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Abstract 
The Element Free Galerkin Method (EFGM) has been extended to be used in the Elastoplastic stress analysis. Stress 
fields in two different plates with and without a crack have been calculated and the results have been compared with 
other similar works in the literature. The value of J-integral has been used as a base for the assesment of the open-
edge cracked plate problem. 

 

Keywords: Element Free Galerkin Method; Elastoplastic; Stress analysis; J-integral 

 
 

                                                 
١ Associate Professor 
٢ Ph.D. candidate, School of Mech. Eng., Sharif University of Technology, Tehran, Iran 
٣ Associate Professor, Amirkabir University of Technology, Tehran, Iran 

Introduction 
In the last decade Belytschko et. al. (١٩٩٤) [١] 
introduced the EFG method to reduce some of the 
shortcomings of Finite Element Method. The paper 
of Nayroles et. al. (١٩٩٢) [٢] namely "Generalizing 
the FEM" was a close work prior to the former one 
and this work by itself seems to be inspired by 
another work which is in the area of Moving Least 
Square interpolants (MLS) [٣]. After introducing of 
the EFGM, this method has been used in a wide 
range of different subjects such as dynamic fracture 
[٥ ,٤], crack growth [٦ and ٧], elastic plates and 
shells  [٨], ٣-D problems [٩ and ١٠] and non-elastic 
stress analysis [١١]. Even the theoretical foundations 
of this method have been reconsidered, developed or 
revised for several times [١٢ to ١٦]. 
  Two main characteristics of the EFG Method 
seem to be a unique approximate function for the 
whole field and relatively easier kind of crack 

modeling. In this paper, the application of EFGM in 
solving field equations for the incremental plastic 
behavior of material has been examined.  
 Related to the historical background of the 
numerical stress analysis in the Elastoplastic range,  
 
it should be mentioned that the proposed techniques 
in this range are as old as those in the elastic range. 
For example in [١٧] a method for Elastoplastic stress 
analysis has been devised.  
    In this paper primarily EFGM and incremental 
plasticity is overviewed. Then, a new method of 
Elastic-Plastic Element Free Galerkin Method (EP-
EFGM) is constructed. The composed method is 
intrinsically based on nonlinear relations; therefore 
its solution technique should be iterative too. A 
section is devoted to present the solution technique. 
The requirements of solution and solved examples 
and their results in comparison with other similar 
techniques are proposed in another section. 
 



  

EFG Method 
As like as FEM, the first step in EFGM modeling is 
assuming an appropriate description for the 
approximate function. Once an approximate function 
type is assumed the shape functions can be 
calculated. It should be pointed out that the basic 
difference between the EFGM and FEM is that in 
EFGM, the approximate function is an 
approximation through the nodal values while in 
FEM it is an interpolation between nodal values, 
(See Figure ١). Where, the approximation and 
interpolation have the same explanation as, for 
example, in [١٨]. 
 

A pproxim ate function
Interpolate function

δ δ δ δ δ
A uxillary N odal 
D isplacem ent 
(A .N .D .)

 
 
Figure ١.  A comparison between the concepts of 
the interpolation as used in FEM and the 
approximation as used in EFG. 
 
Calculated shape functions should be inserted in 
weak form of the integral governing equations of the 
system and convert them to a new system of 
nonlinear equations. Solving this system of equation 
results in the primary unknowns, which in solid 
mechanics, are generally, displacement field 
components.  
The following notational rules have been applied 
throughout this section, 
١- As most variables are function of position, 

for the sake of brevity, the argument (x) has 
been omitted. Moreover, the italic symbols 
have been used for variables that have no 
explicit dependence on (x). 

٢-  Subscripts in capital letters are used to 
count nodal variables. 

In the following section, the construction of EFGM 
has been described. 
 
