V (B) and an epimorphism VM(A) → VM(B). Then
f induces isomorphisms rVn(A)/rVn+1(A) ∼= rVn(B)/rVn+1(B) and A/rVn(A) ∼=
B/rVn(B) for each n � 1.

Proof. Consider the following commutative diagram:

VM(A) VM
(

A
rVn(A)

) rVn(A)
rVn+1(A)

A
V (A)

A
rVn(A)V (A) 1

VM(B) VM
(

B
rVn(B)

) rVn(B)
rVn+1(B)

B
V (B)

B
rVn(B)V (B) 1

By the assumption and induction hypothesis the first vertical map is an epimor-
phism and the second, forth and fifth ones are isomorphisms, so the middle one
is an isomorphism according to the five lemma. Now the following diagram is
commutative:

1 rVn(A)/rVn+1(A) A/rVn+1(A) A/rVn(A) 1

1 rVn(B)/rVn+1(B) B/rVn+1(B) B/rVn(B) 1

Now the result holds by induction. �
We are ready to prove Theorem 5.11.

Proof of Theorem 5.11. Suppose G/V (G) is V-free on X and put F the free
group on X, so there exists a homomorphism φ :F → G which induces an
isomorphism G/V (G) ∼= F/V (F ). Hence by Lemma 4.11 it induces isomorphisms
φn :F/rVn(F ) → G/rVn(G). Put R = kerφ, then R ⊆ rVn(F ) for all n � 1, so we
have rVnM(G) = R/[RV ∗F ]. But the triviality of VM(G) implies R = [RV ∗F ] so
by induction R = [R rV ∗

n F ] and hence the result holds. �
6. APPLICATION IN VARIETIES OF EXPONENT m

In this section using the notions of the left and right sequences and in a different
manner some results on Baer invariants of V-perfect groups is obtained. To do this,
the following theorem about varieties is needed.
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Theorem 6.1. Let V be any variety. The following are equivalent:

(i) V contains all abelian groups;
(ii) V contains the infinite cyclic group Z;

(iii) V is defined by outer commutator words.

Proof. See [2, Remark 5.6]. �
Definition 6.2. A variety which satisfies one of the conditions of the above theorem
is said to be of exponent zero. If V contains Zm but no larger cyclic group, then V
is of exponent m.

It can be found in [16, Theorem 12.12] that a variety of exponent m is defined by
a set of outer commutator words in conjunction with the single word xm, so each
group in this variety is of exponent dividing m.

The following theorem is about V-perfect groups and has an important role in the
rest of this article.

Theorem 6.3. Let V be any variety of exponent m, and let G be any V-perfect
group. Then VM(G) ∼= M(G) ⊗ Zm.

Proof. See [9, p. 142]. �
An outer commutator variety is exactly a variety of exponent zero. Theorem 6.3

completely determines the structure of the Baer invariants of a varietal perfect group
with respect to this varieties in terms of its Schur multiplier, that is the Baer invariant
with respect to the variety of abelian groups. It is easy to see that for an outer
commutator variety V , each term of the left and right sequence of V is an outer
commutator too. Considering Theorem 5.2, it is easy to see that outer commutator
varieties satisfy the condition of that theorem. So Theorem 5.2 can be considered
as a slighter version of Theorem 6.3, but it is interesting to solve a problem in part,
which have been solved, in a quiet different manner.

The following lemma almost does everything we want.

Lemma 6.4. Let V be any variety of exponent m. Then �Vn and rVn are varieties
of exponent mn.

Proof. Straightforward. �
The immediate consequence of Theorem 6.3 and Lemma 6.5 is

Corollary 6.5. Let V be any variety of exponent m, and let G be any V-perfect
group. Then rVnM(G) ∼= M(G) ⊗ Zmn ∼= �VnM(G).

In the special cases where M(G) is finite or even finitely generated, we have the
following corollaries.
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Corollary 6.6. Let V be any variety of exponent m and let G be any V-perfect
group with finitely generated multiplier. Then rVnM(G) and �VnM(G) are epimor-
phic images of rVn+1M(G) and �Vn+1M(G), respectively.

Corollary 6.7. Under the above assumption when M(G) is finite, it holds that

(i) rVn+1M(G) and �Vn+1M(G) are subgroups of rVnM(G) and �VnM(G), re-
spectively;

(ii) there exists a natural number n0 such that rVn0M(G) ∼= rVn0+iM(G) and
�Vn0M(G) ∼= �Vn0+iM(G) for each i ∈ N.

The number n0 (as occurring in Corollary 6.8) for any group with finite multiplier
can be easily computed as follows.

Let π(m) = {p1,p2, . . . , pr } and π(|M(G)|) = {q1, q2, . . . , qs}, where π(X) is the
set of all primes dividing the natural number X. Consider two cases:

(i) π(m) ∩ π(|M(G)|) = ∅,
(ii) π(m) ∩ π(|M(G)|) = {p1,p2, . . . , pk}.

In case (i) we have rVnM(G) ∼= �VnM(G) ∼= 0, for all natural number n. In case (ii)
let m = p

α1
1 p

α2
2 · · ·pαr

r and |M(G)| = q
β1
1 q

β2
2 · · ·qβs

s , then n0 = max{[αi
βi

] | 1 � i �
k}, in which [x] is the greatest integer not exceeding x.

In such a case the following sequences with finitely many distinct elements exist:

rV1M(G) ⊇ rV2M(G) ⊇ · · · ⊇ rVnM(G) ⊇ rVn+1M(G) ⊇ · · · ,
�V1M(G) ⊇ �V2M(G) ⊇ · · · ⊇ �VnM(G) ⊇ �Vn+1M(G) ⊇ · · · .
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