Geology, Mineralization, Alteration and Geochemical Exploration in Kajeh area, Ferdows

M. H. Karimpour¹, M. Khosravi¹, M. Pourkhosro¹, M. R. Haidarian Shahri¹, S. Saadat²

1- Research center for ore deposit of Eastern Iran, Ferdowsi University of Mashhad
2- Dept. Geology, Mashhad Azad Islamic University
Email:mhkarimpour@yahoo.com

(Received: 17/10/2007, in revised form: 14/4/2008)

Abstract: The study area is situated within the Lut Block 50 Km northeast of Ferdows. The oldest exposed rocks are Cretaceous limestone. Kerman conglomerate cover the limestone. Dacite-rhyodacite lava and pyroclastic rocks erupted over Kerman conglomerate. Volcanic activities took place at different time in Tertiary. The composition ranges between trachyandesite, andesite, andesite-basalt and rhyolitic tuff. Sub-volcanic diorite, monzodiorite, monzonite, quartz monzonite and granite porphyry intruded the volcanic rocks during Oligo-Miocene time. Both volcanic and intrusive rocks are K-rich calc-alkaline to shoshonitic. Intrusive rocks (except granite porphyry) are I-type granite and belong to magnetite series. The pattern of spider diagrams both volcanic and intrusive rocks are similar. In comparison with mantle, They are enriched in Cs, K, Rb, La and Zr and depleted in Ba, P and Ti. Two groups of alteration zones are recognized: 1- silicified assemblages (silica-sericite-propylitic, silica-propylitic & silica-sericite). This group is related to granitic magma. 2- propylitic-sericitic-argillic group which are associated with monzonite, quartz monzonite-diorite intrusive rocks. Mineralization associated with granite porphyry show Mo, Ag, Pb and Zn anomalies. Mineralization associated with monzonite, quartz monzonite-diorite show signs of porphyry copper. They have Cu, Au, Pb and Zn geochemical anomalies.

Keywords: Kajeh, Ferdows, Geochemical exploration, alteration, mineralization.
زمین‌شناسی، کانی‌سازی، دگرگوی و دستاوردهای زئوپیتیمیایی در منطقهٔ کجه فردوس

محمدنصر کریم‌پور، مجید خسروی، محمود پور‌خسرو، محمودرا حیدریان شهرا و سعید سعادت

1- مرکز تحقیقات دخانیات شرق ایران دانشگاه فردوسی مشهد
2- کرج، زمین‌شناسی دانشگاه آزاد اسلامی مشهد

mhkarimpour@yahoo.com

(دریافت مقاله: 1385/8/23، نسخه نهایی: 1385/11/14)

چکیده: منطقه مطالعاتی کجه در ۵۰ کیلومتری شمال غربی فردوس و در زون زمین‌ساخته‌ای بلوک لوت قرار گرفته است. اهکتهای کرج، قبیله‌ای زئوپیتیمیایی در منطقه آن را تشکیل می‌دهند. روی اهکتهای کرج از دیدگاه شناسی کرجولوریا کرمان تئوری تکامل شده‌اند. این تئوری‌ها به ترتیب دانسته و توانایی تروپیکسیت برای کرجولوریا کرمان، نشان می‌دهند. تعداد اندیس‌های میزان مختلف تکول‌های توازن‌دار و توانایی این عضو در این بلوک به دست آمده‌اند. به‌طور کلی، این تئوری‌ها از نظر احتمالی و نقش‌شناختی از نوع اهک‌های محلولی غنی بر پیام‌های و گاهی‌های شوش‌کننده و توانایی ثانویه‌های آنها است. نمونه‌هایی از این گروه به‌طور مداوم در سایر مناطق قرار گرفته‌اند.

