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Abstract

Material discontinuity could cause in-plane stress gradients that it arises out-of-plane stresses in regions of sudden transition of
material properties. A layerwise laminated plate theory is adapted to laminated beams to analyze analytically the three-dimensional
stress field at material discontinuities in rotating composite beams. Equations of motion are obtained by using Hamilton�s principle.
The beam is divided into two regions with different layups which are joined together to model the region of material discontinuity.
The predicted stress distributions at the ply interfaces are shown to be in good agreement with comparative three-dimensional finite
element analysis.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of interlaminar stress analysis at the free
edges and bonded joints of composite structures have
been under investigation continuously ever since the ori-
ginal paper of Pipes and Pagano [1]. Numerous papers
have been published on the subject over three decades.
They have included, for example, the finite difference
solution by Pipes and Pagano [1], the perturbation solu-
tion technique by Hsu and Herakovich [2], the finite ele-
ment method by Rybicki [3] and Wang and Crossman
[4], and approximate analytical solutions of Pagano [5]
and Wang and Choi [6,7]. In these studies, interlaminar
stresses appear at the free edges of finite composite lam-
inates under different loading conditions have been con-
sidered. It is well known that interlaminar stresses arise
in order to satisfy equilibrium at locations with in-plane
stress gradients. Material discontinuity (i.e., a sudden
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change of material properties) within a structure is an-
other source of arising in-plane stress gradients and,
therefore, interlaminar stresses appear near the material
discontinuities.

Bhat and Lagace [8] evaluated interlaminar stresses at
material discontinuities using the principle of minimum
complementary energy. They analyzed laminates with
different layups which had been joined together. They
mentioned such cases occurring at regions of implants
within adaptive structures. The advent of adaptive struc-
tures has resulted in sensors made of various materials
being implanted within laminated composites by cutting
some plies of the laminate and placing the sensor in that
location. Also a damaged region such as that caused by
impact is another example of material discontinuity. Be-
cause the material properties of the impact regions are
usually reduced compared to the other regions. Bhat
and Lagace [8] showed that the interlaminar stresses
arise in the vicinity of these material discontinuities.

Investigations of interlaminar stresses in rotating
composite beams have been rare. Rotating beams are
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often used as the simple model for propellers, turbine
blades, and satellite booms. Hence, in this paper, it is in-
tended to analyze three-dimensional state of stress
in composite beams especially due to material disconti-
nuities. A layerwise laminated plate theory is used to
develop a layerwise laminated beam theory. The results
obtained from this theory are compared with those ob-
tained by using a finite element method. The correlation
among the results indicates the theoretical approach is
feasible as a conceptual design tool.
2. Theoretical formulation

It is intended here to determine the three-dimensional
stress field in a rotating composite beam with uniform
cross-section. Displacements of the beam are defined
in a rotating rectangular Cartesian coordinate system,
rigidly tied to the beam. The origin of this coordinate
system is chosen to be the middle of the beam length.
The x axis is the centroid axis of the undeformed beam,
and y and z axes are the principal axes of the beam
cross-section. It is assumed that the beam has the length
2L and thickness h.

Here, a layerwise laminated plate theory is developed
first and then it is simplified for analysis of beam struc-
tures. It is assumed that the beam rotates with a con-
stant angular velocity X (or the angular velocity is
increased slowly). To this end, the problem is not time
dependent.

2.1. Plate equations of motion

In this study, a layerwise laminated plate theory is
used in deriving plate equations of motion. The displace-
ment field can be represented as:

u1ðx; y; zÞ ¼ U kðx; yÞUkðzÞ;
u2ðx; y; zÞ ¼ V kðx; yÞUkðzÞ; k ¼ 1; 2; . . . ;N þ 1;

u3ðx; y; zÞ ¼ W kðx; yÞUkðzÞ;
ð1Þ

where for the sake of brevity, the Einstein summation
convention has been introduced – a repeated index indi-
cates summation over all values of that index. In Eq. (1)
u1, u2 and u3 are the displacements along the coordinate
lines of a material point on the xy-plane, Uk(x,y),
Vk(x,y), and Wk(x,y) (k = 1, 2, . . ., N + 1) are the dis-
placement components of all points located on the kth
plane in the undeformed laminate, and Uk(z) are contin-
uous functions of the thickness coordinate z (global
interpolation functions). Also N denotes the total num-
ber of numerical (or mathematical) layers considered in
a laminate.

