
  
Static parallel job Scheduling in Computational Grids 

 
Hamed Vahdat-Nejad, Reza Monsefi 

Ferdowsi University of Mashhad, IRAN 
Email :{ hamed.vh@gmail.com , rmonsefi@um.ac.ir} 

  
 
Abstract1  

Scheduling is a fundamental issue in achieving high 
performance in multiclusters and computational grids. To 
efficiently schedule submitted jobs, WAN behavior should be 
considered as an important parameter, which highly 
influences the communication time of a job. However, due to 
the global state uncertainty, there is no suitable mathematical 
model to characterize network behavior, such that accurate 
job scheduling decision can be predicted. Fuzzy logic is one of 
the most dominant patterns in solving problems that are 
difficult to model mathematically .In this paper, the design of 
a fuzzy scheduler is described. The scheduler exploits the 
capabilities of fuzzy logic to qualitatively deal with different 
parameters available in the scheduling decision. Experimental 
results show the feasibility and effectiveness of the algorithm 
being investigated.  

 
Keywords: Fuzzy theory, Grid computing, Job scheduling, 

Wide area network  
 
1. Introduction 
 
A grid computing infrastructure is a collection of resources 

connected by a network, in which, by means of appropriate 
software, resource discovery and sharing is made possible [1]. 
Scheduling is an important issue in grid computing, and 
parallel jobs constitute a typical workload in the scheduling 
scenario [2]. A grid scheduler uses the information of grid 
system and jobs to produce an assignment of tasks to 
machines for the given grid job. The general problem of 
mapping tasks to machines has been shown to be NP-complete 
[3]. The scheduling of parallel jobs has been extensively 
studied in a single cluster environment [5, 6]. Several heuristic 
algorithms have been developed to schedule tasks to machines 
on heterogeneous computing systems. Eleven such scheduling 
algorithms have been evaluated in [4]. These algorithms are 
developed for heterogeneous computing systems. Some 
heuristic scheduling algorithms for grid environments are 
developed in [7, 8, 9]. They deal with tasks and machines in 
terms of assigning tasks to machines, and have the deficiency 
of not being scalable, when applied to a large scale grid. For 

                                                 
1 This research has been sponsored by the Iranian Telecommunication 
Research Center. 

attaining scalability, we use a distributed approach, in a way 
that the arrival job can be submitted to any of the clusters. 
Afterward a 2 layer (global and local) scheduling scheme is 
deployed, which its first stage is responsible for assigning the 
job to an appropriate cluster. This stage is called global 
scheduling, which in fact schedules the job at the grid-level. 
Afterward the cluster’s scheduler submits the job to the 
scheduler of the selected cluster, which in turn starts the 
scheduling of job’s tasks in its local nodes upon receiving the 
job. The local scheduler (cluster-level scheduler) uses the first-
in first-out policy for scheduling.  

In this study we focus on distributed global scheduling 
(scheduling at the grid-level), which deals with jobs and 
clusters, and assigns each job to a cluster. For this, we 
consider the computational needs (i.e. the number of 
computational resources on which the job is requested to be 
run), and communication requirements (the amount of 
communication between job’s tasks) of the job. In order to 
tackle the scheduling problem, we employ a fuzzy principle to 
model those sources that cause uncertainty in global states. 
Previously, fuzzy logic has been employed in [10] to design a 
dynamic load balancing service running in a DOC 
environment. The main purpose of the fuzzy algorithm is to 
model network behavior, and encouraging results have been 
reported.  

The Rest of the paper is organized as follows. In section 2, 
we describe the scheduling model, in which the assumptions 
about the grid and incoming jobs are expressed. In section 3, 
the proposed global scheduling algorithm is presented. In 
section 4, we evaluate the global scheduler through 
simulation, and section 5 concludes the paper. 

