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The integral solution of one-dimensional heat conduction in a semi-infinite wall
with constant temperature at its surface has been reviewed and compared with the
exact solution for three temperature profiles. Then, an entropy generation analysis
has been carried out for all solutions. Introducing an average normalized entropy
generation, the error of the integral solution is found to show values in the same or-
der as the values calculated for the normalized entropy generation. Therefore, it
can be concluded that when no exact solution is available for a similar problem,
one can verify the error of the available approximate solutions simply by applying
an entropy generation analysis on the problem.
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Introduction

Thermodynamic irreversibility which is an inevitable phenomenon in all types of ther-
mal processes is associated with entropy generation or in other words the one-way destruction of
available work. The most common source of irreversibility in conductive systems is thermal ir-
reversibility due to the finite temperature differences in thermal contacts. The growing need for
higher quality performance in thermal engineering systems have proposed the second law analy-
sis as a great tool in improving such systems.

Bejan [1] pioneered the method of entropy generation minimization (EGM) in various
configurations and flow regimes. In his book [2], he conducted the second law analysis of ther-
modynamics via the minimization of entropy generation for the single phase convection heat
transfer. Fowler ef al. [3] used thermo-economic analysis to study the optimal sizes of geome-
tries with specified external forced in convection heat transfer. Shuja et al. [4] presented a
thermo-economic design and optimization of fins with constant cross-sectional area. This
thermo-economic design considered capital costs and irreversibility penalty costs. Sahin [5] in-
vestigated entropy generation of a laminar flow in a tube with constant wall temperature. Also
Esfahani et al. [6] investigated the relation among entropy generation, geometry and fluid prop-
erties in the heat transfer process in circular pipes with constant wall temperature. They pre-
sented an optimum design based on minimizing thermal and frictional entropy generation.
Walsh et al. [7] developed a quick, simple, and relatively accurate method for the prediction of
entropy generation in steady, two-dimensional, incompressible, adiabatic boundary layer flows
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of turbo machines, which gives both the distribution and magnitude of the entropy generation
rate. Griffin et al. [8] investigated the effect of Reynolds number, compressibility and free
stream turbulence on profile of entropy generation rate; in their results, increased free stream
turbulence had a greater effect on the generated entropy. It was observed that the amount of en-
tropy generated in the turbulent boundary layer was approximately equivalent for two turbu-
lence levels at comparable Reynolds numbers.

Simple heat conduction problems may have analytical solutions in simple geometries,
but the solutions are always in closed series form and do not give a rapid insight of temperature
field behavior. On the other hand, this solution may not be available in case of complex geome-
tries, mixed boundary conditions or non-linear source terms. Thus, approximate analytical
methods of solution to heat conduction problems have received considerable attention for many
decades. One approximate solution applied in a number of conduction problems is the heat-bal-
ance integral method first employed by Goodman [9-11] to investigate a unidirectional melting
problem. Since then, this method has been used extensively in many problems of non-linear heat
input and in problems involving temperature dependant material properties [12, 13]. One point
worth discussing for all temperature profiles gained by the integral method in a problem is that
among several assumed temperature profiles, which one is more similar to the natural shape of
the temperature profile? In problems for which the exact solution is available, the exactness of
the approximate temperature profiles can be examined simply by comparing them to the exact
one. But when no exact solution is available for a problem, a parameter is needed to represent
the error of various integral solutions available for the problem.

Entropy generation analysis of thermal problems has been shown to be a good parame-
ter in the area of error estimation. Bejan [14] showed that the natural shape of the velocity and
temperature profiles of a two-dimensional turbulent jet is the one that minimizes the total en-
tropy generation rate. Esfahani et al. [15] examined different integral solutions in a flat plate
boundary layer and introduced entropy generation analysis as a valid representative of exactness
of an approximate solution. Later, Esfahani ez al. [16] performed an entropy generation analysis
of a two dimensional steady conduction problem and discussed the correlation between the en-
tropy generation and the average error. Hristov [17] performed an entropy generation of the
heat-balance integral of Goodman for two classical problems with known exact solutions to ex-
emplify the second law approach in defining the appropriate exponent n assumed in the temper-
ature profiles.

Since the application of entropy generation in error estimation of problems has not
been studied for a wide range of problems yet, in the present work, the objective is to focus on
errors of the solutions gained by applying an integral method on a well known conduction prob-
lem of constant surface temperature for three temperature profiles. This classical problem is se-
lected as the exact solution is available and the comparison between the approximate and the ex-
act results can be made. Then, an entropy generation analysis of the problem is made which is
followed by introducing a normalized entropy generation. It is found that the normalized rate of
entropy generation behaves in the same manner as average error calculated for each approxi-
mate solution.

Governing equations

A thick wall, initially at uniform temperature 7, is suddenly brought into contact with
a warm steam of temperature 7|,. Perfect thermal contact is assumed to exist between the wall
and the steam. As time progresses, the part of the wall adjacent to the side in contact with the
fluid warms up. The mathematical model for the problem is
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with the following boundary conditions
70, ) =T, 2
6, =T, 3)
T(x, 0)=T. 4)

Due to the prescribed boundary conditions, two solution methods are applied. The first
is the similarity method which will result in an exact solution, and the second is the integral
method which is an approximate solution.