Moving Least Square interpolants(MLS) 
 To construct a matrix form used in variational 
principle, an approximate function must be chosen 
such as, 

u = ϕT δ     (١) 

Where, δ  is the vector of nodal unknown parameters 
and ϕ is the vector of shape functions for n different 
number of nodes. 
 To obtain the best approximation, a criterion 
should be chosen and then minimized. In MLS this 
criteria is as follows [١]; 

R = 
I

n

=
∑

1

wI [ u(x I) - δI  ](٢)    ٢ 

in which, wI = w(x - xI) is the weight function and 
u(xI) is the magnitude of approximate  scalar 
function in point xI . The approximate function is 
chosen as,  

u =  pT c     (٣)   

where c is a vector of m unknown variable 
coefficients which are to be  calculated, and p is 
called the base vector. In this paper the base vector 
is chosen as, pT = ⎣١, x, y⎦. However in [١٢] some 
other kinds of base vectors are introduced.  
 Inserting (٣) in (٢), the stationary of R with 
respect to c leads to the following linear relation 
between c  and δ. 

A  c = B  δ     (٤) 

Where, A and B are matrices as follows, 

A =
I

n

=
∑

1

wI   pI   
p

I

T
 (٥a) 

B = [b١ ,..., bI  ,..., bn ]     (٥b) 

in which 

bI = wI   pI   
  (٦) 

B and A are matrices similar to the first and second 
moment matrices, respectively. Especially, A is 
called moment matrix [١٩]. After solving (٤) for c 
and substitute it in (٣) and combining the result with 
(١) we obtain, 

ϕI = pT A
-١

 bI (٧) 

 As it is shown in [١ and ٤] weight function has a 
dominant effect on the final solution. Usually a bell 
type function is chosen as weight function. Hence, 
the resulting shape function is also nearly a bell type 
function. As shown in [٤ and ٥] exponential type of 
weight function causes more accurate solution. 
Therefore, in this  paper, this  type of weight 
function has been used. i.e., 
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where, in this relation ρ = r / r
m
  is the 

dimensionless radius, r is the radial distance, r
m
  is 

the radius of the support domain for the weight 
function and β  is a parameter that controls the bell-
type shape of weight function and has the value of ٤.  

Because of existence of the A
-١

 in the expression for 
ϕI, evaluation of ϕI and its derivatives in all 
quadrature points can take up a great amount of 
computing time. By application of the following 
technique the mathematical manipulations and 
therefore the execution time will be reduced.  
 If one rewrites Equation (٧) in the form of : 

ϕI  = γT bI      (٩) 

Where, γ = A
-١

 p, then one can write  

p=A
 
γ     (١٠)  

 Now we can decompose A into the upper and 
lower triangular parts and with fewer operations, 
calculate γ and ϕI . To find the derivatives of the 
shape function, after taking derivatives from 
Equation (١٠), we have  

Aγ
,i
 = p

,i
 -A

,i
 γ     (١١) 

 The terms in right hand side of Equation (١١) can 
easily be estimated and γ

,i
 can be calculated similar 

to γ calculation. Later on for some other purposes, 
we need to calculate ϕI,i ,namely the derivative of ϕI 
with respect to some variable. From Equation (٩) we 
have  

ϕI,i = γ T
,i bI + γ T bI,i  (١٢)  (١٢)  

in witch all terms at right hand side are known 
quantities. 
 
Discritized variational formulation 
In the field of solid mechanics the equilibrium 
equation for a continuous media under small 
displacements is given as; 

∇. σ + b = ٠  in Ω (١٣) 

with essential and natural boundary conditions as 
follows.  

u u=   on  Γ
u     

 (١٤a) 

σ .n t=    on  Γ
t      

(١٤b) 

In these relations, σ is the stress tensor, b is the body 
force vector, u is the displacement vector, ∇ is the 
gradient operator, t is the traction force and n is the 
unit normal vector to the boundary. Also the 
superscripted bar denotes a prescribed boundary 
value.  

