Achieve to desired weld bead geometry for the vessel fillet joints in mobile robotic welding

M. Golestani Sehat¹, Kh. Farhangdoost²

Mechanical Engineering Department
Ferdowsi University, mashhad, Iran;
Corresponding Author E-mail: m.golestan@gmail.com

Abstract

Employing of the mobile robot manipulators for fillet joint welding of vessel is presented in this paper. Have desired weld bead geometry for fillet joints is the objective of this work. The welding process variables which influence weld bead shape, are coupled with each other but not directly connected with weld bead shape individually. The relationships between welding process parameters and weld bead geometry are very difficult and complicated. The task is to track the horizontal fillet seem in the vessel, while the weld bead shape - criteria for quality of weldment - is desired. Here, using of optimum design based on mathematical model to obtain welding process parameters that necessary to programming of mobile robot manipulators. The system discussed in this paper is the nonholonomic mobile manipulators built from a robotic arm mounted on a wheeled mobile platform. We use of the manipulability considerations to generate the controls of our system to track seem by end effector. Simulation results were also presented to demonstrate the capability of this system to provide of our requirement.

Keywords: Mathematical Model, Fillet Welding, Mobile Manipulators, Manipulability, Nonholonomy

1 Introduction

Weld bead geometry is influenced by a large number of welding process parameters. The relationships between GMAW process parameters and weld bead geometry are very complex and difficult because of the number of parameters involved and nonlinear relationships. The mathematical model is one approach to show these relationships [1-3]. Welding process parameters such as welding current, arc voltage, welding speed, gas flow rate and offset distance are highly coupled, thus making it difficult to derive a mathematical relationship between them. It is necessary to selection of the appropriate welding process parameters for the desired weld bead shape in the adequate boundary conditions. Optimum design [4,5], which is based on mathematical model, was successfully applied to the welding processes for selecting the optimal welding parameters for the desired weld bead shape.

¹ - M.Sc Student, Mech. Eng. Dept. Ferdowsi University
² - Assistant professor, Mech. Eng. Dept. Ferdowsi University
To make effective use of automated and robotic arc welding, it is imperative that a mathematical model which can be programmed easily and fed to the robot should be developed. It should provide a high degree of confidence in predicting the weld bead geometry and shape relations to accomplish the desired mechanical properties of the weldment. The mathematical model should also cover a wide range of material thicknesses and be applicable for all welding positions. For the automatic welding system, the data must be available in the form of mathematical equations. Kim and Kwon [1], obtained a mathematical model for weld bead geometry of partial-penetration, single-pass, bead-on-plates in GMAW. Also Kim and Son [2], used of mathematical model that explained relationships between bead penetration for robotic CO₂ arc welding.

Mobile manipulators built from a wheeled mobile platform and a robotic arm. Thus, these systems combine manipulation and mobility capabilities. The arrangement of the wheels and their actuator determine the holonomic or nonholonomic nature of these locomotion systems.

The objective of this paper is welding of horizontal fillet joints in vessel by mobile manipulator, while the weld bead shape is desired. So we use five measures for weld shape, and obtain five welding process parameter by optimum design for different thickness of vessel plate [4].

2 Experimental process

For study the relationships between the weld bead shape and welding process parameters, need to a definition for weld shape. Fillet joint shapes are define by five measure, such as leg length₁, leg length₂, penetration, throat thickness and reinforcement height, as shown in Figure 1. In this paper we used of Hyeong-Soon Moon and Suck-Joo Na’reserch [4]. For welding the fillet joint, the welding process variables included welding current, arc voltage, welding speed, gas flow rate and offset distance. All other parameters except these were fixed. Solid wire AWS ER70s-6 of 1.2 mm diameter were used. The shielding gas composition was Ar (80%) and CO₂ (20%). Here focused on the vessels that assembled from plate with different thickness. To explanation the relationships between welding parameters and weld bead shape need to set of experimental data. The ranges of welding parameters for three thickness of plate were used are shown in table 1. Hyeong-Soon Moon and Suck-Joo Na[4] were performed 20 experiment for each thickness of base metal. Usage of these results is in the mathematical models.
Table 1
Welding variables and limits employed

<table>
<thead>
<tr>
<th>Thickness of Base metal (mm)</th>
<th>Range of weld parameters (Min-Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Welding Speed (mm/s)</td>
</tr>
<tr>
<td>4.5</td>
<td>4-8</td>
</tr>
<tr>
<td>6</td>
<td>4-8</td>
</tr>
<tr>
<td>7</td>
<td>4-8</td>
</tr>
</tbody>
</table>

