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Abstract 
In this paper Element Free Galerkin Method is used and applied to the stress analysis problems where material has a 
tendency towards both elastoplastic and creep behavior. In doing so, following a brief description of the nonlinear 
constitutive formulation of elastoplastic and creep, a new technique for the numerical analysis of nonlinear problems 
has been constructed. The method has been examined in two different plates with and without a crack. The value of 
C*-integral has been used as a base for comparison of the creep results. A rather close agreement is seen between 
results of this work and the others.  
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Introduction 
Because of its advantages and applications, different 
aspects of the well-known method of Finite 
Elements have been expanded in the last half a 
century. One of the main steps in FEM is to 
discretize the domain into a number of finite 
elements, which is called mesh generation phase. 
The other important task in this technique is to use a 
piecewise approximate solution for sub-domains, 
which does not ensure the continuity of the 
derivatives throughout the domain. In the last 
decades different mesh-less methods were 
introduced. Basically in these methods not only 
there is no need to discretize problem geometry into 
finite elements but also the continuity of the 
derivatives of the approximate solution is ensured. 
Element Free Galerkin Method is one of these 
methods, which introduced for the first time by 
Belytschko et al [١] in ١٩٩٤. The paper of Nayroles 
et al [٢] is a close work prior to the former one and 
this work by itself seems to be inspired by another 
work, which is in the area of Moving Least Square 
interpolants (MLS) [٣].  
 
After introducing of the EFGM, this method has 
been used in a wide range of different subjects such 
as dynamic fracture [٤،٥], crack growth [٦،٧], elastic 
plates and shells [٨], ٣-D problems [٩،١٠] and non-
elastic stress analysis [١١]. Since then the theoretical 
foundations of this method have been reconsidered, 
developed or revised for several times [١٦-١٢]. 
   In this paper a new mixed method of Elastic-
Plastic-Creep Element Free Galerkin Method (EPC-
EFGM) is constructed. The composed method is 
intrinsically based on nonlinear relations; therefore a 
section is devoted to present its solution algorithm. 
The solution requirements for two solved examples 
and comparison of their results with other similar 
works have been proposed in another section. 

 
 

The EFG method 
Similar to FEM, the first step in EFGM modeling 

is to assume an appropriate mathematical form for 
the approximate function. Once an approximate 
function is assumed the shape functions can be 
calculated. It should be pointed out that the basic 
difference between the EFGM and FEM is that in 
EFGM, the approximate function is an 
approximation through the nodal values while in 
FEM it is an interpolation between nodal values. 
Where, the approximation and interpolation have the 
same explanation as, for example, in  [١٧]. 

Calculated shape functions should be inserted in 
the integral forms of the governing equations of the 

system and convert them to a new system of 
nonlinear equations. Solving this system of 
equations results in some primary unknowns, which 
in solid mechanics, are generally displacement field 
components.  

 
Moving Least Square interpolants (MLS) 

To construct the matrix form of a variational 
principle in terms of the scalar function U(x), an 
approximate function u(x) must be chosen such that, 

 
u = ϕT δ  (١) 
 
in which δ is the vector of nodal unknown 
parameters and ϕ(x) is the vector of shape functions 
for n different number of nodes. 
 As it is presumed, approximate function will not 
pass through all base point magnitudes. Hence, to 
obtain the best approximation, a criterion should be 
chosen and then minimized. In MLS this criteria is 
as follows [١]: 
 
R = WI [ u(x I) - δI  ](٢) ٢ 

 
in which, WI = W(x - xI) is the weight function and 
u(xI) is the magnitude of approximate scalar 
function in point xI . The approximate function is 
chosen as,  
 
u =  pT c (٣)   
 
where c is a vector with unknown variable 
coefficients, which ought to be calculated, and p is 
called the base vector. In this paper the base vector 
is chosen as, pT = ⎣١, x, y⎦.  Some other kinds of 
base vectors are introduced in [١٢].  
 Inserting (٣) in (٢), and forcing R to be stationary 
with respect to c leads to the following linear 
relation between c and δ. 
 