کلمات کلیدی: کجه، فردوس، بزرگراه‌های زئوپیتیمیایی، دگرگو، کانی‌سازی.
روش مطالعه
• بردارش داده‌های ماهواره‌ای لندست+ این منطقه با نرم
افزار 4.0
• تهیه نشته‌های زمین‌شناسی، کانی‌شناسی و دگرگانی با مقياس 1:20.000 (60 کیلومتر مربع).
• بردارش مقاطع نازک و بررسی‌های سنگی از 150 نمونه برای بررسی دقیق سنگ شناسی و دگرگانی.
• بردارش 24 نمونه برای تهیه بلوك‌های صیقلی و مقاطع نازک صیقلی برای بررسی‌های کانگاری.
• بردارش 7 نمونه سنگی از زونهای دگرگانی و کانی‌شناسی شده برای پی جویی‌های زوشیمیایی.
• تجربی نمونه‌ها با استفاده از روش جذب اتمی برای عناصر در گروه زمین‌شناسی Cu, Zn, Pb, Ag, Sn, Sb, Mo
• تشخیص فردوسی مشهد تجزیه نمونه‌ها برای طلا در آزمایشگاه سازمان زمین‌شناسی کشور به روش جذب اتمی کیهان کیهانی
• تجزیه نمونه‌هایی از توده‌های فلزی در دریاچه و جزئیات اندازه‌گیری بدنفشاری معناداری توده‌های فلزی و سنگ‌های انششی.

شناختی بلوك لوت رابطه سیار زندگی یا نواحی دیگر خرده قرار ایران مرکزی نشان می‌دهد. ولی جهان ویژگی زمین‌شناسی بر بلوك لوت حاکم‌اند.
الف- تاثیر درخور توجه کوهستانی سیستم پیشین بر سنگ‌های یک تریاس میانی.
ب- چن-خوره‌گیری، آنششی، و پلاژونیسم شدید، زوراسیک میانی (سیمرین میانی) به ویژه در نواحی خراسن و چهارمفس.
که با پایداری و سخت‌شده‌گی بلوك همراه است.
ج- قرار نمودن سنگ‌های آنششی ترشیاری به ویژه انسن، که با داشتن ضخامت 2000 متر بیش از نیمی از بلوك لوت را می‌دانند. این بلوک لوت به باهنر شدن.
د- نهشت‌های دریاچه‌ای تقلیل‌افقتی بلوس- پلیستوس بنا که زمان لوت، گزارش عمودی ضعیف فاز پیوست خم‌ خوردگی در این بلوك است.

نخستین فعالیت‌ها، ماکلایی در بلوك لوت مربوط به زوراسیک (170 میلیون سال) است که به صورت انتای توده‌های گرانیتی رخ‌دهی دارند [1]. این در حالی است که این فعالیت در شمال بلوك لوت مربوط به کرتاسه فوقانی (75 میلیون سال) است [5]. مطلوب‌هایی که توسط ترکان در بلوك لوت صورت گرفت، حاکی از کانی‌سازی منطبق است [6].

شکل 1 موقعیت و راه دسترسی به منطقه مطالعاتی [1].
زمین‌شناسی منطقه سنگ شناختی

قسمت اول سنگ‌های این منطقه عبارت است از آهک‌های کرانه که دارای سیل‌های رودیست (شاخه کرانه‌ای فوقانی) و کریستال فراوان بوده و در شرق منطقه رخند می‌نامند. روی آهک‌های کرانه، واحد کنگلومراتیق‌وار گرفته که آن را هم از کنگلومراتیق‌وار کرانه می‌دانند. شکم‌های یک واحد در منطقه از ۵۰ تا ۷۰ متر در تغییر است. قطاع‌های تشکیل‌دهنده این کنگلومراها بیشتر مربوط به آهک کرانه مربوط می‌شود. این قطاع‌های گرد–سابک بخش تا متوسط و جورشگی ضعیف می‌باشد.

