فعین نابع تولید و ضریب حساسیت محصول به آب برای سه رقم پنجه در منطقه گرگان

احمد امامی - یزد قهرمان - کامران داوری - مجید هاشمی نی - سیف‌محمدی

تاریخ دریافت: 89/11/28
تاریخ پذیرش: 87/6/20

چکیده
کم آبیاری روی برای افزایش بهره‌وری آب (WUE) (که به اولین شاخص آن کاهش محصول در واحدهای سطح است. به منظور بررسی و تربیب نتایج تولید سه رقم پنجه (سالی، سالی، سالی و سالی)، آزمایش‌های روی یک خاک لوم رسی سالی در استخراج تحقیقات شناسی هاشمی آب‌گیری آب‌گیری انجام شد. در شهری آبیاری در سه کارکرد به صورت طرح کارکردی یک گزارش به کار برده شد. این سیستم آبیاری باعث کاهش استفاده شد و تأثیر کمکی که انرژی شد. هر طرف خط لوله قرار داشت. به منظور پیاده‌سازی کم‌بودن رطول طبیعتی و یو نیک، داده‌های آب و هوایی ضریب حاصله به در طول فصل رشد مورد استفاده قرار گرفت. رابطه توان نمود عمکرک و آب نمود شده و رابطه خیلی برای عملکرد و تحقیق در کنارنگاه برای این الگوی تحقیق به صورت فیزیکی برای افرآم نمود مطالعه به درست آمده. هم چنین با توجه به فرمول دو تابع مشاهده و کم‌بودن حساسیت سه رقم سالی، سالی و سالی و سالی به ترتیب 160 و 110 به دست آمد. این مقدمه برای گزارش در بهینه‌سازی آبیاری در شرایط محصولی آب استفاده کرد.

واژه‌های کلیدی: تغییر تولید ضریب حساسیت محصول به آب، سیستم خاکی، گرگان

مقدمه
کم‌بودن کم آبیاری برای تولید بهینه محصول تحت شرایط کم‌بودن آب است که اولین شاخص آن کاهش محصول در واحدهای سطح است. هدف اساسی از به کارگیری فن کم‌بودن آب افزایش عوامل آب و یونک‌بودن آبیاری، به طور که کاهش میزان آب آبیاری در هر نیاز و با حذف آبیاری هوا است که بهترین نتایج را روشی است که گیاه داشته و یا در افزایش سود

در صورت کاهش آب مصرفی را با عامل کم‌بودن آب و به صورت بک که در میان بدنان اینکه بر عملکرد به انر می‌تواند سبب کاهش دور آبیاری و یا افزایش فجعه‌ای می‌شود براساس تحقیق شیفت حسینی (5) روز محصول جوی دور آبیاری ۷ روز ۱۴ روز در ده دشت. در دور آبیاری ۱۴ روز تبار با مقدار آبیاری به نیاز ۶۰ درصد نیاز آب گیاه، اختلاف معنی داری با تیمار آبیاری کامل نداده‌ست. همین طور در تحقیق جان‌اواز (۲) روز محصول گندم گزارش شد که

*Email: bijangh@ferdowsi.um.ac.ir

موافقین سلیمی کارشناس‌های آبیاری و هویونکی، زمین‌شناسی، استراتژی و کارشناس آبیاری، گروه مهندسی آب دانشگاه کارنویزی، دانشگاه فردوسی مشهد.

نویسنده: ستاره
پیشترین صرفه‌ای اقتصادی در دوره‌های مربوط به تیمار ۶۰ درصد تبخیر- تعرق و در دوره‌های مربوط به تیمار ۲۰ درصد تبخیر- تعرق است.

احمال کم آبیاری بوسیله سیستم آبیاری بارانی نکش شاخه‌ای، روش محصولات محکم‌الاجل چنین مکانیکی است. مطالعات سامبس و گیارا (۱۵) در نیومکزیکو با سیستم آبیاری بارانی خطر و مقادیر مختلف آب نشان داد که عملکرد محصولات پنجه به میزان تبخیر- تعرق همان‌گونه بوده و تولید پنجه دانه به ازار و حدای مصرفی در شرایط مختلف اقلیمی و سال‌های مختلف متفاوت است. بررسی حساسیت پنجه به گیاه‌کشی تغییر عمق آب آبیاری در کالیفرنیا توسط آریزونا (۹) با استفاده از سیستم آبیاری بارانی خودکار مورد بررسی قرار گرفت.