A  c = B  δ  (٤) 
 
Where, A and B are matrices as follows, 
 
A =WI   pI   

p
I

T
 (٥a) 

B = [b١ ,..., bI  ,..., bn ] (٥b) 
in which 
bI = WI   pI  

(٦) 
and p

I
 is the magnitude of base vector p in nodal 

point x
I
. After solving (٤) for c, back substituting in 

(٣) and combining the result with (١) we obtain, 
 



ϕI = pT A
-١

 bI (٧) 
 
    Usually a bell type function is chosen as weight 
function and the resulting shape function is also 
nearly a bell type function. As shown in [٤،٥], 
exponential type of weight function causes more 
accurate solution. Therefore, in this paper, this type 
of weight function is used. i.e., 
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where, in this relation ρ = r / r
m
 is the dimensionless 

radius, r is the radial distance, r
m
 is the radius of the 

support domain for the weight function and β is a 
parameter that controls the bell-type shape of weight 
function and in this work has the value of ٤.  
 
 Discretized variational formulation 
In the field of solid mechanics the equilibrium 
equation for a continuous media under small 
displacements is given as, 
 
∇. σ + v = ٠  in Ω (٩) 
 
with essential and natural boundary conditions as 
follows.  
 
u u=   on  Γ

u   
(١٠a) 

σ .n t=    on  Γ
t  

(١٠b) 
 
In these relations, σ is the stress tensor, v is the body 
force vector, u is the displacement vector, ∇ is the 
gradient operator, t is the traction force and n is the 
unit normal vector to the boundary. Also the 
superscripted bar denotes a prescribed boundary 
value.  
 As in [٦], the weak form of equilibrium equation 
is given as follows, 
 

∫ δ(∇s  u) : σ dΩ - ∫ δu . b dΩ - ∫ δu . t  dΓt  - ∫ δl . 

( )u u− dΓu  -∫ δu . l dΓu  = (١١) ٠ 
 

In this relation ∇su is the symmetric part of ∇u term. 
Double dot product (:) represents the dyadic scalar 
product and l is the vector of Lagrange multipliers. l 
and δl belong to Sobolov space of degree ٠ whereas 
u and δu belong to Sobolov space of degree ١. 
 Note that in this method in the absence of 
Lagrange multipliers, it will be impossible to obtain 
a solution, which can satisfy essential boundary 
conditions.  

 To discretize the variational formulation in Eq. 
(١١) we substitute u

 
= ϕT δ and l = NT λ in which N 

is the vector of boundary node shape functions and 
λ is the vector of discritized boundary node 
Lagrange multipliers. Having in mind that the 
relation between strain and small displacement is ε = 
∇s u and constitutive relation is σ = D ε we obtain, 
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in which 
 
K

IJ  
= ∫ EI

T
 D E

J
 dΩ (١٣a) 

G
IK

 = - ∫ ϕI  
N

K
 dΓ
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(١٣b) 

f
I
 = ∫ ϕI

 t dΓ
t
 +∫ϕI 

v dΩ (١٣c) 

q
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  (١٣d) 

 
For example in plane problems we have, 
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Besides, D is property matrix, which relates 
different components of stress and strain to each 
other. 
 

Elastic-Plastic-Creep constitutive equation 
   In the last couple of decades different approaches 
for the modeling of incremental behavior of plastic 
deformation especially in the isotropic and 
homogeneous materials have been introduced. In 
one of these methods, elastoplastic stiffness matrix 
is obtained by modifying the elastic stiffness matrix. 
In this case the elastoplastic stiffness matrix D

ep
 can 

be represented as:  
 
D

ep
= D

e 
- D

p 
(١٥) 

 
   where D

e
 is elastic stiffness matrix and following 

the formulations in [١٩ ,١٨ ] the correction to elastic 
stiffness or D

p
 may be shown to be,  

 
D

p
= s sT / [( H′+ ١,٥ E′ ) (٢ σ / ٣E′ )

٢
] (١٦) 

in equation (١٦) s
T
 = ⎣ s

x
, s

y
, s

z
, s

xy
, s

yz
, s

zx
 ⎦ is a 

vector comprising of deviatoric stress components. 



Furthermore H′ is the plastic modulus, E′ is the slop 
of stress-strain curve and σ  is equivalent stress.  
   In plane stress conditions the out of plane 
components of stress are zero. As a result the 
dimensions of D

ep
 in Eq. (١٥) can be reduced to ٣×٣, 

which relates planar stress and strain components. 
In order to encounter the effect of creep on the 

formulation one may consider that creep behavior of 
material is a function of temperature, time and stress 
level [٢٠-١٨]. Nevertheless, if a uniform distribution 
of temperature exists the following equation may be 
a proper relationship between the uni-axial stress 
and creep strain rate [٢٢-١٩]. 