 As in [٥], the weak form of equilibrium equation 
is given as follows, 

∫ δ(∇s  u) : σ dΩ - ∫ δu . b dΩ - ∫ δu . t  dΓt  - ∫ δl . 
( )u u− dΓu  -∫ δu . l dΓu  = (١٥)  ٠ 

In this relation ∇su is the symmetric part of ∇u term. 
Double dot product (:) represents the dyadic scalar 
product and l is the vector of Lagrange multipliers. l 
and δl belong to Sobolov space of degree ٠ whereas 
u and δu belong to Sobolov space of degree ١. 
 Note that in this method in the absence of 
Lagrange multipliers, it will be impossible to obtain 
a solution, which can satisfy essential boundary 
conditions. To impose essential boundary 
conditions, apart from the aforementioned method, 
some other methods can be found in the EFGM 
literature. For example in [١١] by using singular 
weight functions and with the cost of some alteration 
in the class of continuity of shape function or in [١٣] 
by combining FEM near boundary zone with EFG 
the problem of boundary conditions implication has 
been simplified. In some other works such as [٦ and 
١٣] physical meaning of Lagrange multipliers has 
been used. They have used boundary traction force 
in place of Lagrange multiplier, l in Equation (١٥).  
 To discritize the final variational formulation we 
substitute u

i
= ϕT δ  and  l

i
 = NT λ in Equation (١٥) 

where u
i
 and l

i
 are components of u and l , 

respectively and N is the vector of local shape 
functions. Having in mind that the relation between 
strain and small displacement is ε = ∇s u  and  
constitutive relation is σ = D ε we obtain, 

K G
G

f
qT 0

⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭

=
⎧
⎨
⎩

⎫
⎬
⎭

δ
λ  (١٦) 

in which 

K
IJ  

= ∫ BI

T
 D B

J
 dΩ (١٧a) 

G
IK

 = - ∫ ϕI  
N

K
 dΓ

u 
(١٧b) 

f
I
 = ∫ ϕI

 t dΓ
t
 +∫ϕI 

b dΩ      (١٧c) 

q
K
 = - ∫ NK

 u  dΓ
u
  (١٧d) 

also in this relations we have 

B I

I x

I y

I y I x

=

⎡

⎣
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⎢

⎤

⎦

⎥
⎥
⎥

φ
φ

φ φ

,

,

, ,

0
0  (١٨a) 
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=
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⎣
⎢

⎤

⎦
⎥

0
0

 (١٨b) 

and D is property matrix, which relates different 
components of stress and strain to each other. 
 
Elastoplastic constotutive equation 
At least in the last couple of decades, different 
approaches for the modeling of incremental behavior 
of plastic deformation especially in the isotropic and 
homogeneous materials have been introduced. 
Following an Elastoplastic derivation for an 
isotropic material including some modifications 
made related to this special usage has been 
proposed.  
 When material is loaded in Elastoplastic range, 
property matrix D in Equation (١٧a), must be revised 
to comply with this complex behavior.  
From now on, the stress and strain tensors are 
expressed in the form of single column array 
matrices, e.g., ε

T
 = ⎣ ε

x
, ε

 y
 , ε

 z
 , γ

 xy
 , γ

 xz
 , γ

 yz
  ⎦. 

 To find D
ep

 matrix, following relations are 
assumed to be known: 
  
a-  Total strain increment is the summation of 

elastic and plastic parts i.e., 

 dε=dε
e
+ dε

p 
(١٩) 

b-  Elastic stress-strain relation in the incremental 
form is similar to the relation in its total form, 
e.g., 

 dσ = D
e 
 dε

e 
(٢٠) 

c-  Failure criteria is, 

 F(σ)=f ( σ ) (٢١) 

  in which F and f are two different forms of 
failure functions, σ is the stress  tensor and σ  
is the equivalent stress.  

d-  Flow rule that relates strain increment to other 
quantities, is the gradient of a function called 
plastic potential. If one assumes that the 
plastic potential function is the same as the 
failure function, then one can get the 
following relation known as normality rule, 

 dε
p
= ∇F. dλ (٢٢) 

e- Definition of plastic modulus is as follows. 

 
pd

dH
ε
σ

=′      (٢٣) 

f-  For a given strain energy, δw, and according 
to the definition of pdε  we must have, 

  pd.w εσ=δ      (٢٤) 

g- According to the Von Mises criteria F = J
٢
 , 

[١٢], where J
٢ 

is the second invariant of 

deviatoric stress tensor.  So we must have 
f( σ )= σ

٢
/٣.  