 
2. The scheduling model and assumptions 
 
The assumed grid consists of m clusters C1,C2…,Cm, and 

each cluster is composed of a number of homogenous 
computational resources, and a scheduler. The scheduling is 
done in two levels: global and local. The arrival job could be 
submitted to the scheduler of any of the clusters. The cluster 
which the job is submitted to is called local cluster, and the 
others are called remote. The scheduler of the local cluster 
should decide where the arrival job is going to be run. It may 
choose the local or one of the remote clusters for executing the 
job. This decision is done through global scheduling, which is 

2008 International Conference on Computer and Electrical Engineering

978-0-7695-3504-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCEE.2008.175

548

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on January 13, 2010 at 03:21 from IEEE Xplore.  Restrictions apply. 



the main subject of this paper. If the selected cluster is one of 
the remote ones, the local scheduler submits the whole job to 
the scheduler of that cluster. After this stage, the scheduler of 
the cluster which finally receives the job is responsible for 
scheduling the parallel job within its local nodes. This stage of 
the scheduling process is called local scheduling, which has 
previously been the subject of some papers [5,6]. Figure 1 
shows an overall schema of the multicluster under 
investigation. 

Parallel jobs considered in this paper are rigid. The job 
model is built from user-provided application characteristics 
that do not require extensive job profiling. They are  

� The number of partitioned tasks. 
� The ratio of communication to execution. 

The ratio of communication to execution gives a method of 
weighing the relative importance of communication rates and 
computational power for the job, without requiring extensive 
application profiling. 

In summary, a parallel job, denoted by Ji, is identified by a 
3-tuple (Ai , Ni , Ri), where Ai is Ji’s arrival time, Ni is the 
number of computational resources on which Ji requested to 
be run, Ri is the ratio of communication to execution. 

 
Figure 1: The multicluster superstructure 

 
3. scheduling 
 

After a user submits a job to one of the clusters, the global 
scheduling process is started by the scheduler of that cluster. 
The goal is to find a suitable cluster for assigning the job to it. 
The global scheduling consists of two stages: In the first stage, 
all of the clusters are considered equally, and a priority is 
assigned to each of them. Afterwards the cluster with the 
highest priority is selected as a candidate for assigning the Job. 

When the ultimate cluster for assigning the job is a remote 
cluster, a requirement of permission is arisen, because one or 
more than one job may have been scheduled to that cluster by 
its local scheduler or other schedulers during the interval 
between choosing that cluster for scheduling and submitting 
the job. Hence before submitting a job to a remote cluster, the 
local scheduler should send a permission message to that 
cluster, and upon receiving the “ok” response, it submits the 
job. In reverse, if the response is “No”, the local scheduler 
repeats the global scheduling process after updating the state 
information of other clusters. 
 

 The proposed global scheduling algorithm 
 For the characterization of the state of the cluster, we 

consider two parameters: the available number of CPUs and 
the cluster’s network load. What is meant by cluster’s network 

load is the level of communication presently trafficking 
through the cluster, which is a ratio between zero and one. 
When a job arrives, the scheduler is triggered to assign the job 
to a cluster. For this, it considers all the clusters and assigns 
three weights (which are numbers between zero and one) to 
each cluster. The first weight (w1), also called cluster weight 
for number of machines, determines a matching degree 
between the number of available low load CPUs in the cluster, 
and the number of tasks of the job. The second weight (w2), 
also called cluster weight for network load, considers job’s 
communication requirements, and cluster’s network load. The 
third weight (w3), also called grid’s weight for network 
utilization concerns network (WAN) utilization and job’s size.  

 We have performed many simulation tests to adjust the 
coefficient of these weights in aggregating priority equation. 
The final formula obtained for calculating priority of a cluster 
with respect to the newly arrives job is given below  

 Priority = 0.5 W1 + 0.2 W2+0.3 W3 
After computing the priority of all the clusters, the 

scheduler assigns the job to the cluster with the maximum 
priority. 