 
)m(

c .Bσ=ε&  (١٧) 
 
In which B and m are two material constants. To 
extend this relation to a more general state of stress 
and strain, a failure criterion is needed.  Assuming 
an isotropic material with von-Mises failure criteria 
and using the normality rule of flow the following 
relation holds [١٩],  
 

η=ε && ijijc s)(      (١٨) 

 
In which, ijc )(ε&  is the creep strain rate, ijs  is the 

component of deviatoric stress tensor andη& is the 
proportionality constant. By substituting the 
components of strain rate in (١٨) into the equivalent 

strain rate relation for the von-Mises criteria, cε& , 
and extracting stress components in the form of von-
Mises equivalent stress σ , one would get: 
 

σ
ε

=η c

2
3 &

&     (١٩) 

 
Creep strain - stress relation will be obtained by 
back substituting Eq. (١٩) into the Eq. (١٨). That is,  
 

t)
2
3( c

c ∆
σ
ε
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sε   (٢٠) 

 
The resulted relation will be used in the variational 
or weighted form integral to obtain discritized form 
of field equations. To this end we note that,  
 

cep ddd εεε +=   (٢١) 

 
According to the definition of D

ep
 in Section (١-٣) 

we have, 
)dd(d cep εεσ −= D   (٢٢) 

Which upon its substitution into the Eq. (١١), quasi-
nodal creep force is obtained as, 
 

∫ Ω∆=∆ dcepc εEDf    (٢٣) 

 
More details are given in the next section that 
devotes to the solution algorithm. 
 

 
The EPC-EFGM solution algorithm 

If in Equation (١٢), any non-incremental vector 
components such as total auxiliary nodal 
displacement vector is replaced by its respective 
incremental form and furthermore the property 
matrix is replaced by elastoplastic property matrix, 
then a new set of equations will be obtained which 
describes incremental elastoplastic behavior. The 
incremental form of Eq. (١٢), is 
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 Adding the creep incremental nodal force, ∆f
c
, in 

(٢٣) to the incremental nodal force in Eq. (٢٤), ∆f
ep

, 
results in the total incremental nodal force, ∆f

epc
. It 

should be noted that contrary to the creep 
phenomenon, the elastoplastic phenomenon is 
almost an instantaneous process. Hence, due to the 
difference in the nature of elastoplastic and creep 
generated incremental forces the method of their 
application is different. 
  Equation (٢٤) can be shown in more compact 
form as, 
 
S

ep 
δ  = f

epc
 (٢٥) 

 
For the sake of brevity, S

ep
 is called as the stiffness 

matrix, δ as the Auxiliary Nodal Displacement 
vector (AND) and f

epc
 as the force vector which 

includes both elastoplastic and creep nodal force 
components. In comparison with Eq. (١٢), the force 
and displacement components in Eq. (٢٥) are 
incremental.  

 
 
 

 Apart from incremental behavior of Eq. (٢٥), 
there is still another difference between this equation 

and Eq. (١٢). Note that in Eq. (٢٥) the behavior of 
incremental stiffness matrix is nonlinear, whereas 

the stiffness matrix S
ep

, which is used to obtain 
displacement field, depends on material properties. 

In other words it can easily be verified that the  



elastoplastic material property matrix D
ep

 indirectly 
depends on displacement field. So, in order to obtain 

the unknown ∆δ in Eq. (٢٥) a nonlinear solution 
technique should be chosen. 

The flow chart in Fig. ١ shows briefly this process of 
solution. 
 

