INVARIANCE OF PRIMITIVE IDEALS BY
Φ-DERIVATIONS ON BANACH ALGEBRAS

S. Hejazian* and A. R. Janfada

Abstract. We show that in certain cases a Φ-derivation on a Banach algebra with a nilpotent separating ideal leaves each primitive ideal invariant. We also obtain some sufficient conditions for the separating ideal of a Φ-derivation to be nilpotent.

1. INTRODUCTION

In this paper we study Φ-derivations on Banach algebras. Following [3] by a Φ-derivation on an algebra A, we mean a linear mapping Δ: A → A which satisfies

Δ(xy) = Δ(x)Φ(y) + xΔ(y) \quad (x, y ∈ A),

where Φ is an automorphism on A.

If τ denotes the identity map on A, then τ-derivations would be the ordinary derivations on A. Also for every automorphism Φ on A, τ-Φ is a Φ-derivation, and for each fixed c ∈ A the mapping Δ(x) = cΦ(x) − cx (x ∈ A), is a Φ-derivation which is called an inner Φ-derivation. Moreover, if D is an ordinary derivation on A and if b is an invertible element in A, then the map x ↦ D(x)b is a Φ-derivation on A where Φ is the inner automorphism x ↦ b^{−1}xb.

These objects have been considered extensively in algebraic point of view, see for example [1, 2] and [4]. They also have been used in [2] to study Jordan automorphisms on Banach algebras. Brešar and Villena in [3] obtained some algebraic technical results about Φ-derivations and by applying them they proved some results concerning Φ-derivations of Banach algebras. The following theorem is the final result of [3]. Here Rad(A) denotes the Jacobson radical of A.

Theorem A. Consider the following assertions.

Received June 17, 2006, accepted November 28, 2007.
Communicated by Wen-Fong Ke.
2000 Mathematics Subject Classification: 47B47, 46H40.
Key words and phrases: Φ-derivation, Primitive ideal, Nilpotent ideal, Separating space.

1181
(i) For every inner automorphism Φ and every Φ-derivation Δ of a unital Banach algebra A, Δ leaves each primitive ideal of A invariant.

(ii) For every inner automorphism Φ and every Φ-derivation Δ of a unital Banach algebra A, $\Delta(a)$ is quasinilpotent whenever $a \in \text{Rad}(A)$ is such that $\Delta^2(a) = 0$.

(iii) For every inner automorphism Φ and every Φ-derivation Δ of a unital Banach algebra A, $\Delta(a) \neq 1$ for every $a \in \text{Rad}(A)$.

(iv) Every derivation on a Banach algebra A leaves each primitive ideal of A invariant.

(v) Every derivation on a unital Banach algebra A takes invertible values only on such elements $a \in A$ for which the two sided ideal of A generated by a equals A.

Then $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$.

Assertion (iv) is the well known noncommutative Singer-Wermer conjecture.

In section 2 we show that if Δ is a Φ-derivation of a unital Banach algebra with Φ a continuous automorphism, such that both Φ and $[\Delta, \Phi] := \Delta\Phi - \Phi\Delta$ leave each nilpotent and each primitive ideal invariant (e.g. Φ is inner) and if $S(\Delta)$, the separating space of Δ, is nilpotent then Δ leaves each primitive ideal invariant. This is a generalization of [3, Corollary 3.4]. Also we may add a new assertion to Theorem A as follows.

(i') For every inner automorphism Φ and every Φ-derivation Δ of a unital Banach algebra A, Δ has a nilpotent separating ideal.

Then $(i') \Rightarrow (i) \Rightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$.

This naturally leads us to the following question.

Q1. Is it true that each Φ-derivation on a Banach algebra has a nilpotent separating space?

It is indeed an open problem for ordinary derivations and it is shown in [8] that for ordinary derivations it is equivalent to the noncommutative Singer-Wermer conjecture. In Section 3 we obtain some sufficient conditions for Δ to have a nilpotent separating ideal and hence leave each primitive ideal invariant.

Note that if Φ is an automorphism and if Δ is a Φ-derivation on a nonunital algebra A, then we may extend it to the unitalization of A by defining $\Delta(1) = 0$. Throughout this paper A is a unital Banach algebra, Φ is a continuous automorphism on A and Δ is a Φ-derivation of A. For a Banach algebra A, the sets R and B denote the Jacobson radical and the Baer radical of A, respectively. It is clear that
B and R are invariant under each automorphism \(\Phi \) on \(A \). The separating space, \(S(\Delta) \) of \(\Delta \) is defined to be the set

\[
S(\Delta) := \{ a \in A : \exists \{a_n\} \subseteq A, a_n \to 0, \Delta(a_n) \to a \};
\]

which is a closed subspace of \(A \) and by the closed graph theorem \(S(\Delta) = \{0\} \) if and only if \(\Delta \) is continuous. For a moment consider \(A \) as a Banach \(A \)-bimodule, denoted by \(A^o \), with module operations, \(A \times A^o \to A^o, (a, x) \mapsto a.x = a\Phi(x), (x, a) \mapsto x.a = xa \), for all \(a, x \in A \). Obviously \(\Delta \) is an intertwining map from \(A \) into \(A^o \). Thus by [6, Theorem 5.2.15], \(S(\Delta) \) is a separating submodule and hence a separating ideal of \(A \), by surjectivity of \(\Phi \).

2. \(\Delta \)-INVARIANT IDEALS

Cusack in [5] proved that each derivation on a Banach algebra leaves the Baer radical invariant. Here we prove a similar result for \(\Phi \)-derivations, where \(\Phi \) is a continuous automorphism and \(\Phi, [\Delta, \Phi] \) leave each nilpotent ideal invariant. Clearly these conditions hold if \(\Phi \) is inner.