تاکن تحقیقات قابل توجهی توسط محققین مختلف در جهت تخمین عملکرد گیاهی به ازار آب مصرفی صورت گرفته است. رادین و همکاران (۱۴) گزارش کرده که با دو برآورد تعداد آبیاری در محدوده زمانی اوج گل‌هیه پنجه عملکرد تا ۲۵ درصد افزایش یافته. نتایج مطالعات استخوانی (۱۶) نشان داد که عملکرد گردن هنگامی که آبیاری بین ۴۰ تا ۷۰ درصد تخلیه رطوبتی است، کاهش نمی‌یابد. کلاتزک و همکاران (۱۱) نیز گزارش کردند که عملکرد پنجه با کوتاهی شدن دور ایزو آبیاری افزایش یافته.

بررسی مatinum نشان می‌دهد که از سیستم آبیاری بارانی خطی تک شاخه‌ای (برای تعیین توابع تولید محصولات مختلف می‌توان استفاده کرد. برای مثال جمال ۳۳ درجه و ۵۱ دقيقه شامی و طول جغرافیایی ۵۱ درجه و ۱۶ دقیقه شریف واقع است. ارتفاع آن از سطح دریا حدود ۱۳۷۰ متر و دارای اقلیم نمه مطلق مورد پایداری می‌باشد. متوسط بارندگی سالانه در این منطقه طی یک دوره ۶۰ روز در دهه ۵۰ درصد تبخیر- تعرق و در دوره ۴۰ روز مربوط به تیمار ۶۰ درصد تبخیر- تعرق است.

مواد و روش‌ها

این جهت در استفاده از تحقیقات کشاورزی هاشم‌آباد گرگان و استان اوستس‌های تحقیقات بندی کشور در حدود ۱۱ کیلومتری شمال غربی گرگان اجرا شد. دانشی محل در عرض جغرافیایی ۵۶ درجه و ۱۶ دقیقه واقع است. ارتفاع آن از سطح دریا حدود ۱۳۷۰ متر و دارای اقلیم نمه مطلق مورد پایداری می‌باشد. متوسط بارندگی سالانه در این منطقه طی یک دوره ۶۰
تعدیل نتایج تولید و فرآیند حسابی محصول به آب باری...
نوبت آبیاری مجموعه آب موجود در عمق ۶۰ سانتی‌متر و عمق توسه‌برنده (عمق توسه‌برنده بیشتر از میزان عمق رطوبت خاک) در طول دوره کشت محاسبه گردیده. عمق آب آبیاری برای هر نوبت آبیاری در قطعاتی که تقسم هجم آب جمع شده در قطعاتی به سطح مقطع بالایی قطعاتی به دست آمد. در صورتی که در هر مکان
کارآمیعی مصرف آب: برا پردازان کازه کارآمیع مصرف آب

از معادله بیشته فیلوئو (خیبری و همکاران، ۳۱) استفاده شده است:

\[WUE = \frac{Y}{ET} \times 100 \]

که در آن:

- \(WUE \) راندمان مصرف آب به کیلو گرم بر متر مکعب آب مصرفی,
- \(Y \) عملکرد بر حسب تن بر هکتار و
- \(ET \) تبخیر و تعرق گیاه به میلی متر می باشد.

نتایج و بحث

آبیاری و تبخیر-تعرق

نتایج مربوط به آب داده شده و تبخیر-تعرق واقعی (ETw) برا اسید حریق قم بر تنبر (جدول ۲) ارائه شده است. این مقادیر برابر میانگین سه مقدار آبیاری در سه تکرار می‌باشد که به تفکیک سه رقم آمده است. همانطور که در (جدول ۱) مشاهده می‌شود، در تیمار اول (آبیاری) استفاده شده است. تیمار دوم (آبیاری کامل) و تیمار سوم ناشی شده با کاهش آب، کم آبیاری اعمال شده است. تیمار ۱۱ یا میانگین بیشترین آب بر اثر ۳۳/۷ میلی متر و تیمار ۱۵ با فاصله گیرنده از خاک آبیاری کمترین آب بر اثر ۲۸/۷ میلی متر را به خوبی اختصاص داده است. در کل بین تیمارهای آبیاری، همانطور که در (جدول ۲) مشاهده می‌شود، اختلاف معنی‌داری در دو سطح ادراصد و هدردرس وجود دارد. سپس توسعه عملکرد در طول فصل کشت در تیمارهای محسوب و لحاظ گردید. آن گاه مقدار \(ET_m \) فصلی (جدول ۲) در تیمارهای آبیاری به تفکیک رمحاسبه شده با و در طور کلی تلفات ناشی از توسعه عملکرد تیمارهای اول تا سوم وجود داشته و در تیمارهای چهارم و پنجم تعداد آن به صرف رشد.