 
Fig. ١: A simplified flow chart of the nonlinear 

solution algorithm applied in  EPC-EFGM 
 

Numerical solution  
 

 
 

Fig. ٢:  A thin cracked plate under planar 
loading with free upper and lower boundaries 
and similar loading conditions in two other sides 
   Based on the outlined method in the previous 
sections and a self-developed computer code, one 
can conduct a planar elastoplastic and creep stress 
analysis in a sheet with or without a simple edge 
crack. Fig. ٢ illustrates a plate considered for stress 
analysis using our code. To make sure that the 
method is working properly, the solution of two well 
known problems are compared with their respective 
bench marking analytical solutions in the literature. 
Both examples devoted to the stress analysis in a 
thin rectangular plate. The simply supported plate is 
under uniform tensile traction in each side. In the 
first example it is assumed that the plate has no 
crack and should carry a uniform tensile state of 
stress in its entire field up to a level in the plastic 
range followed by creep relaxation. In the second 
example it is assumed that the plate has a middle 
edge crack and carries a uniform tensile traction 
over end boundaries (See Fig. ٢). 
In the following the detailed solution of two 
benchmarking problems using our methods are 
described. In both examples, assumptions are: 
• Material is isotropic and homogeneous. 

Hook’s law prevails in the elastic range. 
Elastic modulus is ٢٠٠ GPa and Poisson’s 
ratio is equal to ٠,٣. 

• In elastoplastic region, material yields 
according to von-Misses criteria and also 
normality rule prevails. 

• Imposed boundary traction and / or 
extensions and induced deformation are all 
planar.  

 
Example ١: Uni-axial creep problem 
Consider a ٨٠٠×٤٠٠mm rectangular simply 
supported thin plate under a uniform in-plane tensile 
traction, which is made up of isotropic and 
homogeneous material. In addition, assume that 
material behavior is elastic linearly plastic strain 
hardening and includes creep deformation. 
Especially take B and m constants in Eq. (١٧) to be 
٢٠-١٠ and ١٠, respectively.  
As it is mentioned before the long-term creep begins 
just after an instantaneous elastoplastic deformation 
and based on the defined geometry and loading, it is 
obvious that the creep strain rate has no reliance on 
the prior elastoplastic deformations. On the other 
hand, strain rate is related only to the creep constant 
parameters indicated in Eq. (١٧) and not on the 
Elastic and plastic parameters of the body.  If a 
uniform traction of ١٠٠MPa is applied in two 



opposite sides of the plate, it is clear that the resulted 
tensile stress should be ١٠٠MPa throughout the plate 
and based on the assumed creep constants, creep 
strain rate should be equal to ١ m/m-h.   
Obtained results confirm the validity of the method 
in calculating of stress and strain rate distribution 
throughout the domain. Furthermore, the results 
show that as it was expected, in this example elastic 
and plastic constants of material properties have no 
apparent effect upon the obtained results. 
 
Example ٢: Capturing the mode (I) of 
elastoplastic-creep crack tip plane stress 
singularity 
To show the utilization of this method in stress 
analysis of cracked bodies; numerical solution for 
plane stress distribution around the tip of a crack is 
sought. It is assumed that the ١٠٠mm open crack is 
situated in the middle of a rectangular plate of 
٨٠٠×٤٠٠mm size (See Fig. ٢). The plate is loaded 
uniformly and gradually up to the traction of ١٠٠ 
MPa in both edges.  
To simplify the comparison of the results with other 
works, power law stress hardening model and von 
Mises criteria have been adopted as material 
behavior and failure criteria, respectively. In power 
strain-hardening model the following relation 
correlates uni-axial plastic strain and stress. 

)n(
p Aσ=ε  (٢٦) 

in which ε
p
and σ are uni-axial plastic strain and 

stress, respectively. Moreover A and n are two 
material constants. In our work the magnitude of 
these two constants are taken as A =  ١٠

- ٢ ٦
 and 

n=١٠. Besides, the nodes are arranged in the 
following manner: 

A network of ٨ rows and ٨ columns of nodes 
devoted to cover the surface of the body (See Fig. 
٣). Two other groups of nodal points are used to 
model the crack. One group of nodes is distributed 
in a radial pattern around the crack tip comprising of 
٦ nodes along ٦ radial directions. The other group of 
nodes is placed along each line of crack sides 
comprising of ١٠ nodes per line  

Node

Quadrature Point

Cell

 
Fig. ٣:  Discretized plate of nodes showing, nodes 
and background integration cells 

 
In this example after applying the external load 

in a quasi-static manner, a complete elastoplastic 
analysis is done. When the maximum loading is 
reached the process is led into the stage of creep 
deformation. The output results are taken at the start 
and end of the creep process. To check the validity 
of this work, C*-integral is used to compare the 
obtained results with the related published works. 
C*-integral is a relation similar to the familiar J-
integral which is used on capturing the nonlinear 
singularity of stress distribution around a crack tip 
[٢٢]. The difference between C* and J-integrals is 
that in C*-integral definition, implicit displacement 
dependent terms should be replaced with their 
respective time rate derivatives. That is [٢٤ ,٢٣]: 

 

C* = ∫ (w*. n١  
- t

  
.
 