3 Development of mathematical models
In order to quantitatively evaluate the effect of welding process parameters on the fillet weld bead shape, the mathematical model for relationship between process parameters and weld bead shape have been developed. In general, the response function can be represented as follows:

\[y = f(x_1, x_2, x_3, x_4, x_5, x_6) \]

(1)

Where y is a variable indicating the weld bead shape (mm), \(x_1 \) is the thickness of the vessel base metal (mm), \(x_2 \) is the welding speed (mm/s), \(x_3 \) is the arc voltage (V), \(x_4 \) is the welding current (A), \(x_5 \) is the gas flow rate (L/min) and \(x_6 \) is the offset distance (mm).

Because the relationship between welding variables and weld bead shape is nonlinear, Eq.(1) can be expressed as follows:

\[y = (x_1^a x_2^b x_3^c x_4^d x_5^e x_6^f) \]

(2)

Where the empirical coefficients a, b, c, d, e and f are constants. The values a, b, c, d, e and f were computed by the method of nonlinear multiple regression. These analyses were carried out with the help of a standard statistical package (SAS). Based on the regression analysis using the least square method from experimental results, the following equations can be estimated [4]:

\[y_1 = x_1^{0.095} x_2^{-0.520} x_3^{0.152} x_4^{0.557} x_5^{-0.367} x_6^{0.0036} \]

(3)

\[y_2 = x_1^{0.266} x_2^{-0.583} x_3^{0.473} x_4^{0.338} x_5^{-0.331} x_6^{0.010} \]

(4)

\[y_3 = x_1^{0.484} x_2^{-0.003} x_3^{-0.517} x_4^{0.540} x_5^{-0.595} x_6^{0.006} \]

(5)

\[y_4 = x_1^{0.192} x_2^{-0.517} x_3^{-0.565} x_4^{0.089} x_5^{-0.099} x_6^{0.005} \]

(6)

\[y_5 = x_1^{0.259} x_2^{-0.227} x_3^{-2.652} x_4^{1.546} x_5^{0.104} x_6^{0.005} \]

(7)

Where \(y_1 \) is the leg length1 (mm), \(y_2 \) is the leg length2 (mm), \(y_3 \) is the penetration (mm), \(y_4 \) is the throat thickness (mm) and \(y_5 \) is the reinforcement height (mm).

4 Optimization
In welding of the vessel fillet joints, the optimal welding process parameters for achieve the desired weld bead shape are necessary. One of the important problems to be solved in the vessel welding process is to develop the mathematical model for the determination of optimum welding process parameters [5]. Unlike analytical model, that it is limitations such as its need for many assumptions to formulate the
equations and the complexity of the welding processes, experimental models such as nonlinear regression are capable to exactly predict the welding process. In this paper the formulations of the optimization problem with five welding process variables and five variables indicating the welding surface profile for different thickness of the vessel base metal were

\[
\text{minimize } f(y_1, y_2, y_3, y_4, y_5) = (y_{d_1} - y_1)^2 + (y_{d_2} - y_2)^2 + (y_{d_3} - y_3)^2 + (y_{d_4} - y_4)^2 + (y_{d_5} - y_5)^2
\]

Subjected to
\[
x_{2,\min} \leq x_2 \leq x_{2,\max}, x_{3,\min} \leq x_3 \leq x_{3,\max}, x_{4,\min} \leq x_4 \leq x_{4,\max}, x_{5,\min} \leq x_5 \leq x_{5,\max}, x_{6,\min} \leq x_6 \leq x_{6,\max}
\]

(8)

Where the quadratic program was used to determine the appropriate welding conditions. \(y_i \) are the variables indicating the welding surface profile and computed from Eqs.(3)-(7), while \(y_{d_i} \) are the desired values of \(y_i \).

An optimization spreadsheet was created based on the EXCELL™ solver to find the maximum welding speed for all combinations of parameters using the formulation in Equation (8). For some desired vessel weld bead shape, the optimal welding parameters that obtained from solver spreadsheet are shown in Table 2.