It is noted that in the layerwise theory the accuracy of
the displacement field in Eq. (1) depend on the shape
functions Uk(z) and the number of surfaces in the lami-
nate. Here, we assume that Uk(z) to be linear interpola-
tion functions. On the other hand, we may increase the
number of surfaces by subdividing each physical layer
into a number of numerical layers. The local Lagrangian
linear interpolation functions within, say, the kth layer
are defined as follows (see [9,10]):

/1
k ¼

zkþ1 � z
hk

; /2
k ¼

z� zk

hk
; ð2Þ

where hk is the thickness of the kth numerical layer and
zk denotes the z-coordinate of the bottom of the kth
numerical layer. This way, the global interpolation func-
tions Uk(z) may be presented as (see [9–11]):

UkðzÞ ¼

0; z 6 zk�1;

/2
k�1ðzÞ; zk�1 6 z 6 zk; k ¼ 1; 2; . . . ;N þ 1:

/1
kðzÞ; zk 6 z 6 zkþ1;

0; z P zkþ1:

8>>><
>>>:

ð3Þ
Upon substitution of Eq. (1) into the linear strain–

displacement relations of elasticity, the following results
will be obtained:

ex ¼
oU k

ox
Uk; ey ¼

oV k

oy
Uk; ez ¼ W kU

0
k;

cyz ¼ V kU
0
k þ

oW k

oy
Uk; cxz ¼ U kU

0
k þ

oW k

ox
Uk;

cxy ¼
oU k

oy
þ oV k

ox

� �
Uk;

ð4Þ

with a prime indicating an ordinary derivative with re-
spect to the independent variable z.

Using the Hamilton principle and noting that the
problem is not time dependent, 3(N + 1) equations of
motion corresponding to 3(N + 1) unknowns Uk,Vk,
and Wk can be shown to be:

dUk :
oMk

x

ox
þ

oMk
xy

oy
� Qk

x ¼ ��Ik
X2x� �IkjU jX

2;

dV k :
oMk

xy

ox
þ

oMk
y

oy
� Qk

y ¼ ��Ik
X2y � �IkjV jX

2;

dW k :
oRk

x

ox
þ

oRk
y

oy
� Nk

z ¼ 0;

ð5Þ

where the generalized stress resultants are defined by:

ðN k
z ;Q

k
x;Q

k
yÞ ¼

Z h=2

�h=2

ðrz; rxz; ryzÞU0k dz;

ðMk
x;M

k
y ;M

k
xy ;R

k
x;R

k
yÞ ¼

Z h=2

�h=2

ðrx; ry ; rxy ; rxz; ryzÞUk dz

ð6Þ
and the mass moments of inertia are given by:

ð�Ik
;�IkjÞ ¼

Z h=2

�h=2

qðUk;UkUjÞdz: ð7Þ
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The boundary conditions for a laminated plate with a
rectangular platform in the layerwise theory at an edge
parallel to y axis involves the specification of Uk or
Mk

x , Vk or Mk
xy and Wk or Rk

x. Similarly, at an edge
parallel to x axis, the required boundary conditions
can be specified.