واحدهای دیگر زمین‌شناسی عبارتند از:

داسیت، رپوداسیت؛ این واحد بیشتر سنگ‌های آذرآواری و گاهی به صورت گازه، بیشترین گسترش را در منطقه دارد. ۳۰/۸ کیلومتر مربع، این سنگ‌های روی آهک‌های کرانه و واحد کنگلومراتیق‌وار گرفته‌اند و در بعضی نقاط به صدت سپیسی.
جدول 1 ترکیب کانی‌های سنگ‌های آتش‌نشانی منطقه کوه

<table>
<thead>
<tr>
<th>کانی اویکاک</th>
<th>بوروندی</th>
<th>آتش‌نشانی</th>
<th>پلاژیکولاژ</th>
<th>نام واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>%25</td>
<td>-</td>
<td>-</td>
<td>0.4-0.8 mm</td>
<td>0.4-1 mm</td>
</tr>
<tr>
<td>%42</td>
<td>-</td>
<td>%81</td>
<td>0.4-0.8 mm</td>
<td>0.4-1.5 mm</td>
</tr>
<tr>
<td>%46</td>
<td>%820</td>
<td>%85</td>
<td>0.1-0.2 mm</td>
<td>%88</td>
</tr>
<tr>
<td>%25</td>
<td>-</td>
<td>%42</td>
<td>%88</td>
<td>%15-18</td>
</tr>
</tbody>
</table>

درصد) است. انداره و درصد کانی‌های قابل تشخیص در جدول 1/2 گزارش شدند.

هورنسلدن کوارتز مزونیت پورفیری: این واحدها به صورت سه رخمن در باخت و شمال شرقی منطقه دیده می‌شود (شکل 2). گستره این سنگ‌ها از نوع پورفیری است و کانی‌های فنورسیت به 50 تا 60 درصد می‌رسند. انداره و میزان درصد کانی‌های قابل تشخیص در جدول 2 (47). گزارش شده است.

کوارتز پورفیری: این واحدها به صورت رخمن‌های کچکی (1/2 کیلومتر مربع) در بخش شمال باخت و شرقی منطقه دیده می‌شود (شکل 2). هورنسلدن کوارتز در این سنگ‌ها از نوع پورفیری است. انداره و درصد کانی‌های قابل تشخیص در جدول 2 (47). گزارش شدند.

کوارتز مزونیت پورفیری: به صورت دو رخمن‌کچکی (یک کیلومتر مربع) در باخت و شرقی منطقه دیده می‌شود (شکل 2). این سنگ‌ها از نوع پورفیری است و 45 تا 50 درصد فنورسیت به 50 تا 60 درصد. انداره و درصد کانی‌های قابل تشخیص در جدول 2 (47). گزارش شدند.

هورنسلدن کوارتز مزونیت پورفیری: به صورت دو رخمن‌کچکی (یک کیلومتر مربع) در باخت و شرقی منطقه دیده می‌شود (شکل 2). این سنگ‌ها از نوع پورفیری است و 45 تا 50 درصد فنورسیت به 50 تا 60 درصد. انداره و درصد کانی‌های قابل تشخیص در جدول 2 (47). گزارش شدند.
جدول 2 ترکیب کانی‌شناسی توده‌های نفوذی منطقه کچه.

<table>
<thead>
<tr>
<th>این کیفیت</th>
<th>بیشتر</th>
<th>بیشتر</th>
<th>گیاهان</th>
<th>پلاژیکالر</th>
<th>گروه‌بندی</th>
<th>نام واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>کدر</td>
<td>پروkses</td>
<td>فلزی</td>
<td>هوریلن</td>
<td>0.5-1.5 mm %40-50</td>
<td>0.5-1.5 mm %40-50</td>
<td>0.5-1.5 mm %40-50</td>
</tr>
<tr>
<td>%3-5</td>
<td>0.2 mm %5</td>
<td>1 mm %2-3</td>
<td>1 mm %4-7</td>
<td>0.4-1.3 mm %5-8</td>
<td>0.3-0.7 mm %20-40</td>
<td>0.3-0.7 mm %20-40</td>
</tr>
<tr>
<td>%2-3</td>
<td>0.5-1.5 mm %7-15</td>
</tr>
<tr>
<td>%3-6</td>
<td>%0-4</td>
<td>%5-8</td>
<td>%10-15</td>
<td>%10-15</td>
<td>%0-3</td>
<td>%10-15</td>
</tr>
<tr>
<td>%2-3</td>
<td>%5-8</td>
<td>%10-15</td>
<td>%10-15</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
</tr>
<tr>
<td>%3-6</td>
<td>%1-4</td>
<td>%10-14</td>
<td>%10-14</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
</tr>
<tr>
<td>%1-3</td>
<td>%15-20</td>
<td>%3-10</td>
<td>%3-10</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
<td>0.1-1 mm %15-20</td>
</tr>
</tbody>
</table>