5 Modelling of the mobile manipulator

A mobile manipulator is a wheeled mobile platform with a multilink manipulator mounted on it as shown in Figure 2. The wheeled mobile platform has two independent driving wheels which are at the center of each side and two passive castor wheels which are at the center of the front and the rear of the platform [6]. The manipulator has three revolute joints, and it moves in horizontal plane. If we leave out of account the angular value at the wheels, to define the platform configuration is equivalent to define the configuration of a rectangle on a plane. Its generalized coordinates are then three in number: two for position and one for the orientation. Let \(\mathbf{q}_p = [x \ y \ \phi]^T \),

<table>
<thead>
<tr>
<th>Thickness of Vessel base metal (mm)</th>
<th>Desired variables indicating the Welding surface profile (mm)</th>
<th>Optimal welding process variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>(y_{d_1}) 4.5, (y_{d_2}) 1.5, (y_{d_3}) 3.5, (y_{d_4}) 1, (y_{d_5}) 2</td>
<td>(x_2) 8, (x_3) 23, (x_4) 200, (x_5) 18, (x_6) 0</td>
</tr>
<tr>
<td>6</td>
<td>(y_{d_1}) 5, (y_{d_2}) 1.3, (y_{d_3}) 4.5, (y_{d_4}) 2, (y_{d_5}) 1.4</td>
<td>(x_2) 5.4, (x_3) 20, (x_4) 200, (x_5) 18, (x_6) 0</td>
</tr>
<tr>
<td>7</td>
<td>(y_{d_1}) 6, (y_{d_2}) 1.9, (y_{d_3}) 3.6, (y_{d_4}) 1.3, (y_{d_5}) 1</td>
<td>(x_2) 7.4, (x_3) 23, (x_4) 220, (x_5) 14, (x_6) 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness of Vessel base metal (mm)</th>
<th>Desired variables indicating the Welding surface profile (mm)</th>
<th>Optimal welding process variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>(y_{d_1}) 7, (y_{d_2}) 5, (y_{d_3}) 1.3, (y_{d_4}) 5, (y_{d_5}) 1</td>
<td>(x_2) 4.6, (x_3) 26, (x_4) 250, (x_5) 16, (x_6) 0</td>
</tr>
<tr>
<td>6</td>
<td>(y_{d_1}) 8, (y_{d_2}) 9, (y_{d_3}) 2, (y_{d_4}) 5.7, (y_{d_5}) 1.5</td>
<td>(x_2) 4, (x_3) 26, (x_4) 264, (x_5) 14, (x_6) 0</td>
</tr>
<tr>
<td>7</td>
<td>(y_{d_1}) 5.3, (y_{d_2}) 6.5, (y_{d_3}) 1.8, (y_{d_4}) 4.2, (y_{d_5}) 1.2</td>
<td>(x_2) 6.8, (x_3) 26.5, (x_4) 250, (x_5) 18, (x_6) 2</td>
</tr>
</tbody>
</table>

where \(x \) and \(y \) are the abscissa and the ordinate of the middle point of the driven wheels axle and \(\phi \) is the angle made by the axis of symmetry and the vector \(\bar{x} \).
For the mobile manipulator, the generalized coordinates are followed (see Figure 3):

\[q = [x \ y \ \phi \ \theta_1 \ \theta_2 \ \theta_3]^T \] \hspace{1cm} (9)

The location of the end effector is defined by position of end effector and orientation of the terminal link relative to vector \(\hat{x} \) and can be seen in Fig. 3. Its location can be defined by three coordinates:

\[\xi = [\xi_1 \ \xi_2 \ \xi_3]^T \] \hspace{1cm} (10)

5.1 Nonholonomic constraint

The nonholonomic constraint for the mobile platform is that the platform must move in the direction of the axis of symmetry, i.e.,

\[\dot{x}\sin \phi - \dot{y}\cos \phi = 0 \] \hspace{1cm} (11)

This relation expresses the dependency between \(\dot{x} \) and \(\dot{y} \). Thus there are two independent admissible generalized velocities for the platform [6]. These two independent parameters can be shown by mobility control vector \(\eta_P = [v \ \omega]^T \) where, \(v \) is the velocity of the middle point of the driven wheels axle along its path and \(\omega = \dot{\phi} \).