In order to find displacement equations of motion,
it is assumed that the laminate is made of orthotropic
layers, with their material axes oriented arbitrarily
with respect to the laminate coordinates. The linear
constitutive relations for the kth orthotropic lamina
with respect to the laminate coordinate axes are given
by [12]:

rx

ry

rz

ryz

rxz

rxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðkÞ

¼

�C11
�C12

�C13 0 0 �C16

�C12
�C22

�C23 0 0 �C26

�C13
�C23

�C33 0 0 �C36

0 0 0 �C44
�C45 0

0 0 0 �C45
�C55 0

�C16
�C26

�C36 0 0 �C66

2
666666664

3
777777775

ðkÞ ex

ey

ez

cyz

cxz

cxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðkÞ

;

ð8Þ

where �C
ðkÞ
ij s are the transformed stiffnesses of the kth

layer. Upon substitution of Eq. (4) into (8) and the
subsequent results into Eq. (6) the generalized stress
resultants are obtained which can be represented as
follows:

ðNk
z ;M

k
x ;M

k
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k
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where the rigidity terms are given by:

Akj
pq ¼

XN

i¼1

Z ziþ1

zi

�C
ðiÞ
pqU

0
kU
0
j dz;

Bkj
pq ¼

XN

i¼1

Z ziþ1

zi

�C
ðiÞ
pqUkU

0
j dz;

Dkj
pq ¼

XN

i¼1

Z ziþ1

zi

�C
ðiÞ
pqUkUj dz:

ð10Þ
2.2. Beam equations of motion

Here, in this section, plate equations of motion are
adapted to obtain beam equations of motion. It is as-
sumed that all the stress resultants are functions of
coordinate x only. Hence, Eq. (5) are simplified as
follows:
dUk :
oMk

x

ox
� Qk

x ¼ ��Ik
X2x� �IkjU jX

2;

dV k :
oMk

xy

ox
� Qk

y ¼ ��IkjV jX
2;

dW k :
oRk

x

ox
� Nk

z ¼ 0:

ð11Þ

Also it is supposed that all the strains can be treated
only as functions of coordinates x and z. Then Eq. (4)
can be written as follows:

ex ¼ U 0kUk; ey ¼ 0; ez ¼ W kU
0
k;

cyz ¼ V kU
0
k; cxz ¼ U kU

0
k þ W 0

kUk; cxy ¼ V 0kUk:
ð12Þ

According to Eq. (12), it is more reasonable for a
beam to let Mk

y be equal to zero. Substitution of this con-
dition into the stress resultants in Eq. (9) results in:

ðNk
z ;M

k
x ;M

k
xyÞ ¼ ð�B
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�Dkj
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36ÞW j;

ðQk
y ;Q
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x ;R
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xÞ ¼ ðA
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kj
55;B
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44;A
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45;B

kj
55ÞV j þ ðBjk

45;B
jk
55;D

kj
55ÞW 0

j;

ð13Þ
where the coefficients are defined in Appendix A. Upon
substitution of Eq. (13) into Eq. (11) the following gov-
erning equations of motion are obtained:

�Dkj
11U 00j �Akj

55Uj þ �Dkj
16V 00j �Akj

45V j þ ð�Bkj
13 � Bjk

55ÞW 0
j ¼��Ik

X2x��IkjU jX
2;

�Dkj
16U 00j �Akj

45Uj þ �Dkj
66V 00j �Akj

44V j þ ð�Bkj
36 � Bjk

45ÞW 0
j ¼��IkjV jX

2;

ðBkj
55 � �Bjk

13Þ;U 0j þ ðB
kj
45 � �Bjk

36ÞV 0j þDkj
55W 00

j � �A
kj
33W j ¼ 0:

ð14Þ
3. Analytical solutions

In order to obtain analytical solutions of Eq. (14), it
must be noted that the numerical results indicate, how-
ever, that there exist repeated zero roots (or eigen-
values) in the characteristic equation of the set of
equations in (14). To enhance the solution scheme of
these equations, some small artificial terms will be
added to these equations so that the characteristic
roots become all distinct (see [10,11]). Therefore, Eq.
(14) rewritten as follows:

