THE 12TH INTERNATIONAL CONGRESS
PHYTOPHARM 2008

2-4 July 2008,
Saint-Petersburg, Russia,

Abstracts Book
Organizers
Komarov Botanical Institute of Russian Academy of Science, Russia
Interregional Center "Adaptogen", Russia
Society for Medicinal Plant Research (GA), Germany
Saint-Petersburg Institute of Pharmacy, Russia
St-Petersburg State University, Russia
St-Petersburg Division of Mendeleev Russian Chemical Society, Russia

General Sponsor
The Phytoneering Company BIONORICA, Germany

Sponsors
Russian Foundation for Basic Research
FINZELBERG GmbH & Co. Germany
HARMS Ltd., Russia

Information support
Journal "Pharmacy (Rus.)" • Journal Problems of nutrition (Rus.)
Journal Plant resources (Rus.) • Journal Phytotherapy research
newspaper "Moscow pharmacies"

Scientific Committee
Prof. Rudolf Bauer, Austria • Prof. Wolfgang Blaschek, Germany
Prof. Andrey Budantsev, Russia • Prof. Vladimir Dadali, Russia
Prof. Raimo Hiltunen, Finland • Prof. Brigitte Kopp, Austria
Prof. Valery Makarov, Russia • Prof. Irina Samylina, Russia
Prof. Alexander Shikov, Russia • Prof. Victor Tutelyan, Russia
Prof. Robert Verpoorte, The Netherlands • Prof. Yury Vladimirov, Russia
Prof. Igor Zenkevich, Russia

Local Organizing Committee
Wolfgang Blaschek, Germany • Andrey Budantsev, Russia • Brigitte Kopp, Austria
Natalya Makarenko, Russia • Valery Makarov, Russia
Marina Makarova, Russia • Irina Martjanova, Russia • Olga Pozharitskaya, Russia
Renate Seitz, Germany • Alexander Shikov, Russia

Secretariat
Mrs. Svetlana Gavrilova
Interregional Center "Adaptogen"
Saint-Petersburg, Russia
Tel./fax +7 812 3225605
E-mail: adaptogen@sp.ru, phyto2008@mail.ru

ISBN 978-5-9651-0286-0
THE EFFECTS OF NITROGEN AND PHOSPHOROUS BIOLOGICAL FERTILIZERS ON THE GROWTH INDICES OF BLACK CUMIN (NIGELLA SATIVA L.)

S. Khorramdel, A. Koocheki, M. Nassiri Mahallati, R. Ghorbani

Ferdowsi University, P.O.Box: 91775-1163, Mashhad, Iran
Email: reza.ghorbani@nci.ac.ir

Application of biological fertilizers, especially plant growth promoting rhizobacteria (PGPR) compared to chemical fertilizers is one of the most important strategies for plant nutrition especially in sustainable management of agroecosystems. In order to investigate the effect of Azotobacter and Azospirillum bacteria and Mycorrhiza fungus on the growth indices of black cumin (Nigella sativa L.), a field experiment was conducted at Agricultural Research Station of Ferdowsi University of Mashhad during the growing season of 2007. A randomized completed block design with three replications was used. Treatments included: (A) Azotobacter paspali, (B) Azospirillum brasilense, (C) the fungus of Glomus intraradices, (D) C+A, (E) C+B, (F) A+B, (G) A+B+C, and (H) control without using bio-fertilizers. The Azospirillum and Azospirillum inoculations were applied as liquid and the Mycorrhiza inoculation was applied in solid form on the treated seeds with Arabic resin immediately before planting. The Arabic resin applied to increase the adherence of Mycorrhiza to seeds. In all treatments except control, the amounts of 15 mg of each bio-fertilizer were applied for 110 g of crop seeds. The results indicated that the inoculation of black cumin seeds with biological fertilizers significantly (P<0.01) increased plant height, dry matter (DM) accumulation and crop growth rate (CGR) compare to control. The maximum plant height was observed in the E treatment at 88 days after emerging. The fast period of vegetative growth and DM accumulation were observed at 40-69 days after emerging with a small decline afterwards until maturity. The maximum and minimum amounts of DM accumulation were recorded in the E treatment with 93.6 gm⁻², and H treatment with 19.9 gm⁻², respectively. CGR reached to its maximum in 82 days after emergence followed by a decreasing trend afterwards. The highest and lowest CGR were observed in the E treatment with 2.5 gm⁻²d⁻¹, and H treatment with 0.19 gm⁻²d⁻¹, respectively. Further, investigations on quantity and quality of medicinal plants including black cumin in association with biological fertilizers effects will provide additional information.