\[(d_p) = d_i - (FC - \theta) \times \rho_p \times d_x \]

که در آن عمق آب کاربردی خم و نویت آبیاری در هر کیلو توان گرم درد، عمق رطوبت وزنی در نقطه طرفین تگه‌داری \(\theta \) درد، و عمق رطوبت وزنی در نقطه نویت \(d_x \) است. این فرمول کاتالیست از تیمار خاک در نیز سر در نظر (۶۰ سانتی‌متر) است. در صورتی که عمق خاک برای شیب یاده، بیناگر وجود یافته عمقی از سه، لیو تپنیچه (IPA) (کوچکر) به مساحت صفر گردیده، از نویع عملکرد نظر می‌گردد. به دلیل آن که سرعت و شیب باد در زمان آبیاری را ناچیز بوده‌گویی و تشکیل آب در دو طرف خط آبیاری متقابل در نظر گرفته شد، لذا در تمامی موارد میانگین آب و عملکرد در دو طرف خط آبیاری، مقرون گرفت. در ادامه تبخیر-تعرق واقعی بنا استفاده از پیلا رطوبت خاک از مدل SWAP که اختیار انتخاب توانای تبخیر تبلورک و همکاران (۱۹۹۴) یا پیشنهاد است و استرولوگر را دارد، به دست آمد (۱).

ضریب حساسیت محصول به آب (Ky): سازمان خواربار جهانی (FAO) در نشریه شماره ۳۲ در تعریف خود برای مقدار فرمولی به نام ضریب تن+(Ky) به صورت یی بیزیر ارائه نموده است. با استفاده از این فرمول می‌توان ضریب حساسیت محصول به آب در طول فصل رشد را به دست آورد. همچنین تبخیر-تعرق در تیمارهای که تحت تبخیر رطوبتی نوده، برابر تبخیر-تعرق توانایی حساسیت‌پذیری رشد.

\[K_y = \left(\frac{Y_m}{Y_s} \right)^2 \left(\frac{ET_a}{ET_m} \right) \]

که در آن \(Y_m \) عملکرد واقعی هر کیلوت (kg/ha)

تبخیر-تعرق واقعی در سه کیلو توان (mm)

عملکرد تبخیر-تعرق پایه (ETm) (mm)

تبخیر-تعرق پایه (ETm) (mm)

با صرف رشد.
جدول 1 - مقادیر میانگین آب داده شده (میلی‌متر) برای تیمارهای آزمایشی.

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>رقم</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>مقدار آب داده شده شامل بارندگی عاملی (110 میلی‌متر) و آب ایباری می‌باشد.</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>151</td>
<td>24</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>128.01/0.42</td>
</tr>
<tr>
<td>سای - آکرا</td>
<td>208</td>
<td>26</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>207.86/0.41</td>
</tr>
<tr>
<td>سای - آکرا</td>
<td>211</td>
<td>27</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>208.08/0.42</td>
</tr>
</tbody>
</table>

جدول 2 - مقادیر میانگین تبخیر - تعریق واقعی (میلی‌متر) برای تیمارهای آزمایشی.

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>رقم</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>مقدار آب داده شده شامل بارندگی عاملی (110 میلی‌متر) و آب ایباری می‌باشد.</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>151</td>
<td>24</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>128.01/0.42</td>
</tr>
<tr>
<td>سای - آکرا</td>
<td>208</td>
<td>26</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>207.86/0.41</td>
</tr>
<tr>
<td>سای - آکرا</td>
<td>211</td>
<td>27</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>208.08/0.42</td>
</tr>
</tbody>
</table>

جدول 3 - اطلاعات آماری مربوط به مقادیر آب داده شده

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>5</td>
<td>222755</td>
<td>543511/5</td>
<td>2068</td>
</tr>
<tr>
<td>آماره 8</td>
<td>8</td>
<td>234733</td>
<td>29391682/8</td>
<td>22</td>
</tr>
</tbody>
</table>

عملکرد

جدول 2: مقدار مجموع عملکرد در تیمارهای آبیاری و به تدریج ارتفاع نشان می‌دهد. همانطور که مشاهده می‌شود عملکرد از تیمار 11 به 14 افزایش وارد می‌گردد. تیمار 23 تا 18 کاهش ارتباط آب کاهش نشان می‌دهد.