�Dkj
11U 00j �Akj

55U jþ �Dkj
16V 00j �Akj

45V jþð�Bkj
13�Bjk

55ÞW 0
j ¼��Ik

X2x��IkjU jX
2þakjUj;

�Dkj
16U 00j �Akj

45U jþ �Dkj
66V 00j �Akj

44V jþð�Bkj
36�Bjk

45ÞW 0
j ¼��IkjV jX

2þakjV j;

ðBkj
55� �Bjk

13ÞU 0jþðB
kj
45� �Bjk

36ÞV 0jþDkj
55W 00

j � �A
kj
33W j ¼ akjW j;

ð15Þ
where here, for convenience, akj is assumed to have the
following form [10,11]:

akj ¼ a
Z h=2

�h=2

UkUj dz; ð16Þ

with a being a prescribed number such that akjs in Eq.
(16) are relatively small compared to the numerical val-
ues of stiffnesses Akj

55;A
kj
44; and �A

kj
33. It should be men-

tioned here that akj is chosen to have a form similar
to the mass terms Ikj appearing in the equations of mo-
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tion of laminated plate within Reddy�s layerwise the-
ory, with the density function q appearing in Ikj being
replaced here by the small parameter a (see [9]). This
way the solution of the equations in (15) will extremely
be insensitive to the small number chosen for the
parameter a. Next, in order to solve Eq. (15), for con-
venience the following state space variables are
introduced:

fX 1ðxÞg ¼ fUðxÞg; fX 2ðxÞg ¼ fU 0g ¼ fX 01g;
fX 3ðxÞg ¼ fV ðxÞg; fX 4ðxÞg ¼ fV 0g ¼ fX 03g;
fX 5ðxÞg ¼ fW ðxÞg; fX 6ðxÞg ¼ fW 0g ¼ fX 05g;

ð17Þ

where for example,

fX 1gT ¼ ½U 1;U 2; . . . ;U Nþ1�;
fX 2gT ¼ ½U 01;U 02; . . . ;U 0Nþ1�

ð18Þ

with {X3} through {X6} being defined similarly as in
(18). Substitution of Eq. (17) into Eq. (15) results in a
system of 6(N + 1) coupled first-order ordinary differen-
tial equations which may be presented as:

fX 0g ¼ ½A�fXg þ fF gx; ð19Þ
with

fXgT ¼ ½fX 1gT
; fX 2gT

; . . . ; fX 6gT�: ð20Þ
In Eq. (19) the coefficient matrix [A] and vector {F}

are given in the Appendix A. The general solutions of
Eq. (19) are given by (e.g., see [13]):

fXg ¼ ½U�½QðkxÞ�fKg � ½A��1fF gx� ½A��2fF g; ð21Þ

where

½QðkxÞ� ¼ diagðek1x; ek2x; . . . ; ek6ðNþ1ÞxÞ; ð22Þ

with {K} being 6(N + 1) arbitrary unknown constants of
integration to be found by imposing the boundary con-
ditions. In Eqs. (21) and (22) [U] and
kk(k = 1,2, . . . ,6(N + 1)) are, respectively, the matrix
of eigenvectors and eigenvalues of the coefficient matrix
[A] which, in general, must be regarded to have complex
values.
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Fig. 1. The geometry of problem with a [0�/90�]s laminated beam (r
4. Results and discussion

In what follows a numerical example is presented to
show that the state of stress is three-dimensional in the
vicinity of the material discontinuity. It is assumed that
the rotating composite beam composed of two different
layups which joined together. The problem is a [0�/90�]s
beam with the 90� plies replaced by the 0� plies in re-
gions B (see Fig. 1). Thus region A is made up of a
[0�/90�]s beam and regions B are made up of [0�/0�]s
beams as shown in Fig. 1. Also it is assumed that the
beam has the length 2L and thickness h, with L = 5h

and a = L/2, and is rotating with a constant angular
velocity about x = 0 axis. In this problem, it is assumed
that X = 1000 rad/s and h = 0.01 m. This particular
example is chosen here because interlaminar stresses
arise only near the material discontinuity at the interface
of regions A and B. Because of identical ply orientations
in regions B no free-edge effects will be exist at x = ±L.
Also because the beam rotates about x = 0 axis and it
has identical boundary conditions at x = ±L, no inter-
laminar stresses will be arise at this point (i.e., x = 0).