 
Now, combining (١٩) and (٢٠) results in 

 dσ=D
e 
{ dε - dε

p
}     (٢٥) 

After taking the derivatives from both sides of 
Equation (٢١) we obtain, 

 (
σ∂

∂F
•dσ)= ⋅

∂

ε∂
⋅

ε∂
σ∂

⋅
σ∂

∂
w

f p

p

(
p

w
ε∂

∂
• dε

p
)      (٢٦) 

In Equation (٢٦) vector quantities are enclosed in 
parentheses and  symbol (•) stands for the so-called 

dot vector product. For simplicity we take 
σ∂

∂F = a ,  

and af
=

σ∂
∂ . Also by means of equations (٢٣) and  

(٢٤) we can rewrite (٢٦) in the form of, 

a • dσ = .)1(.H.a
σ

′  σ
 
 • dε

p 
     (٢٧) 

dλ is calculated by omitting dσ between Equation 
(٢٥) and (٢٧) and substituting dε

p
 from Equation 

(٢٢). If we back substitute dλ in Equation (٢٢), the 
final form of material matrix of Elastoplastic 
equation will be obtained. i.e., 
 

D
ep

= D
e 
- D

p 
(٢٨) 

 
Where, 

Daaa

DDaaD
TT

T

p
+σ′

=
 Η  

σ
a

      (٢٩) 

In order to obtain D
p
 or the standard rank one 

correction to the elastic modulus, similar methods 
are outlined in [٢٠ to ٢٢] and some nearly similar 
relations are represented in those works.  
 In terms of Von Mises criteria, we have 

3/2a σ= . In this case using a single column matrix 
representation for the flow vector a in Equation (٢٧) 

we have, a
T
 = ⎣ s

x
, s

 y
, s

 z
, ٢s

 xy
, ٢s

 yz
, ٢s

 zx
 ⎦ in which, 

s, stands for a deviatoric stress components. Now, if 



  

we use the general stress-strain matrix of property 
for an isotropic material in place of D, we will 
obtain D a = E′ s, in which, E′ = E / (١+ν) and s is a 

column of deviatoric stresses, i.e.,  s
T
 = ⎣ s

x
, s

 y
, s

 z
, s

 

xy
, s

 yz
, s

 zx
 ⎦. After substituting these relations into 

the Equation (٢٩) and some simplification, we 
obtain: 
 

D
p
=  sT s / c  (٣٠) 

in which, c = ( H′+ ١,٥ E′ ) (٢ σ / ٣E′ )
٢
.  

 Substituting Equation (٣٠) in (٢٨) and expanding 
(٢٨) for general state of stress results in the finale 
form of incremental Elastoplastic constitutive 
relation. That is, 
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in which 
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 In plane stress conditions the out of plane 
components of stress are zero. Using this fact and 
the equation (٣١), the planar incremental stress-strain 
relationship is easily derived.  
 
EP-EFGM solution algorithm 
 As indicated before if incremental solution is 
sought, the derived Elastoplastic constitutive relation 
is needed. Now if in Equations (١٦) and (١٧a), total 
auxiliary nodal displacement vector is replaced by 
incremental auxiliary nodal displacement and 
property matrix is replaced by Elastoplastic property 
matrix, then a new set of equations will be obtained 
which describes incremental Elastoplastic behavior. 
The incremental form of Equation (١٦), is 

K f
q

ep
T

G
G 0

⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭

=
⎧
⎨
⎩

⎫
⎬
⎭

∆
∆

∆
∆

δ
λ

      (٣٢) 

which can be shown in more compact form with, 

S
ep 

δ  = f (٣٣) 

for the sake of brevity, S
ep

 will be called as the 
stiffness matrix, δ  as the Auxiliary Nodal 
Displacement (AND) vector and f as the force 
vector. In this manner, to obtain the total 
displacement, we should change boundary 
conditions gradually and solve related incremental 
equations and finally imply a summation over the 
resulted field quantities.  
 Apart from incremental behavior, there is still 
another difference between the form of Equation 
(١٦) and (٣٢). That is in this model the behavior of 
Elastoplastic EFG stiffness matrix in the incremental 
form is nonlinear. In fact stiffness matrix S

ep
, which 

has to be used to obtain displacement field, by itself 
depends on material properties. In other words it can 
easily be verified that the Elastoplastic material 
property matrix D

ep
 indirectly depends on 

displacement field. So, in order to obtain unknown 
∆δ’s in Equation (٣٢) a nonlinear solution technique 
has been chosen.  
   Owen and Hinton (١٩٨٠) [٢١] have introduced 
different methods for solving nonlinear Elastoplastic 
FEM equations. In this paper we chose one of those 
methods, which is called initial stiffness method and 
tailor it to EFGM.  
 