Similarity solution

The exact solution of the problem via the similarity solution method can be found in

[18] as below:
0 :l—erf(g] (5)

where 6 and 7 are the dimensionless temperature and the dimensionless length, respectively,
and are introduced as:

T-T, X
T A ©
Integral solution
The simplest temperature profile can be a first degree polynomial assumed as:
7{; __TT -4+B % (7

Applying the two boundary conditions presented in egs. (2) and (3) on eq. (7) will re-
sult in the following expression for the temperature profile:
T-T,
e (8)
T, - T, o
The length of the temperature domain () in eq. (8) is defined writing the integral form
of the energy equation. However, the assumption of a linear temperature profile will result in a
constant & which is not physically acceptable as it varies with time.
Therefore, putting one step forward, a second degree polynomial expression for the
temperature profile can be assumed as:

2
r-T =A+Bf+c(fj 9)
T, -T, s o

Three boundary conditions are required for the evaluation of the unknown constants in
the temperature profile. Boundary conditions (2) and (3) yield two of the constants while the
third one is obtained realizing that:
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Thus, the solution for the temperature profile is defined as:

(4]

Assuming a third degree polynomial expression for the temperature profile as:

2 3
r-7 =A+Bf+c(fj +D{f) (12)
T, -T, s o B

1

four boundary conditions are required for the evaluation of the unknown constants in the tem-
perature profile. Boundary conditions (2), (3), and (10) yield three of the constants while the last
one can be obtained writing an energy equation either at x = 0 or x =4, respectively as:

2
(a f] =0 (13-1)
ox x=0
2
[a ZJ =0 (13-2)
0x? ) _s

Therefore, the solution for the temperature profile is further divided into two catego-
ries regarding eqs. (13-1) and (13-2) as :

3
9:1—%l+1(ij (14-1)

3
9:[ _LJ (14-2)

To compare the three integral profiles with the exact solution, an average error is intro-

duced as:
Oexact -0

1 Ns
Error:—J.
Ms % 0

The present study tries to introduce a parameter which can evaluate the error behavior
of the approximate solutions. Esfahani et al. [15] showed the validity of entropy generation
analysis in determination of the most accurate temperature and velocity profiles in the flat plate
boundary layer. Also, Esfahani e al. [16] performed an entropy generation analysis of a two-di-
mensional steady conduction and discussed the correlation between the entropy generation and
the average error. Here, the entropy generation of the approximate solutions related to three tem-
perature profiles is compared with the average error.

approximate

dn (15)

exact

Entropy generation

It is easy to show that the rate of one-way destruction of useful work in an engineering
system, W, ., is directly proportional to the rate of entropy generation:

Wies: = TS, (16)
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where 7, is the absolute temperature of the ambient reservoir (7}, = constant). Assuming a fi-
nite-size control volume at an arbitrary point in a two dimensional convective field and applying
the second law of thermodynamics, the entropy generation per unit time and per unit volume,
S 5 18 defined as:

gen >
2 2 2 2 2
Sé’én :i (ﬂj + ﬂ +E 2(%) + Q + %_{_@ (17)
T2 |\ ox oy T Ox oy dy Ox
where k and p are the conductivity and viscosity of the fluid, 7 represents the absolute tempera-

ture of the point where Sy, is being evaluated [2]. In the current study, attention is focused only

on diffusion of energy in the x-direction. Therefore, the above relation reduces to:
2
k (oT
Seen =—| — (18)
T2\ ox
This source of entropy generation is called thermal entropy generation. As it is seen,
the entropy generation depends on determination of the temperature profile. On the other hand,
the temperature profile depends on the method of solution, which was reviewed in the previous

section.
Furthermore, a non-dimensional entropy generation is introduced as:

K 2
. gen {a@] (19)

gen A
k(T,-1) \on
at T.

1

and the average normalized entropy generation is defined as:
— Ms .
Sgen = gSgendn (20)
In the following section, attention is focused on entropy generation behavior of the ap-
proximate solutions as well as the exact one and a correlation is found between entropy genera-
tion and the average error of the approximate solutions.

Results and discussion

In the current study, entropy gener- 1
ation is examined in two different 0 —— Similarity
ways; firstly we concentrate on the lo- g/ % ...l Integral 2" degree
cal behavior of non-dimensional en- ———- Integral 3" degree-Case 1
tropy generation, and secondly the g —-—-- Integral 31 degree-Case 2
correlation between the average nor- N
malized entropy generation and the ¢4 \'\\
average error is discussed. 3
Figure 1 demonstrates the temper- .21 \’\"‘?;\\
ature profiles of the integral solution \:\‘7‘\-\_\
as well as the exact solution. It is seen 0 ‘ oSS |
0 1 2 3 4 4, 5

that the approximate temperature pro-

files differ from the exact one in the  Figure 1.Temperature distribution of various solutions in
whole domain. This is expected as the  a semi-infinite slab
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simplification of exact solution to a polynomial function ignored some physical aspects of the
real behavior of temperature field. It is seen that the temperature profile for the second degree
polynomial temperature profile —eq. (11), almost overlap the exact solution at distances near the
edge of the slab while it differs from the exact solution at longer distances. Also it is seen that the
third degree polynomial temperature profile for the second case — eq. (14-2), has a more similar
profile to the exact solution regarding its length of the temperature domain 6 and its shape but
shows slight temperature differences in the whole domain. The third degree polynomial temper-
ature profile of the first case —eq. (14-1), is the least similar profile to the exact one regarding its
length of temperature domain and its values at longer distances from the edge of the slab. There-
fore, one can conclude that higher degree polynomials do not necessarily result in more accurate
temperature profiles.