For each regions of the beam, there exists a bound-
ary-value problem as in Eq. (19) with the solution in
Eq. (21). Therefore, there are 12(N + 1) unknown con-
stants of integrations for one symmetric half of the
beam. In order to determine these constants, the follow-
ing continuity and equilibrium conditions at the inter-
face of regions A and B (i.e., x = a) must be satisfied:

U ðAÞk ¼ U ðBÞk ; V ðAÞk ¼ V ðBÞk ; W ðAÞ
k ¼ W ðBÞ

k ;

MkðAÞ
x ¼ MkðBÞ

x ; MkðAÞ
xy ¼ MkðBÞ

xy ; RkðAÞ
x ¼ RkðBÞ

x ;
ð23Þ

where the superscripts (A) and (B) show the regions A
and B, respectively. In addition to the above conditions,
the boundary conditions at x = 0 and x = L must be sat-
isfied. The boundary conditions for this problem are:

U ðAÞk ¼ MkðAÞ
xy ¼ RkðAÞ

x ¼ 0 at x ¼ 0;

MkðBÞ
x ¼ MkðBÞ

xy ¼ RkðBÞ
x ¼ 0 at x ¼ L:

ð24Þ

The material properties of the layers are taken to be
those of a T300/5208 graphite/epoxy lamina [12]:
x

z

y h

L
b

o0  Ply

0  Plyo

0  Plyo

0  Plyo

Region B

egion A) in transition to [0�/0�]s laminated beams (regions B).
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E1 ¼ 132 GPa; E2 ¼ E3 ¼ 10:8 GPa;

G12 ¼ G13 ¼ 5:65 GPa; G23 ¼ 3:38 GPa;

m12 ¼ m13 ¼ 0:24; m23 ¼ 0:59; q ¼ 1540 kg=m3;

ð25Þ
where the subscripts 1, 2, and 3 indicate the on-axis (i.e.,
principal) material coordinates.

To check the correctness and accuracy of the present
method, the results achieved from this theory will be
compared with those obtained by utilizing the commer-
cial finite element package of ANSYS [14]. In the latter
method the mesh is refined till no significant change in
stress distributions is obtained. The out-of-plane stresses
in the present method are determined by using Hooke�s
law with six numerical layers in each physical lamina
(see, for example, [10,11]).

The in-plane normal stress rx at z = h/4 in 0� plies in
regions A and B is shown in Fig. 2. It is noted that the
stresses are taken as a small distance (of about 1/20 of
the ply thickness) away from the interface for the finite
element results. Also the in-plane normal stress rx at
z = h/4 in 90� ply in region A and 0� ply in region B is
presented in Fig. 3. It is seen that the stress distribution
is discontinuous near x = a. It is seen in Figs. 2 and 3
that there are close agreements between the present solu-
tions and those obtained from finite element method.

Distributions of interlaminar normal stress rz at
z = h/4 along the 0�/90� interface in region A and along
the 0�/0� interface in region B is displayed in Fig. 4. Also
variation of interlaminar normal stress rz at the middle
plane is shown in Fig. 5. The results show that there are
sharp interlaminar stress gradients near the material dis-
continuity and decays away from this region as ex-
pected. The current solutions are seen to match the
finite element solutions reasonably well except in the re-
gion close to the material discontinuity where the stres-
ses have a steep gradient.
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Fig. 2. Distribution of in-plane normal stress rx at z = h/4 in 0� plies
in regions A and B.
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Fig. 6 illustrates the distribution of interlaminar shear
stress rxz at z = h/4 along the 0�/90� interface in region
A and along the 0�/0� interface in region B. It is noted
that rxz at the free edge (x = L) meet the stress free
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boundary condition with a good approximation, even
though this condition has not been enforced a priori.
The solution shows that the interlaminar stresses decay
away from the region of the discontinuity as expected
(see Figs. 4–6).
5. Conclusions