Numerical solution 
To examine the validity of this method, the solution 
of two well known problems are compared with 
their respective bench marking analytical solutions 
in the literature. Both examples devoted to the stress 
analysis in a thin rectangular plate. The simply 
supported plate is under uniform tensile traction in 
each side. In the first example it is assumed that the 
plate has no crack and should carry a uniform tensile 
Elastoplastic state of stress in entire field. In the 
second example it is assumed that the plate has a 
middle edge crack with the length of ١٠٠mm and 
carries the uniform tensile traction over end 
boundaries.  
 

 
 
Figure ٢. Node distribution in an overlay made of 
field nodes (a) and crack tip nodes (b). 
  



  

  An overlay of the two different networks of 
nodes (a) and (b) in Figure ٢ is used for nodal 
modeling in our solution domain. Amongst them the 
arrangement (a) is individually used in example ١ 
and the arrangement (a&b) is used for the solution of 
example ٢.  
     In order to conduct the field integrations we need 
another network of cells and a web of points to be 
used in a quaderative rule of integration. At these 
points, the stiffness matrix components have to be 
calculated and integrated. 
 In the following the solution for two 
benchmarking problems using our methods is 
described. In both examples, assumptions are: 

• Mechanical behavior of material is supposed 
to be isotropic and homogeneous with an elastic 
modulus equal to ٢٠٠ GPa, a Poisson’s ratio 
equal to ٠٫٣.  

• In the elastic range a linear relation for stress 
and strain is assumed.   

• In Elastoplastic region, material yields 
according to Von-Misses criteria and also 
normality rule prevails. 

• Imposed boundary traction or extensions are 
planar. Hence induced deformation remains 
planar. On the other hand, no off-plane 
deformation or buckling is allowed to occur. 

 

Example ١: Uniform Elastoplastic Tensile Stretch 
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Figure ٣. Distribution of σ

x
 in the Elastoplastic 

uniaxial stretch of a rectangular thin plate. 
 
Consider a ٨٠٠×٤٠٠mm rectangular simply 
supported plate under a uniform in-plane tensile 
traction, which is made of isotropic material with 
elastic modulus ٢٠٠GPa and yield stress equal to 
٢٠٠Mpa. We assume an elastic linearly plastic 
strain-hardening behavior for the material with slope 
of stress vs. plastic strain curve equal to ٢٠GPa. 
Then if we stretch the plate uniformly in both 
opposite sides up to ٣mm, a simple stress-strain 
analysis shows that the uniform tensile stress should 
be ٢٥٠Mpa throughout the plate. Figure ٣ shows the 

result obtained by using a network of ٥×٨ nodes to 
model the plate surface. As can be seen in the 
TECPLOT contour plot of the results, the deviation 
of stress distribution from true values is very slim. 
 

Example ٢:Capturing the mode (I) of 
Elastoplastic crack tip plane stress singularity 

To show the utilization of this method in crack stress 
analysis, numerical solution for plane stress 
distribution around the tip of a crack is sought. It is 
assumed that the ١٠٠mm open crack is situated in the 
middle of a rectangular plate of ٨٠٠×٤٠٠mm size. 
See Figure ٢. The plate is loaded uniformly and 
gradually up to the traction of ١٠٠ MPa in both sides.  
 In EFG method a crack can rather be model more 
easily than other methods. Here the rule is to omit 
that part of the shape function of any node that 
situated in other side a crack line. According to this 
rule the support of any point is limited to the visible 
region through that point. In this method any kind of 
boundary such as crack edges are visualized to be 
barriers against vision. 
 Generally in Elastoplastic situations J-integral is 
used as a representative to show the magnitude of 
stress singularity in crack tip. We have also used J-
integral to represent a numerical value for stress 
singularity and to compare our results with others. 
   J-integral is an integral over a special function of 
stress, which is defined as follows [٢٣ ]. 