نتایج وانگرک آن است که با فاصله گرفتن از لوله، مقادیر آب پاشیده شده کاهش یافته عملکرد نیز به یوری از آن کاهش می‌یابد. درمان اول نزدیک به خط آبیاری قرار داشته، آبیاری بیش از حد باعث رشد عمیق تر گیاه گردیده و ریزش بیشتر غوره‌ها را در پی داشت که باعث کاهش نسبی عملکرد گردیده می‌گردید. این گونه مواردی که میانگین بین 8 تیمار (تیمار 8 تا 12) به ترتیب 1941/6, 2113/6, 2113/6, 1813/6, 1813/6, 1813/6 و 1813/6 به ترتیب 6, 9, 3, 13, 13, 13 و 13 در گزارش قطعات به ترتیب 850 و 1230 کیلوگرم در هکتار گزارش کردند.
<table>
<thead>
<tr>
<th>متغیر</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>53</td>
<td>999,980.2/3</td>
<td>18,999.6/6</td>
<td>232</td>
</tr>
<tr>
<td>تیمار 1</td>
<td>5</td>
<td>29776.4</td>
<td>5955/375</td>
<td></td>
</tr>
<tr>
<td>انتهاه</td>
<td>48</td>
<td>8181/375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>متغیر</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>17</td>
<td>31235.9</td>
<td>18376/18</td>
<td>174</td>
</tr>
<tr>
<td>تیمار 1</td>
<td>5</td>
<td>2589.2</td>
<td>5178/576</td>
<td></td>
</tr>
<tr>
<td>انتهاه</td>
<td>12</td>
<td>42567.2</td>
<td>35476/375</td>
<td></td>
</tr>
</tbody>
</table>

نامی تولید

تولید نتایج مربوط به آب داده شده با عملکرد و همچنین ET عمکبرد برای تیمارهای آبیاری و به تفکیک هر رقم توسط نرم‌افزار EXCEL رابطهای براساس شده شد و ضرایب رگرسیونی معادلات به دست آمده (جدول 7). نتایج تولید آب-محصول و ET-محصول به ترتیب از نوع درجه دوم و خطی به دست آمده که از ضرایب همبستگی بالایی برخوردار بودند. برای نمونه تاثیب تولید درجه دوم
ارقام مانند رقم ساحل برای تیمارهای مختلف پیاز کم بود، غوزه و کاهش رشد در اثر آب‌های زیاد باشد. لیو و همکاران (۱۳۴)، کیکوکوری و همکاران (۱۴) نیز به ترتیب روند در تیمارهای مختلف بهبود به‌طوری که فقط این تیمارها در هم ادغام شدند (شکل ۲ ب). این مطلب حاکی از آن است که بعد از اعمال نفوذ عملی در تیمار اول تا دوم، تیمار اول به دلیل داشتن نفوذ عملی پیشتر مقادیر نزدیک (ویا کمتر) به تیمار دوم ET تیمار دوم حاصل نموده است.

جدول (۳) - توابع توان‌یافته ارقام پهنه (W) مقادیر آب داده شده، ET تیمار تابعی و همه و ۷ معیار عملکرد است

<table>
<thead>
<tr>
<th>R²</th>
<th>b₁</th>
<th>b₁</th>
<th>a</th>
<th>R²</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۹۷</td>
<td>۰.۹۵</td>
<td>۰.۹۵</td>
<td>۰.۹۵</td>
<td>۰.۹۸</td>
<td>۰.۹۳</td>
<td>۰.۹۸</td>
</tr>
</tbody>
</table>

شکل (۲) - رابطه عملکرد با آب داده شده (ب) برای تابعی و همه و رابطه کلی

را به ترتیب به رقم ساحل و سایر آکرا دارا بودند. شکل ۲ رابطه خط رگرسیون برای ضریب حساسیت رقم ساحل را نشان می‌دهد. در این رابطه سایس و همکاران (۱۴) نیز روند پیش به نتایج مشابه دست یافتند. افزون بر این نتایج به دست

با توجه به رابطه (۷) ضریب حساسیت محصول به آب برای هر عمده درست آمده. ضریب تنظیم برای سه رقم ساحل، سایس-آکرا و ۷۱۲۸۸۱۶۸۱۸۰۱۸
آمده توسط الگولی و همکاران (۷) روی محصول باد نیز با یک مدل خطی مناسب مدل شد. مقدار ۰.۸۳ را غلظت به‌عنوان مقدار میانگین محصول باد نیز با یک مدل خطی مناسب مدل شد.