A layerwise laminated beam theory is developed by
using a layerwise laminated plate theory and it is used
to predict the three-dimensional stress field in the vicin-
ity of material discontinuities in rotating composite
beams with general laminations. Displacement equa-
tions of motion are obtained by using Hamilton�s
principle. The results obtained from this theory are com-
pared with those obtained by a finite element method.
The results indicate that there are severe out-of-plane
stresses in regions near the sudden transition of material
properties (material discontinuities). These stresses can
initiate heterogeneous damage in the forms of delamina-
tion and transverse cracking and may cause the damage
to propagate to a substantial region of the beam, result-
ing in a significant loss of strength and stiffness. To this
end, these stresses must be considered in design of such
structures.
Appendix A

The coefficients appearing in Eq. (13) are defined as:

½�A33� ¼ ½A33� � ½B23�T½D22��1½B23�;

½�B13� ¼ ½B13� � ½D12�½D22��1½B23�;

½�B36� ¼ ½B36� � ½D26�½D22��1½B23�;
½�D11� ¼ ½D11� � ½D12�½D22��1½D12�;

½�D16� ¼ ½D16� � ½D12�½D22��1½D26�;

½�D66� ¼ ½D66� � ½D26�½D22��1½D26�:
The coefficient matrix [A] and vector {F} in Eq. (19)

are defined as:

½A� ¼

½0� ½I � ½0� ½0� ½0� ½0�
½a1� ½0� ½a2� ½0� ½0� ½a3�
½0� ½0� ½0� ½I� ½0� ½0�
½b1� ½0� ½b2� ½0� ½0� ½b3�
½0� ½0� ½0� ½0� ½0� ½I�
½0� ½c1� ½0� ½c2� ½c3� ½0�

2
666666664

3
777777775
; fF g ¼

f0g
fa4g
f0g
fb4g
f0g
f0g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

where [0] and [I] are (N + 1) · (N + 1) square zero and
identity matrices, respectively, and {0} is a zero vector
with N + 1 rows. The remaining matrices and vectors
in the above equations are as follows:

½a1� ¼ ½d1��1½d2�;

½a2� ¼ ½d1��1½d3�;

½a3� ¼ ½d1��1½d4�;

fa4g ¼ ½d1��1fd5g;

½b1� ¼ ½�D66��1ð½A45� � ½�D16�½a1�Þ;

½b2� ¼ ½�D66��1ð½A44� � ½�D16�½a2� � ½�I �X2 þ ½a�Þ;

½b3� ¼ ½�D66��1ð½B45�T � ½�B36� � ½�D16�½a3�Þ;

fb4g ¼ �½�D66��1½�D16�fa4g;

½c1� ¼ ½D55��1ð½�B13�T � ½B55�Þ;

½c2� ¼ ½D55��1ð½�B36�T � ½B45�Þ;

½c3� ¼ ½D55��1ð½�A33� þ ½a�Þ;

with

½d1� ¼ ½�D11� � ½�D16�½�D66��1½�D16�;

½d2� ¼ ½A55� � ½�D16�½�D66��1½A45� � ½�I �X2 þ ½a�;

½d3� ¼ ½A45� � ½�D16�½�D66��1ð½A44� � ½�I �X2 þ ½a�Þ;

½d4� ¼ ½B55�T � ½�B13� þ ½�D16�½�D66��1ð½�B36� � ½B45�TÞ;

fd5g ¼ �f�IgX2;

½�I � and f�Ig are the matrix and vector of mass moments
of inertia defined in Eq. (7).
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