5.2 The direct kinematics of the MM

In the kinematics we consider the relation between the manipulator configuration and end effector location. Direct kinematics expresses the end effector location as a function of the manipulator configuration. The direct kinematic equations of the mobile manipulator are obtained as follows:

\[\xi_1 = x_c + l_1 \cos(\phi_1) + l_2 \cos(\phi_1 + \phi_2) + l_3 \cos(\phi_1 + \phi_2 + \phi_3) \]
\[\xi_2 = y_c + l_1 \sin(\phi_1) + l_2 \sin(\phi_1 + \phi_2) + l_3 \sin(\phi_1 + \phi_2 + \phi_3) \]
\[\xi_3 = \phi + \theta_1 + \theta_2 + \theta_3 \] \hspace{1cm} (12)

Where

\[s_{\phi_1} = \sin(\phi + \theta_1), \ c_{\phi_1} = \cos(\phi + \theta_1), \ s_{\phi_{12}} = \sin(\phi + \theta_1 + \theta_2), \ c_{\phi_{12}} = \cos(\phi + \theta_1 + \theta_2) \]
\[s_{\phi_{123}} = \sin(\phi + \theta_1 + \theta_2 + \theta_3), \ c_{\phi_{123}} = \cos(\phi + \theta_1 + \theta_2 + \theta_3) \]

5.3 The velocity kinematics of the MM

The mobile manipulator jacobian matrix, \(J(q) \), transforms velocities in joint space to velocities of the end effector. This relation is shown as follows:

\[\dot{\xi} = J(q)\dot{q} \] \hspace{1cm} (13)
That the jacobian matrix is given as follows:

\[
J(q) = \begin{bmatrix}
1 & 0 & D_1 & D_2 & D_3 & D_4 \\
0 & 1 & D_5 & D_6 & D_7 & D_8 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

with:

\[
\begin{align*}
D_1 &= -(l_1 s_{\phi 1} + l_2 s_{\phi 12} + l_3 s_{\phi 123}), \\
D_2 &= -(l_1 s_{\phi 1} + l_2 s_{\phi 12} + l_3 s_{\phi 123}), \\
D_3 &= -(l_2 s_{\phi 12} + l_3 s_{\phi 123}), \\
D_4 &= -l_3 s_{\phi 123} \\
D_5 &= l_1 c_{\phi 1} + l_2 c_{\phi 12} + l_3 c_{\phi 123}, \\
D_6 &= l_1 c_{\phi 1} + l_2 c_{\phi 12} + l_3 c_{\phi 123}, \\
D_7 &= l_2 c_{\phi 12} + l_3 c_{\phi 123}, \\
D_8 &= l_3 c_{\phi 123}
\end{align*}
\]

The mobility control vector for whole mobile manipulator is given as following [6]:

\[
\eta = \begin{bmatrix}
\eta^T_p \\
\dot{\theta}^T_f
\end{bmatrix}
\]

(14)

The relation that expresses the dependency between \(\eta \) and \(\dot{q} \) is in form:

\[
\dot{q} = S(q) \eta
\]

(15)

Therefore, we can be express \(\xi \) in term of \(\eta \) by following relation:

\[
\dot{\xi} = \tilde{J}(q) \eta
\]

(16)

Where

\[
S(q) = \begin{bmatrix}
c_\nu & 0 & 0 & 0 & 0 \\
0 & s_\nu & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

and

\[
\tilde{J}(q) = \begin{bmatrix}
c_\nu & D_1 & D_2 & D_3 & D_4 \\
0 & s_\nu & D_5 & D_6 & D_7 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

5.4 The inverse velocity kinematics of the MM

In the inverse velocity kinematics, the joints velocity, \(\dot{q} \), can be obtained from the end effector velocity in operational space. For achieve to this relation, it is necessary to computation of reduced inverse velocity kinematics [6] to obtain \(\eta \). Then, using of relation (15) to computation \(\dot{q} \). The reduced inverse velocity kinematics writes as:

\[
\eta = \tilde{J}^+(q) \xi + (I - \tilde{J}^+(q)\tilde{J}(q))z(t)
\]

(17)

Where \(\tilde{J}^+(q) \) is an arbitrary generalized inverse of \(\tilde{J}(q) \), such as the pseudo-inverse or Moore-penrose-inverse. And \(z(t) \) is an arbitrary column matrix.

The mobile manipulator is track the s eem by end effector with the operational error \(e(t) \). Thus:

\[
\begin{align*}
e &= \xi^d - \xi \\
\dot{e} &= \dot{\xi}^d - \dot{\xi}
\end{align*}
\]

(18)

Where \(\xi^d \) and \(\dot{\xi}^d \) are desired location and velocity of end effector respectively. To control of this transient error, use of following equation:

\[
\dot{e} + \lambda e = 0
\]

(19)

Where \(\lambda \) is the matrix that including the proportional gains. Thus:

\[
\dot{\xi} = \dot{\xi}^d + \lambda(\xi^d - \xi)
\]

(20)

By substitution of Eq.(20) in Eq.(17), we have:
\[\eta = J^+(q)\xi^d + \lambda(\xi^d - \xi) + (I - J^+(q)J(q))z(t) \] \hspace{1cm} (21)

In this equation the first term is due to the input and the second one is the internal motion. We get \(z(t) \) as follows:

\[z(t) = -k((\nabla^T P)H)^T \] \hspace{1cm} (22)

Where \(k \) is positive scaler and \(H = S(I - J^+ J) \). Then by substitution of Eq.(22) in Eq.(21), the mobility control vector is:

\[\eta = J^+(q)(\xi^d + \lambda(\xi^d - \xi)) - kS^T HH^T \nabla P \] \hspace{1cm} (23)

Where \(\nabla P \) is gradient of manipulability measure, \(P \), that were discussed in next section.