(شکل ۲) - مقادیر شرایط حساسیت فصلی رم ساحل.

(شکل ۳) - تغییرات متوسط کارآیی مصرف آب سرمایه در سطح مختلف آبیاری.

دست آمده است. نتایج تغییرات دریافت شده و عمق آب با تغییرات دریافت شده در سطح مختلف آبیاری مشاهده می‌شود. برای هر سطح آبیاری ۱۵ برابرند. دریافت سطح آبیاری می‌باشد.

نتایج در این تحقیق از سیستم آبیاری باراگی خطی شاخه‌ای استفاده شد و تغییر تولید محصول با اساس مقدار تبخیر-تعرق، و منحنی بر اساس مقدار آب داده شده به

برای محاسبه کارایی مصرف آب از معادله خیبری و همکاران (۷۲۹) استفاده شد. همانطور که در (شکل ۱) مشاهده می‌شود برای هر سطح آبیاری ۱۵
محصول شده باشد. ضریب حساسیت سه رقم سال، سای- اکر و ۳۱۱۶۱۸ به ترتيب ۱۰۱۲، ۱۹۹۲، ۱۰۹۲ به دست آمد. لازم به ذکر است که ضریب حساسیت به نشانه داشت در شماره ۳۷ برای با ۸۵/۴۰۸، وارزش گرده است (110). تفاوت چشمگیر اعداد به دست آمده با مقادیر توصیه شده در واقع نشان دهنده است که فاکتورهای این مقادیر به عنوان مقادیر استاندارد، که متاسفانه در مطالعات کاربردی شدیداً رواج دارد. بررسی WUE نشان دهنده

منابع

1- امامی، ج. ۱۳۸۳. مطالعه اثر کمبود آب بر عملکرد، اجزای عملکرد و توزیع ارتفاع در سه زیستگاه پنبه و ارژیا مدل آگرو هیدرولورژیکی ۲/۰. در پایان دکتری و تحقیق دکتری. تبریز: دانشگاه فردوسی مشهد. ۷۰ صفحه.
2- جانیز، ح. ۱۳۸۵. مطالعه اثر نشان دهنده کاربردی و دو نشان دهنده بر عملکرد محصول گندم در منطقه کرج. پایان نامه کارشناسی ارشد.
3- خبری، ج. و. تولکی، م. انتشارات و انتشارات. ۱۳۷۵. دستور العمله ویک آب سای. ارتش خبری و گردشگری ۱۳۷۵ صفحه.
4- سه‌روی، و. و. ۱۳۸۰. روش‌های کاربردی و دو روش دیگر بر عملکرد محصول گندم در منطقه کرج. پایان نامه کارشناسی ارشد.
5- بررسی تحقیقات پنبه کارشناسی. گردشگری. ۲۵ صفحه.
6- خبری، ج. و. ۱۳۸۴. تأثیر نشان دهنده به سه روش و دو روش بر عملکرد محصول جو در کرج. پایان نامه کارشناسی ارشد.

Determination of water production functions and yield response factor for three cotton cultivars in Gorgan area

Abstract

Deficit irrigation is a method to promote water use efficiency (WUE) in a farm under water shortage conditions, however, the consequences is that yield per area decreases. To determine production functions for three cotton cultivars, an experiment was conducted during 1381 growing season on a silty clay loam soil in Hashem Abad Agricultural Research Station in Gorgan. This study was performed using a split-plot design with 3 replications on three cotton cultivars. A line-source sprinkler irrigation system was used with 54 plots in each side of the line (3 cultivars x 6 treatments x 3 replications). To estimate root zone water deficit, climatic data and cotton crop coefficients during the growing season were used. For each cultivar second order equations were derived to relate yield and applied water. However, linear relationships were established to relate yield and evapotranspiration. In addition, based on Doorenbos and Kassam formula yield response factors were found to be 1.02, 0.96 and 1.01 for Sahel, Say Ocra, and 818-312 cultivars, respectively. Such yield response factors can be used to optimize irrigation planning under water shortage conditions.

Key words: water production function, yield response factor, line source irrigation, Gorgan