زمن شناسی ساختمانی منطقه

با مطالعات صخرهای روی انواع شکستگی‌ها (گسل و درجه) می‌توان پی بردن که منطقه کچه از لحاظ زمین ساختمی عالی، بوده و به شدت زمین ساخته شده است. در این منطقه سه گسل اصلی و تعداد زیادی گسل فرعی با روندهای شمالی، جنوبی و شمال خاوری جویان باختیاری شناخته شده‌اند (شکل 3)

گسل رحمی‌ای. این گسل با طول حدود 35 کیلومتر و عرض حدود 50 متر، به مراتب گسل منطقه مورد مطالعه است زیرا باختیاری‌ها، آثار کامبیزی و گودبرداری‌ها در راستای این گسل صورت گرفته است. این گسل از نظر عادی و از رود شمال خاوری جنوب باختیاری است و شبیه 40-85 درجه در راستای شمال باختیاری است. این گسل در رشته جنوب خاوری منطقه مورد مطالعه قرار گرفته است. (شکل 3). کانی‌سازی منطقه این گسل صورت گرفته است.

شکل 3 نقطه گسل‌های منطقه [18-3].
سنگ شناختی

در نمودار شکل (۴) توده‌های نفوذی و سنگ‌های آتش‌نشانی آزمایشی از نوع آهکی-قلیایی غنی از پتاسیم و برخی شوشونیتی هستند. نمودار هنگامی سنگ‌های آتش‌نشانی و توده‌های نفوذی نسبت به گوشه ترسیم شدند (شکل‌های ۸ و ۹). تفاوتی بین دو نمودار مشاهده نمی‌شود. در مقایسه با گوشه، غنی‌شدنی عنصر Cs، K، Rb، La، Zr و کاهش‌گری عنصر Ba، P، Ti مشاهده می‌شود (شکل‌های ۸ و ۹).

شکل ۴ نامگذاری سنگ‌های آتش‌نشانی [۹].

شکل ۵ نامگذاری توده‌های نفوذی [۹].
شکل ۶: نمودار شانه برای تعیین شاخص اومینیوم [۱۰-۱۲].

شکل ۷: نمودار پیکولی و تیلور برای تعیین سری تولیدیت از اهکی-قیلایی [۱۰، ۱۱ و ۱۲].

شکل ۸: نمودار عنکبوتی سنگهای آتش‌نشانی [۱۴].
دگر سانی و کاتی سازی

بر یکی جهانی که دگر سانی و دستاوردهای زئوپیمایی در منطقه کچه فردوس

شکل ۹: نمودار عنکبوتی توده‌های فنودی [۱۴].