 
3.1.1 Cluster’s weight for number of machines  
Load of cluster’s nodes is a dynamic attribute, and is 

computed by averaging the currently reported loads (CPU 
usage) of the node. The scheduler partitions the nodes of a 
cluster into low-load, medium-load, and high-load nodes. A 
node which its load is less than 0.3 is low-load; a node with 
load between 0.3 and 0.6 is medium-load; and a node with 
load higher than 0.6 is a high-load node. For the ith cluster, Li, 
Mi, Hi show the number of low-load, medium-load and high-
load nodes, respectively. The following pseudo code shows 
the algorithm for computing the cluster’s weight for number of 
machines (W1).  

 
 
if  (Li > numofTask) 
{ 

 
3

1 1 ��
�

�
��
�

� 	
	


i

i

L
numofTaskL

W  

            If  W1<0.5           W1=0.5;     
} 
else if  (Li + Mi > numofTask) 
{ 

 
3

1 5.0 ��
�

�
��
�

� 	
	


numofTask
LnumofTask

W i  

            If  W1<0.2       W1=0.2; 
} 
else if  (Li + Mi + Hi >numofTask) 
{ 

 
3

1
)(

2.0 ��
�

�
��
�

� �	
	


numofTask
MLnumofTask

W ii  

            If  W1<0     W1=0; 
}   
 
 
Here, numofTask determines the number of partitioned 

tasks of the job. 

549

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on January 13, 2010 at 03:21 from IEEE Xplore.  Restrictions apply. 



 
3.1.2 Cluster’s weight for network load  
One of the main features of this work is considering jobs’ 

communication requirements and clusters network load. When 
a job has a high communication ratio, it must be scheduled to 
a cluster with low network load. For this, we use fuzzy logic 
to assign a weight to the cluster, which determines suitability 
of executing the job on the cluster. This assignment considers 
communication requirements of the job and network load of 
the cluster. The fuzzy rule based system has two input 
parameters: Jobs communication ratio, and available 
bandwidth of the cluster (as a ratio between zero and one), and 
one output: cluster’s weight for network load (W2). When 
job’s communication ratio is close to one, it means that, the 
job requires high communication, so a small weight (close to  
zero) should be assigned to a cluster with a little (close to 
zero) available bandwidth, and a high weight (close to one) 
should be assigned to a cluster with high ( close to one) 
available bandwidth. Figures 2 through 4 show examples of 
the fuzzy membership functions for these two inputs, and for 
the output being the weight assigned to network load of the 
cluster. Table I summarizes the rules that map the inputs to the 
output. We have used product inference engine, singleton 
fuzzifire, and center average defuzzifire.  

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ratio

D
eg

re
e 

of
 m

em
be

rs
hi

p

low medium high

 
Figure 2: Fuzzy membership functions of communication to 
execution ratio 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

available BW

D
eg

re
e 

of
 m

em
be

rs
hi

p

low medium high

 
 Figure 3: Fuzzy membership functions of available BW  

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

W2

D
eg

re
e 

of
 m

em
be

rs
hi

p

very smallsmall moderate large

 
Figure 4: Fuzzy membership functions of cluster weight 

 
 
Table I. Fuzzy rules for mapping inputs to the output 
 
 
Ratio/Available BW 

 
Low 

 
Medium 

 
High 

Low Moderate Large Large 

Medium Small Moderate Large 

High Very small Small Large 

 
 
3.1.3 Grid’s weight for network utilization 
 
When a job is going to be sent from one cluster to another, 

network utilization directly affects the transmission time. 
Specifically, when during global scheduling, a job is 
scheduled from one cluster to another; the situation of the 
wide area network between these clusters plays an important 
role in decreasing or increasing the job completion time. To 
determine network utilization between two clusters, we 
measure the time for remote method invocation. We define a 
benchmark remote method which simply returns a primitive 
data type from the scheduler of one cluster to another cluster. 

 
int x; 
public int getNumber() {return x;} 
 
The method System.currentTimeMillis() is used to measure 

the time elapsed during RMI in milliseconds. In our 
measurement, it is found that the time needed to execute the 
remote method is about 40 to 50 ms when network utilization 
is low, and becomes longer when the network load increases. 
Therefore the benchmark remote method can approximately 
reflect the grid network load. The fuzzy set of remote method 
invocation time is determined as “short”, “medium”, and 
“long”. Figure 5 shows the membership graph for remote 
method invocation time.  