5.5 The manipulability of MM

The manipulability is the ability to move and apply forces in arbitrary directions (Park and Kim, 1998). Whereas (Bicchi and Prattichizza, 2000) define it as "the directions in the task space that exterminate the ratio between some measure of effort in the joint space and a measure of performance in task space". Here we focus only on using kinematic manipulability in evaluating the welding mobile manipulator performance in various relative configurations [7-10].

Different algebraic measures have been proposed to the manipulability. One of these measures is Yoshikawa's measure of manipulability (Yoshikawa, 1985) and shown as follows:

\[P = \sqrt{\text{det}(JJ^+)} \] \hspace{1cm} (24)

The other manipulability measure, extending the notation of eccentricity of the ellipse (Bayle et al., 2001):

\[P = \sqrt{1 - \frac{\sigma_k^2}{\sigma_i^2}} \] \hspace{1cm} (25)

Where \(\sigma_i \) is the singular value of the jacobian matrix. In this paper, the Jacobian matrix that we used to obtain the Singular Values (Using Singular Value Decomposition), is the Jacobian of the whole mobile Manipulator: mobile platform and arm. Thus, the Manipulability Measure is for the MM. Beside this, we also separate the Manipulability Measure of the Arm (\(P_{\text{arm}} \)) and also the Manipulability Measure of the entire MM (\(P_{\text{arm+platform}} \)) using the following Equation:

\[P = \varepsilon P_{\text{arm+platform}} + (1 - \varepsilon)P_{\text{arm}} \] \hspace{1cm} (26)

Where \(\varepsilon \) is a weighting value and \(P_{\text{arm+platform}} \) computed by using of \(J(q) \) and Eq. (24) or Eq. (25). Otherwise, \(P_{\text{arm}} \) computed by using of Eq. (24) or Eq. (25) and \(J_{\text{arm}}(q) \) can be expressed as:

\[
J_{\text{arm}} = \begin{bmatrix}
C_1 & C_2 & C_3 \\
C_4 & C_5 & C_6
\end{bmatrix}
\]
With:
\[C_1 = -l_1 s_1 - l_2 s_{12} - l_3 s_{123}, \quad C_2 = -l_2 s_1 - l_3 s_{123}, \quad C_3 = -l_3 s_{123} \]
\[C_4 = l_1 c_1 + l_2 c_{12} + l_3 c_{123}, \quad C_5 = l_2 c_1 + l_3 c_{123}, \quad C_6 = l_3 c_{123} \]

Finally, by using of Eq. (26) for \(P \) in MM and numerically calculation of \(\nabla P \), mobility control vector or \(\eta \) can be obtained from Eq. (23).

6 Path planning for welding of fillet joint in vessel

Robotic welding operations require trajectory control of the welding torch mounted on the end effector of the mobile manipulator, which is defined by the weld seam. The problem is positioning a welding torch with the proper location with respect to a given weld seam.

The schematic of mobile manipulator for welding of cubic and cylindrical tanks are shown in Figure 4. The mobile manipulator must be move in floor of the tank to track seem by the welding torch mounted on its end effector.

In this paper, the considered fillet joint were made with a torch work angle of \(\gamma \) and a torch travel angle of \(\mu \) push. Where \(\gamma \) can be adjust by mounted torch on the end effector of mobile manipulator, while for maintenance of the welding torch in angle \(\mu \), it is necessary to adjustment of \(\xi \). Thus, for each dimension of the tank, we can be programming of the welding mobile manipulator to track the seem by end effector with take into account of desired weld bead shape and \(\gamma \) and \(\mu \) angles.

7 Simulations and results

In this section, some simulation results are presented to demonstrated the effectiveness of the considered algorithm developed for horizontal fillet welding in the vessels. Here, we were focused on cubic tank and used of MATLAB code for simulations. Table 3 shows the kinematic parameters for the welding mobile manipulator and vessel used in this simulation. The condition of weld bead shape that used in simulation is shown in Table 2 by *.