رسیسی: ورودی گاز و لیزیک
پروپتیک، زون سیلیس - سیلیس
- سیلیس قابل نظیر است (شکل ۱۰).
در گروه سایینیک در مرکز و باینر نشته (شکل ۱۰) ایگا
دسیسی این ورودی رخ داده می‌باشد. این گروه سایینیک
بوده و گستره گستره‌های پایه دهده. بروایه
فرآیند، به انواع زون‌های سیلیس، سیلیس - سیلیس
سیلیس - آزیلیک، سیلیس - پروپتیک قابل نمایش
است (شکل ۱۰). این گروه سایینیک با کاتی سازی مشابه
و با توده‌های زئوپیمایی و کوارتز مونزونیت در ارتباط است.
دگر سانی آزیلیک در باختر نشته (شکل ۱۰) دگر سانی
آزیلیک با شدت متوسط رخ داد.
در این گروه سایینیک، دگر سانی که زیادی دارد
(شکل ۱۰). احتمالاً در چند مرحله زمانی رخ داده است. بروایه
میزان فراوانی که در برخورد برخورد
پروپتیک - سیلیسک - آزیلیک، پروپتیک - آزیلیک
تقصیش می‌زند (شکل ۱۰) زون پروپتیک - سیلیسک
- آزیلیک از زون سیلیسیک را در بر می‌گیرد (شکل ۱۰).
کاتی سازی: کاتی سازی منطقه احتمالاً در دو مرحله رخ داده
است. ۱- کاتی سازی وابسته به گروات فوریزی و ۲- کاتی
سازی وابسته به کوارتز مونزونیت - دیوریت فوریزی. بیان
اپیدوت در سنگ دیده می‌شوند که برپایه میزان فراوانی، زون
به و کریت، سیلیکات‌ها، اکسید و سولفوریدهایی مس به صورت ناتوانی در سطح زمین مشاهده می‌شوند. در راستای گسل رحمی کاتی سازنده مس به صورت رگه‌ای تشکیل شده است. دو رگه نزدیک مواردی در بخش جنوبی منطقه رخ‌مون دارد. رگه اصلی با راستای N50E حدود 2 کیلومتر طول دارد. آثار شادادی قرار نه می‌توان به همراه آثار معدن‌کاری جدید (ترانش و چاه) در محل دو رگه اصلی و فرعی دیده می‌شوند که نشان از سابقه طولانی بهره‌برداری در این منطقه است [15].

می‌رسد که در این منطقه بخش فوقانی کاتی سازنده مس به گرینت پورفیری وابسته باشد که به‌سازگاری می‌شود مورد بررسی و مطالعه بیشتری قرار گیرد. بررسی‌ها نشان داده‌اند که کاتی سازنده مس کوارتز مونزونیت و مونزونیت احتمالاً به نوع پورفیری وابسته باشند.

در باخت و مرکز منطقه (شکل 10) کاتی سازنده مس با حالات افزان و داریست در نوده‌ها نفوذی و سنگ‌های آنتشفاشی رخ داده است. پیپریت و کالکوبیتریت به صورت اولیه و اکسیدهای

شکل 10 نقشه دگرگونی منطقه کجه [1 و 8].
نقطه زئوشنیمی سر نشان می‌دهد که ناحیه‌های کنار دز در غرب، مرکز، و بخش جنوبی منطقه پراکنده شده‌اند (شکل 12). میزان مس بین 45 ppm تا 800 ppm تا 483 میکرگرام در کیلوگرم می‌باشد (جدول ۳). نتایج تجزیه سی با زئوپیام‌های کانی‌وار و تعداد از نمونه‌های خاری و در گروهی از میزان Mo پرینتی دیده می‌شود (شکل ۱۲). میزان Mo بین ۱ ppm تا Pb, Zn, Ag نمی‌بایست (جدول ۳). ناهنجاری‌های هموشی خوی با گیاهگر نشان می‌دهد (شکل ۱۲). میزان Ag بین ۴۰ ppm تا ۳۰ ppb، میزان Zn بین ۴۰ ppm تا ۴۴ ppm رأی‌گیری می‌کند (جدول ۳). در بخش خاوری منطقه کانی‌واری از روند شمال خاوری- جنوب باطری برخوردار بوده و بیشتر به صورت رگه‌ای و در راستای گسل‌های جنبشی و که رخ‌داده و است رگه‌ای دوم در باخری و شمال باخری قرار دارد (شکل ۱۲). در پی ناهنجاری دیده می‌شود تعداد محدودی باخت‌های طلا و ناهنجاری KAG تاب شده، به طوریکه بیشترین غلظت آن در نمونه‌های KAG-54, 55, KAG5 تکرار شده است (جدول ۴).