Figure 2 shows the local non-di-

0.4 : S
Similarity mensional entropy generation distribu-

Sgen N Integral 2 degree tion of the three integral solutions as
0.3 ™ —— —- Integral 3 degree-Case 1 well as the exact solution. It is seen that

--=-- Integral 3" degree-Case 2 the entropy generation shows a similar
trend for all solutions. In other words,

0.21 the entropy generation is in very low
level inside the slab and increases con-

014 sistently near the edge of the slab
where higher temperature gradients

exist. This can be due to the higher

S ] 5 S s heat fluxes at distances near the edge

of the slab. Comparing the two third
Figure 2. Non-dimensional entropy distribution of various degree polynomial temperature pro-
solutions files, one can notice that at distances
near the surface, the dimensionless en-
tropy generation profile of the first case is more similar in shape to the exact profile than the sec-
ond case which is due to the extra boundary condition applied at this region —eq. (13-1). Similarly,
the dimensionless entropy generation values for the second case where the extra boundary condi-
tion is applied atd —eq. (13-2), is more similar to the exact values at longer distances from the edge
of the slab.
The local error of the dimensionless temperature profiles is shown in fig. 3. It is seen that all so-
lutions have more accurate results at the beginning and the end of the temperature domain which is
due to the existing boundary condi-

0.08 . .
2 tions at these two regions for all solu-
H N tions. Also, one can recognize that the
<004 /’ AN third degree polynomial temperature
s J/ A profile for the first case overpredicts
& // TN the temperature values in most of the
ORI — s temperature domain while the one for
NN e . .
SNax T 2. 3 - 4 » 3 the second case underpredicts the tem-
Nyeeaet” e perature. As for the second degree
7 . . .

—0.041 RN polynomial temperature profile, it is
"""" Integral 2™ degree seen that the values of maximum errors

———- Integral 3" degree-Case 1 .
—-—-- Integral 3" degree-Case 2 are less than the other two integral so-

-0.08 g g

lutions which can be counted as a good
Figure 3. Temperature errors of the approximate solutions characteristic of this profile.
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Table 1 shows the values of the average error for the integral solutions as well as the
values of normalized entropy generation. Considering the whole domain of solution, it is seen
that the third degree polynomial integral solution for the second case generates the minimum er-
ror among the three solutions while the one for the first case generates the maximum error. The
same trend is observed for the values of average normalized entropy generation. Therefore, the
similarity between entropy generation and exactness of the approximate solutions can be used as
atool to predict the error of the approximate solutions when there is no exact solution available.

Table 1. Average error and the normalized entropy generation

Integral solution Average error ':Xfrr:g; zgx:ltiiiid
2nd degree polynomial (eq. 11) 0.68 0.38
3 degree polynomial — 1%t (eq. 14-1) 0.76 0.42
31 degree polynomial — 2" (eq. 14-2) 0.66 0.36

Concluding remarks

The entropy generation analysis of a one-dimensional steady conduction in a semi-in-
finite wall with constant temperature at its surface has been carried out with an exact solution
method as well as an integral method resulting in three approximate solutions. Based on this
study, it can be concluded that the normalized entropy generation rate behaves similarly to the
average error. So, in more complicated cases when no exact solution is available, the normalized
entropy generation rate can be used to examine the exactness of a given solution.

In addition to other applications of entropy generation analysis in thermo-fluid prob-
lems, from this work, one can recommend the analysis of entropy generation as a procedure for
evaluating the solution methods and estimating the error of approximate solutions in the field of
thermal problems.

Nomenclature
k — thermal conductivity, [Wm 'K '] Greek letters
Seen  — entropy generation, [WK™

" : 3y _ oo s 2.1
Sgen  — local entropy generation, [Wm K] o/ thermal diffusivity, [m~s"']
Ky . . . o — temperature domain, [m]

gen  — dimensionless entropy generation di ionless lenoth

o0 — average normalized entropy generation , [—] n  cimension ess N8
T S temperature, [K] ’ 'g a Escosn.y, ENsm ]

’ - t t

T, — temperature at the edge, [K] fmenstoniess temperature
t — time, [s] Subscripts
u — velocity in the x-direction, [msfz] . nitial
v — velocity in the y-direction, [ms ] L — Initia )
Wi — lostwork, [W] 9 — at the end of temperature domain
X — x-direction, [m]
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