550

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on January 13, 2010 at 03:21 from IEEE Xplore.  Restrictions apply. 



0 50 100 150

0

0.2

0.4

0.6

0.8

1

RMIT

D
eg

re
e 

of
 m

em
be

rs
hi

p

Short Medium Long

 
Figure 5: Fuzzy membership functions of RMIT 
 
Another factor that influences job’s transmission time is 

job’s size. We measure job’s size in megabytes. The fuzzy set 
of job’s size is defined as “small”, “Medium”, and “large”. 
Figures 6 and 7 show the membership graphs for job’s size 
and grid’s weight for network utilization, respectively. Table 
II summarizes the rules that map the inputs to the output (w3). 
We have used product inference engine, singleton fuzzifire, 
and center average defuzzifire in the fuzzy system to obtain 
the output from the inputs. 

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Job's Size (MB)

D
eg

re
e 

of
 m

em
be

rs
hi

p

Small Medium Large

 
Figure 6: Fuzzy membership functions of Job’s Size 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

W3

D
eg

re
e 

of
 m

em
be

rs
hi

p

small moderate large

 
 Figure 7: Fuzzy membership functions of the weight assigned to 

the network load of the grid 
 

Table II. Fuzzy rules for mapping inputs to the output being 
the weight assigned to the network load of the grid. 

 
 
RMIT/ Job’s Size 

 
Small 

 
Medium 

 
Large 

Short Large Large Large 

Medium Large Moderate Small 

Long Moderate Small Small 

 
4. Simulation results  

 
We have developed a simulator in Matlab to evaluate the 

performance of the proposed scheduling algorithm. The 
simulated multicluster consists of several clusters, each of 
which composed of 1 to 100 nodes. Interarrival time of jobs is 
considered to satisfy a Poisson process with the parameter 

8
� seconds. Each job is submitted with three attributes: 
arrival time, number of tasks, and communication to execution 
ratio. Each job has a random number of tasks between 1 and 
50, and a random communication to execution ratio between 0 
and 0.7. One typical job consists of program and data. Each 
job has a random size between 1 and 20 Mega Bytes.The 
scheduler does not need to predict the job’s execution time.  

We compare our scheduling algorithm with a distributed 
best-fit policy, which ignores the communication requirements 
of the jobs, available bandwidth of the clusters and grid. The 
best-fit scheduling algorithm assigns the submitted job to a 
cluster whose number of idle nodes is greater than the number 
of tasks of the job, and whose number of idle nodes is the 
least. There are two scheduling scenarios in the simulation.  

Scenario I: 10 clusters, 20 jobs.  
Scenario II: 30 clusters, 50 jobs. 
For each scenario systems are automatically generated. 

Figure 8 shows parallel jobs completion time for scenario I. 
Small rectangles and parallelograms show completion time of 
jobs in the best-fit and the proposed algorithm, respectively.  

551

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on January 13, 2010 at 03:21 from IEEE Xplore.  Restrictions apply. 



In Figure 9 parallel jobs completion time are shown for 
scenario II. In both figures, horizontal axis shows the arrival 
time of jobs, and vertical axis represents the completion time 
of the submitted jobs. The completion time of a job is 
computed as the interval between job’s arrival time and job’s 
completion time. As can be seen in both Figures 8 and 9, we 
conclude that the proposed fuzzy algorithm is better than the 
best-fit algorithm in reducing parallel completion time. The 
proposed algorithm uses the job’s communication 
requirements, and cluster’s network load to take scheduling 
decisions more efficiently, and as a result, it improves job’s 
completion time.  