برای تاثیب داده‌های ماهوارهای، نشانه‌های زئوشنیمی، و نشانه‌های توبوگرافی، ۱۷ نقطه برای برداشت نشسته‌های رودخانهای مناسب تشخیص داده شدند (شکل ۱۱). نمونه‌ها بین ۸۰ - ۱۲۰ ppm تا ۸۰ - خردادی و برای عنصر Cu-Au, Pb, Zn, Ag, Sn, Sb, Mo تغییر مشاهده گردید. بیشترین (شکل ۱۱). وی‌لا بیشترین مشاهده شد Pb, Zn میزان ناهنجاری در نمونه‌های شیمیایی مشاهده شد (شکل ۱۱). وی‌لا بیشترین ناهنجاری Cu در نمونه‌های خاری و تعدادی از نمونه‌های مرکزی و بخش جنوبی قابل مشاهده‌اند (شکل ۱۱).

نمودن سنگ‌های روست خرده سنگ از زئوپیام مختلف دز در کانی‌واری شده، برای یی‌های زئوشنیمی‌ای برداشت شدند (شکل ۱۰). نمونه‌ها پس از آماده‌سازی با Cu, Zn, Pb, Ag استفاهه از رشز جذب انجام برای عنصر Sn, Pb, Mo مورد تجزیه و تحلیل قرار گرفتند (جدول ۳). نمونه‌ها از مجموع ۲۹ نمونه انتخاب و برای طلا در آزمایشگاه سازمان زئوشنیمی‌ای کشور به روش جذب انجام کوره گرافیکی تحلیل شدند (جدول ۴).

شکل ۱۱ نشان می‌دهد که نشسته‌های رودخانهای برخسب (ppm) از ۱۱. (۱۸).
جدول ۲ نتایج تجزیه شیمیایی نمونه‌های سنگی منطقه کهه (۱۸) \[
\begin{array}{|c|l|l|l|l|l|l|l|l|}
\hline
\text{Sample} & X & Y & Cu (ppm) & Zn (ppm) & Pb (ppm) & Ag (ppm) & Sn (ppm) & Sb (ppm) & Mo (ppm) \\
\hline
\text{kag-1} & 59.872 & 778421 & 1700 & 3700 & 19000 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-2} & 59.182 & 778422 & 0.7 & 16 & 1232 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-3} & 59.072 & 778318 & 55.9 & 83.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-4} & 59.295 & 778229 & 1100 & 5000 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-5} & 59.55 & 778224 & 24.4 & 89 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-6} & 59.91 & 778121 & 31.8 & 222 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-7} & 59.884 & 778130 & 14200 & 12000 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-8} & 59.823 & 778122 & 75.3 & 35 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-9} & 59.883 & 778131 & 10000 & 3000 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-10} & 59.832 & 778115 & 1200 & 3000 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-11} & 59.822 & 778130 & 0.5 & 50 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-12} & 59.682 & 778130 & 29.8 & 43.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-13} & 59.767 & 778132 & 33.8 & 47.4 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-14} & 59.898 & 778236 & 15000 & 278 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-15} & 59.891 & 778247 & 10000 & 6800 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-16} & 59.825 & 778135 & 16.9 & 81.7 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-17} & 59.812 & 778133 & 28.8 & 24.8 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-18} & 59.762 & 778245 & 36.9 & 155.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-19} & 59.929 & 778211 & 261.1 & 243 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-20} & 59.994 & 778246 & 23.0 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-21} & 59.722 & 778248 & 166.5 & 75.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-22} & 59.722 & 778249 & 16.0 & 55.9 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-23} & 59.760 & 778133 & 21.1 & 161.2 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-24} & 59.842 & 778133 & 6.5 & 56.4 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-25} & 59.819 & 778239 & 3.0 & 23.6 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-26} & 59.780 & 778246 & 26.2 & 119.2 & 1444 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-28} & 59.780 & 778132 & 126.8 & 3500 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-29} & 59.828 & 778219 & 15.0 & 588 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-30} & 59.800 & 778135 & 227.7 & 967.5 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-31} & 59.714 & 778117 & 141.9 & 244 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-32} & 59.773 & 778131 & 138.8 & 138.8 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-33} & 59.803 & 778619 & 41.4 & 558 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-34} & 59.711 & 778117 & 32.2 & 129.7 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-35} & 59.785 & 778135 & 29.6 & 76 & 9.5 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-36} & 59.771 & 778138 & 24.5 & 153 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-37} & 59.731 & 778133 & 9.0 & 1200 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-38} & 59.929 & 778143 & 377 & 9390 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-39} & 59.763 & 778812 & 33.0 & 1966 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-40} & 59.160 & 778130 & 13000 & 1219 & 589.7 & 356 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-41} & 59.016 & 778116 & 13000 & 512.2 & 2000 & 3.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-42} & 59.727 & 778238 & 28.6 & 1131 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-43} & 59.936 & 778298 & 107.1 & 27.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-44} & 59.920 & 778246 & 33.2 & 1148 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-45} & 59.849 & 778923 & 32.7 & 358.1 & 31.4 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-46} & 59.726 & 778853 & 17.9 & 24.9 & 14.8 & 0.8 & 0.8 & 1.5 & \text{a} \\
\text{kag-47} & 59.820 & 778139 & 3.9 & 882.8 & 15.1 & 0.8 & 0.8 & 1.5 & \text{a} \\
\hline
\end{array}
\]
جدول ۴ نتایج تجزیه طلا نمونه‌های سنگی [۱۸۱]