<table>
<thead>
<tr>
<th>parameter</th>
<th>values</th>
<th>parameter</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of platform</td>
<td>0.6 m</td>
<td>Length of link 3</td>
<td>0.2 m</td>
</tr>
<tr>
<td>Width of platform</td>
<td>0.4 m</td>
<td>Length of tank</td>
<td>4.25 m</td>
</tr>
<tr>
<td>Length of link 1</td>
<td>0.4 m</td>
<td>Width of tank</td>
<td>2.83 m</td>
</tr>
<tr>
<td>Length of link 2</td>
<td>0.4 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We were used of Eq. (23) to simulation of welding mobile manipulator. In this equation, it is necessary to numerical calculation of \(\nabla P \). Where used from Eqs. (24)
or (25) to calculation P. The mobile manipulator must be move in floor of the tank and track seem by torch that mounted on its end effector. The planer position of rectangular seem of cubic floor, that used in this simulation is shown in Figure 6. It is important that the welding torch moves at a constant speed and maintains a constant inclination angle of $(\pi/2 - \mu)$ in the plane to the weld seem. In this figure can be see the manipulability trapezoid for arm only and whole mobile manipulator that specified by blue and red colour respectively.

We were taken a $\mu = 15^\circ$ in this simulation. For this value, the magnitude of ξ_3 must be equal to $-\pi/6$ for the first side of rectangular seem (a, in Figure 5) and $\pi/3$ for the second side of the rectangular seem (b, in Figure 5). Figure 6 shows the magnitudes of ξ_3 for the welding mobile manipulator in the primal section of first and second side of the rectangular seem. Two sub-plot of this figure are shown in Figure 7 and Figure 8. We can be see from this Figures that for a short period of time at the beginning of this sides of the rectangular seem, ξ_3 is achieved to the needed angle.

![Figure 5: simulated MM for welding of the vessel](image)

![Figure 6: ξ_1 for the beginning of sides (a & b)](image)

![Figure 7: ξ_3 for the beginning of side a.](image)

![Figure 8: ξ_3 for the beginning of side b.](image)

By optimum design, we observed that for achieved to the desired weld bead shape in this simulation (see Table 2), it is necessary to welding speed of 4 mm/s. Thus, the end effector must be move on seem by this velocity. For this value, the magnitude of ξ_1 and ξ_2 is 2.828 mm/s. Figure 9-a shows the magnitude of ξ_1 for the welding mobile manipulator in the beginning section of first and second side of the rectangular seem. We can be see from this Figure that for the first and second side of seem, ξ_1 error occurs for a very short time and fit to desired values. Figure 9-b shows the magnitude of ξ_2 for the welding mobile manipulator in the beginning section of first and second side of the rectangular seem. We can be see from this Figure that for a short period of time at the beginning of the first and second side of the rectangular seem, ξ_2 is achieved to the needed value of 2.828 mm/s. Finally, Figure 9-c shows the magnitude of welding speed for tracking seem by end effector. The magnitude of welding speed is damped to desired value of 4 mm/s for a very
short time in beginning section of first and second side of the rectangular seem, 15 s for first side and 20 s for second side of seem.

Figure 9: a) $\dot{\xi}_1$ for the beginning of sides (a & b), b) $\dot{\xi}_2$ for the beginning of sides (a & b), c) welding speed for the beginning of sides (a & b)

8 Conclusion
In this study, a mobile manipulator welding system was designed and analyzed to tracking the weld seem of fillet joint in the vessel, while achieving to the desired weld bead shape was aim of this work. In the first stage of this study, we focused on the geometrical analysis of weldment. Welding process parameters are highly nonlinear characteristics and complex to analyze. Furthermore, the welding process parameters, such as welding speed, Arc voltage, welding current, gas flow rate and offset distance, influencing weld bead shape are coupled with each other. Therefore, there is a limitation to derive the accurate relationship between welding conditions and weld bead shape. To overcome these difficulties, a mathematical method was developed and used to determine the optimal welding conditions for the fillet welded joint shape. and based on the optimum design, the appropriate welding process parameters could be effectively determined.

In the second stage of this study, we used of optimal welding process variables to programming of welding mobile manipulator for tracking the horizontal fillet seem of vessel. From the simulation results, it could be shown that the developed welding mobile manipulator can track the horizontal fillet seam with a fairly good positional accuracy for the optimal fillet welding process parameters, obtained from optimum design.

References