Scenario I

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250

Time

Ma
ke

sp
an

Fuzzy Best-Fit

 
Figure 8: Simulation for parallel jobs completion time  

(Scenario I)

Scenario II

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900

Time

M
ak

es
pa

n

Fuzzy Best Fit  
Figure 9: Simulation for parallel jobs completion time 

(Scenario II) 
 
5. Conclusion 
 

Job scheduling is very complicated in computational grids. 
Parallel jobs are a set of important applications that usually 
constitute the workflow of a grid. In this paper, we present a 
distributed scheduling algorithm for scheduling parallel jobs 
in a computational grid. The scheduling is done in two 
layers: global and local. We focus our work to global 
scheduling, which is responsible for allocating the 
submitted job to a cluster. The global scheduler assigns a 
priority, based on three matching degrees, to each cluster 
for a submitted job. It then allocates the cluster with highest 
priority to the job. First weight (w1) expresses the suitability 
of executing the job on the cluster in terms of the number of 
tasks of the job, and the number of available nodes in the 
cluster. The second weight (w2) expresses the suitability in 
terms of cluster’s available bandwidth, and job’s 
communication requirements. The third weight (w3) 
concerns WAN utilization and job’s size. For computing w2 
and w3, we use fuzzy logic to consider different parameters 
in a qualitative manner. The simulation results show the 
improvement of the proposed algorithm over a distributed 
best-fit policy which ignores communication requirements 
of the jobs and network traffic of the clusters.  
 
Acknowledgement 
 
The present research has been partially funded by Iranian 
Telecommunication Research Center (ITRC). I would like 
to thank them for giving us the opportunity for doing this 
work. 

 
References 

 
[1] Michael Walker, A Framework for Effective Scheduling of Data-
Parallel Applications in Grid Systems, Master thesis, University of 
Virginia, 2001. 

 
[2]  Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen 
and Graham R. Nudd, Dynamic Scheduling of Parallel Jobs with QoS 
Demands in Multiclusters and Grids, Proceedings of the Fifth 
IEEE/ACM International Workshop on Grid Computing, 2004.  
 
[3]  HU Rong, HU Zhigang, A Scheduling Algorithm Aimed at Time 

and Cost for Meta-tasks in Grid Computing Using Fuzzy 
Applicability, Proceedings of the Eighth International 
Conference on High-Performance Computing in Asia-Pacific 
Region, IEEE 2005. 

 
[4] Tracy D Braun, Howard Jay Siegel et al, A comparison of eleven 

static heuristics for mapping a class of independent tasks onto 
heterogeneous distributed computing system, Journal of Parallel 
and Distributed computing, 2001, 6, pp.810-837. 

 
[5] B. G. Lawson and E. Smirni, Multiple-queue Backfilling 

Scheduling with Priorities and Reservations for Parallel 
Systems, Proceedings of the Eighth Job Scheduling Strategies 
for Parallel Processing, 2002. 

 
[6] E. Shmueli and D. G. Feitelson, Backfilling with look ahead to 

optimize the performance of parallel job scheduling, in Job 
Scheduling Strategies for Parallel Processing, D. G. Feitelson, 
L.Rudolph, and U. Schwiegelshohn (Eds.), pp.228-251, 
Springer-Verlag, 2003. 

 
[7] H. Yan, et, al, An Improved Ant Algorithm for Job Scheduling in 

Grid Computing, Proceedings of the Fourth International 
Conference on Machine Learning and Cybernetics, Guangzhou, 
18-21 August 2005. 

 
[8] Y. Hu, et. Al, An Algorithm for Job Scheduling in Computational 

Grid Based on Time-Balancing Strategy, Proceedings of the 
Fourth International Conference on Machine Learning and 
Cybernetics, Guangzhou, 18-21 August 2005. 

 
[9] Liang-Teh Lee   Chin-Hsiian Liang   Hung-Yuan Chang, An 

Adaptive Task Scheduling System for Grid Computing, 
Proceedings of the Sixth IEEE International Conference on 
Computer and Information Technology, 2006. 

 
[10] Lap-Sun Cheung, A fuzzy approach to load balancing in a 

distributed object computing network, IEEE, 2001. 

552

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on January 13, 2010 at 03:21 from IEEE Xplore.  Restrictions apply. 