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
<th>Sample</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAG- 54</td>
<td>۰۷۷۲۵۵</td>
<td>۰۷۱۵۲۸</td>
<td>۹.۰۰۰۰</td>
<td>KAG-1</td>
<td>۰۷۸۷۶۷</td>
<td>۰۷۸۰۲۲</td>
<td>۳۳۰۰۰۰</td>
</tr>
<tr>
<td>KAG- 28</td>
<td>۰۷۸۲۴۰</td>
<td>۰۷۸۰۲۴</td>
<td>۸۹۰۰</td>
<td>KAG-5</td>
<td>۰۷۵۵۵۱</td>
<td>۰۷۸۰۲۵</td>
<td>۳۴۰۰۰۰</td>
</tr>
<tr>
<td>KAG- 55</td>
<td>۰۷۷۲۱۳</td>
<td>۰۷۸۱۶۸</td>
<td>۱۱۰۰۰۰</td>
<td>KAG-7</td>
<td>۰۷۵۵۸۲</td>
<td>۰۷۸۱۶۱</td>
<td>۳۴۰۰۰۰</td>
</tr>
<tr>
<td>KAG- 39</td>
<td>۰۷۸۰۱۳</td>
<td>۰۷۸۰۱۷</td>
<td>۶۰۰۰</td>
<td>KAG-9</td>
<td>۰۷۵۰۸۴</td>
<td>۰۷۸۱۶۱</td>
<td>۳۴۰۰۰۰</td>
</tr>
<tr>
<td>KAG- 41</td>
<td>۰۷۷۲۱۷</td>
<td>۰۷۸۰۲۵</td>
<td>۲۳۰۰۰۰</td>
<td>KAG-15</td>
<td>۰۷۵۰۲۱</td>
<td>۰۷۸۱۶۱</td>
<td>۳۴۰۰۰۰</td>
</tr>
<tr>
<td>KAG-49</td>
<td>۰۷۸۱۶۸</td>
<td>۰۷۸۱۶۸</td>
<td>۸۰۰۰۰۰</td>
<td>KAG28</td>
<td>۰۷۸۱۶۸</td>
<td>۰۷۸۱۶۸</td>
<td>۵۵۰۰۰۰</td>
</tr>
</tbody>
</table>
برداشت‌ها و بیشتر‌الدین
از آنجا که در کنگلومرات ساوان کرمان (کرتاسه فوقانی- پالیسوی تحتانی) سنگ‌های آتش‌نشانی و توده‌های نفوذی مشاهده شدند، فعالیت‌های آتشفشانی از حدود انسن شروع و در طول ترشی‌هایی در مقاطع زمینی مختلف ادامه داشته است. توده‌های دیوریتی و کوارتز مونزونیتی، به احتمال زیاد در الگوسن- میوسن نفوذ کرده و در مقاطع زمینی بعد نیز این فراوانی ادامه داشته است. توده‌های آدرین نیمه عمق متعددی در این گستره، برای اولین بار معرفی شدند. این توده‌ها از طیف تکیه‌ای ورودی ارائه دهی، دیوریتی ناحیه، هورنیت دیوریتی پورفیری، هورنیت دیوریتی پورفیری، پورفیریت کوارتز مونزونیتی پورفیری، پورفیریت کوارتز مونزونیتی.
[8] مورخویم، ترجمه زنجیرمی و پترولوژی سنگهای اشتهای غرب فردوس، پایان نامه کارشناسی ارشد پترولوژی، دانشگاه فردوسی مشهد (1385).
[10] خراسانی م، پترولوژی و پترولوژی سنگهای اشتهای غرب فردوس، پایان نامه کارشناسی ارشد پترولوژی، دانشگاه تربت معلم تهران، 145 صفحه (1378).
[11] کریمیت پیور، عیلامی، سعادت س، قورچی م، ترجمه، پترولوژی و پترولوژی، نویسندگان کارشناسی انجمن علمی، در محله چاپ مجله گیمینی شناسی ایران، دانشگاه فردوسی مشهد (1386).
[15] Sazman 3, ترجمه، و معاون استان خراسان رضوی، کارشناسی ارشد مقدماتی مس سرب و روی جهان فردوس، 133 صفحه (1381).