J = ∫ (wn١  - ti
x

i

∂
∂u ) dΩ      (٣٤) 

In this relation w stands for elastic energy density, t
i
 

is vector of traction applied to the integration 
contour, x is the coordinate axes which places along 
the crack wall in direction of crack growth, n

١
 is x 

component of the unit normal vector to the contour 
and finally u

i
 is the displacement vector. Using 

Green’s theorem, the path integral may be 
transformed to a domain form [٢٤ and ٢٥].  
    Though it is easy to pinpoint a numerous number 
of literatures in Elastoplastic stress analysis for crack 
tip, using J-integral approach, e.g. [٢٦ to ٢٩], 
nonetheless there are limited number of works that 
analytically relate different geometry and material to 
the value of J-integral. One of the well-known work 
in this field seems to be the work done in Electric 
power research Institute [٣٠]. In this work according 
to different geometry of crack and loading, based on 
the power law behavior of material’s hardening the 
value of J-integral has been proposed. For power law 
hardening we have: 
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In this relation σ stands for stress, ε for strain and σ
º
 

, ε
° and α are some adjusting parameters.  

In order to comply further with the type of loading 
assumed in [٣٠], instead of applying stepwise 
traction, a single step loading is employed. Finally, 
in our stress analysis, as it is the case in [٣٠], the 
contribution of elastic part of Equation (٣٥) is 
neglected. For the aforementioned geometrical 
specifications, J-integral in different paths has been 
calculated and compared with those which can be 
obtained by using the relation in [٣٠]. In our 
analysis, we have taken n=١٠, σ

º 
=٢٠٠ Mpa, ε

° 
=.٠٠١ 

for and α = ١. According to [٣٠] and based on the 
geometrical and material parameters, Jp should be 
٢,٨٤٢N/mm.  
 To test the results of the program, the following 
entries are taken to be the value of the node 
distribution parameters: 
The number of nodes in x direction is ١٠, the number 
of nodes in y direction is ٦, the number of circular 
and radial arrays of nodes both equals ٤ and finally 
the number of nodes used for modeling of each side 
of the crack wall is ٤, too. 
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Figure ٤. Equivalent stress ( σ ) developed in a 
plate having an open crack and loaded in both 
sides 
 
  
For such an arrangement of nodes we have found the 
values of J١ to J٤ on the square paths with side 
lengths ٨٠ ,٦٠ ,٤٠ and ١٠٠ to be ٥٫٠٠٠ ,٨٫٦٩٩, 
٢٫٨٤٧ ,٣٫٩٢٠ N/mm respectively. Figure ٤ shows 
the typical distribution of the equivalent stress in 
such a plate. 
 As one can imagine the shape of the stress 
contours are very much similar to the well-known 
plastic zone proposed in the literature such as [٣١ to 
٣٣]. In this typical example it is seen that the value 

of J-integral closely approaches that obtained by 
using the relations in [٣٠].  
 
Conclusion 
In this paper by combining EFG and incremental 
plasticity, a new solution method has been proposed. 
Using two benchmarking examples the capabilities 
of the method has been examined. It is shown that 
the extension of EFGM to Elasto-Plastic stress 
analysis including the stress analysis in crack 
problems is feasible and that its results are 
reasonable and have close agreement with other near 
works in the literature. Especially in the simple 
geometeries such as the first example the results are 
nearly perfect.  
 Compared to FEM, there are some drawbacks 
such as insertion of essential boundary conditions, 
complexity of solution algorithms, sensitivity of the 
method to adjusting some indices like weight 
function and the need for base function enrichment 
and shape function repair around crack tip. Our 
further experience shows that in complicated and 
singular conditions such as the crack problems 
results have some kind of complex and unknown 
dependence on the number and distribution of nodes. 
Such kind of disorder has also been anticipated by a 
recently published paper  [٣٤]. 
 With all these drawbacks the method seems to be 
nearly expensive. Nevertheless in Elastoplastic 
problems with complex geometeries, especially 
where there are two or three-dimensional cracks, 
because of the benefits of meshless techniques the 
method sounds to be useful. 
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