1x∂
∂u& ) dΩ   (٢٧) 

 
In which 
 

∫
ε

εσ=
mn

0
ijijd*

&

&w   (٢٨) 

 
Also u&  is the velocity vector, t is the traction vector 
on Ω contour around the crack tip, x١ represents the 
coordinate axes which is placed along the crack wall 
in direction of crack growth and n١ is the x١ 
component of the unit normal vector to the contour. 
In this work to make use of this technique, different 
square shaped contours encircling the tip of the 
crack are used.  

In order to evaluate the results, an analogy 
between J and C*-integral has been drawn. It has to 
be mentioned that in elastoplastic crack tip stress 
analysis it is possible to find few references, which 
represent the relationship between J-integral and 
load-geometry parameters. Moreover, it is possible 
to find some articles such as [٢٥] which analyses 



stress distributions around the crack tip in creep 
conditions, but it is not easy to find a relationship 
between C*-integral and load-geometry parameters 
in such kind of crack problem. In this work a unique 
power law relationship is used for both creep and 
plastic deformations. Therefore the creep strain rate 
components, ijc )(ε& , are proportional to the plastic 

strain components, ijp )(ε , [٢٥]. Similarly the 

correlation between C*-integral and load-geometry 
parameters remains analogous with the correlation 
between J-integral and load-geometry parameters. 
Hence, the J-integral formulation of a problem 
similar to our work, given in [٢٦], which is based on 
the power law stress-strain relationship (Eq. (٢٦)), is 
used to evaluate the C*-integral values. For 
simplicity, the same values of the material constants 
used in Eq. (٢٦) are assumed for the material 

constants in Eq. (١٧), i.e. B= ١٠
- ٢ ٦

 and m=١٠.  
After substitution of creep constants in place of 

plastic power law constants and substitution of other 
geometrical parameters in a relation given in [٢٦] the 
magnitude of C*-integral turns to be ٢٩٠٨N/mm-h. 
Based on the developed method in this paper the 
value of C*-integral along a square shaped contour 
with side length equal to ٦٠mm becomes 
C*=٢٠٠٨N/mm-h.  

In this analysis and prior to the creep process it 
has been noticed that some significant elastoplastic 
deformation is encountered. By comparison of the 
obtained values of the C*-integral it seems that the 
main reason for ٣١٪ difference between our result 
and the one from reference [٢٦] is due to not taking 
into account the pre-creep elastoplastic deformation 
by latter one.  

 
 

 
 

 Fig. ٤: Distribution of equivalent stress, σ , after a 
sudden elastoplastic deformation. 

 
 

 
 

Fig. ٥: Post-creep redistribution of equivalent 
stress, σ . 

 
Figs. ٤ and ٥ illustrate the flooded contour plots 

of displacement strain and stress components 
throughout the body. Fig. ٤ represents the 
distribution of equivalent stress just after 
termination of the sudden but incremental 
elastoplastic deformation prior to the creep process. 
Fig. ٥ illustrates the distribution of the same field 
quantity as in Figs. ٤, but one hour after 
commencement of the creep process. To 
demonstrate the capabilities of the developed 
method only one creep increment has been treated 
and studied. Nevertheless, since some big values are 
chosen for creep constants in Eq. (١٧), the difference 
between the field quantities before and after the 
creep process is appreciable. In other words, the 
creep process causes the highly concentrated state of 
stress around the tip of the crack to expand itself 
into the points far from this region. 

  
Conclusion 
 The results extracted by this work indicate that 
by preservation of some difficulties, EFGM can also 
be used in the field of creep stress analysis in 
nonlinear media. However and in general one can 
see that the outcome results have some kinds of 
unknown dependence on nodes distribution and the 
more is the complexity of the geometry the less is 
the accuracy of the results. Definitely the experience 
of user of this method could overrule some of these 
difficulties, but not all. 
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