زمنی شناسی، کانی سازی، دگرسانی و دستاوردهای زنجیرمیابی در منطقه کوه فردوس

پورفیری، کوارتز مانگنوریت پورفیری، هوریلند کوارتز مونزونیت پورفیری، و گریت کوارتز پورفیری برخوردارند.

[16] نوشته‌های برخوردی منطقه رحمی در رده بندی این‌ها

بردگه و گریت پورفیری از سری این‌های است. به استناتی گریت پورفیری تامی نتیجه در رده‌بندی چالی(17) جزء گریت‌های نوع (1) هستند.

شناختی و مجموعه از زون دگرسانی - 1- مجموعه زون- های سلیسی (سربیسیت، پتروپیکت) زون سلیسیت

- پتروپیکت و زون سلیسیت - سرسیت) واقع در خارج نه که در راسته پلک و گل که به توده گریت

پورفیری، این نه که به مجموعه دگرسانی پتروپیکت، سرسیتیک و آزیلیک در مرکز و باخت نتیجه که با مجموعه توده‌های نفوذی مونزونیت - کوارتز مونزونیت و دبیرت ارتباط دارند.

کلیات و نتیجه‌های به گریت پورفیری در مواردی است. کلیات سازی مس به صورت افتان و رگ‌های کبیر پورفیری و مونزونیتی پورفیری و دستاوردها، خاکی و مشاهده شده. نهایتاً نفوذی نهایی مهم مونزونیتی- کوارتز مونزونیت و دبیرت، نوع و گسترش زونهای دگرسانی و نابهتری نهایی عناصر Cu, Pb, Au, Zn, Ag ناپذیری در منطقه Cu, Pb, Au, Zn, Ag اکتشافات کلیات مس پورفیری تشکیل شده است.

مراجع

[1] خراسانی م، پترولوژی و پترولوژی، مونزونیت پورفیری، و دستاوردها، کارشناسی ارشد کوارتز در این گستره نهایی، مشاهده شده. نهایتاً نفوذی نهایی مهم مونزونیتی- کوارتز مونزونیت و دبیرت، نوع و گسترش زونهای دگرسانی و

[3] اکتشافات مسیان، کوارتز مونزونیت شناسی و