Theorem 2.1. Let \(\Delta \) be a \(\Phi \)-derivation on \(A \), such that \(\Phi \) and \([\Delta, \Phi] \) leave each nilpotent ideal invariant. Then \(\Delta(B) \subseteq B \).

Proof. Let \(I \) be a nilpotent ideal with \(I^k = \{0\} \). Take \(a \in I \) and \(b_1, b_2, ..., b_k \in A \), then by assumption, \((b_1a)(\Phi^{-1}(b_2a))...(\Phi^{-(k-1)}(b_ka)) = 0 \). Hence by [3, Theorem 2.3]

\[
0 = \Delta^k((b_1a)(\Phi^{-1}(b_2a))...(\Phi^{-(k-1)}(b_ka))) + I = k!\Delta(b_1a)\Delta(b_2a)...\Delta(b_ka) + I.
\]

But \(\Delta(b_1a) + I = b_1\Delta(a) + \Delta(b_1)\Phi(a) + I = b_i\Delta(a) + I \) for \(i = 1, ..., k \). Thus \((A\Delta(a))^k \subseteq I \subseteq B \). Therefore \(\Delta(a) \in B \) and hence \(\Delta(I) \subseteq B \). Since \(B \) is the algebraic sum of all nilpotent ideals we have the result. \(\blacksquare \)

In [3, Theorem 3.2] it is proved that if \(\Phi \) is a continuous automorphism and \(\Delta \) is a continuous \(\Phi \)-derivation on a Banach algebra \(A \) and if \(J \) is an ideal of \(A \), such that both \(\Phi, [\Delta, \Phi] \) leave \(J \) invariant, then \(\Delta(J)/J \) is a quasinilpotent ideal of \(A/J \). So, if \(J \) is a primitive ideal, then \(\Delta(J)/J \subseteq \text{Rad}(A)/J = \{0\} \) and hence \(\Delta(J) \subseteq J \). We use this fact in the proof of the next theorem.

Theorem 2.2. Suppose that \(\Phi, [\Delta, \Phi] \) leave each nilpotent and each primitive ideal invariant. If \(S(\Delta) \) is nilpotent then \(\Delta(P) \subseteq P \) for each primitive ideal \(P \) of \(A \).
Proof. $S(\Delta)$ is a nilpotent ideal, hence $S(\Delta) \subseteq B$. Let π be the canonical quotient map from A onto A/\overline{B} then $\pi \circ \Delta$ is continuous. Therefore $\pi(\Delta(\overline{B})) = \{0\}$ and it follows that $\Delta(\overline{B}) \subseteq \overline{B}$. On the other hand, Φ leaves B invariant and Φ is continuous, thus Φ leaves \overline{B} invariant and so it drops to a continuous automorphism $\Phi_0 : A/\overline{B} \rightarrow A/\overline{B}$. Consider $\Delta_0 : A/\overline{B} \rightarrow A/\overline{B}$, $a + \overline{B} \mapsto \Delta(a) + \overline{B}$, which is a continuous Φ_0-derivation on A/\overline{B} and by the argument just before this theorem $\Delta_0(P/\overline{B}) \subseteq P/\overline{B}$ for each primitive ideal P of A. Since $\overline{B} \subseteq P$ for every primitive ideal P, we have $\Delta(P) \subseteq P$.

Corollary 2.1. If Φ is an inner automorphism on a Banach algebra A and if Δ is a Φ-derivation with a nilpotent separating ideal, then Δ leaves each primitive ideal invariant.

Proof. Clearly for an inner automorphism Φ, $[\Delta, \Phi]$ leaves each ideal invariant. Now the result follows from Theorem 2.2.

3. Nilpotency of the Separating Ideal

Considering (Q1) we obtain some sufficient conditions for the separating ideal of a Φ-derivation on a Banach algebra to be nilpotent or quasinilpotent. Theorem 3.1 (ii) is a generalization of [5, Lemma 4.2] and Corollary 3.2 is [3, Corollary 4.3] which is proved in a different way. Theorem 3.3 and the other results of this section are generalizations of the results in [7]. Throughout this section by (A1) we mean the following assumption:

(A1). The automorphism Φ is inner or Φ is continuous (as before), and $[\Delta, \Phi] = 0$.

Under this assumption $S(\Delta)$ is invariant under $[\Delta, \Phi]$ and each Φ^j $(j \in \mathbb{Z})$.

Theorem 3.1. Let A be a Banach algebra, and let Δ be a Φ-derivation on A. Set $J := S(\Delta) \cap R$. Then the following assertions hold.

(i) Let $Q(A)$ be the set of all quasinilpotent elements of A. If $\Delta(J) \subseteq Q(A)$, then $S(\Delta) \subseteq R$.
(ii) Assuming (A1) holds. If J is a nil ideal, then $S(\Delta)$ is a nilpotent ideal of A.

Proof.

(i) Let $\Delta(J) \subseteq Q(A)$, but $S(\Delta) \nsubseteq R$. Since $S(\Delta)$ is a separating ideal, $S(\Delta)/J$ is finite dimensional by [6, Lemma 5.2.25]. Therefore $S(\Delta)$ has a strong Wederburn decomposition, that is there exists a finite dimensional subalgebra U of $S(\Delta)$ such that $S(\Delta) = U \oplus J$ and $S(\Delta)$ contains a nonzero idempotent, say e by [6, Theorem 2.8.6]. Let $\{a_n\}$ be a sequence in A, with $a_n \rightarrow 0$ and $\Delta(a_n) \rightarrow e$. Then $\{ea_n\} \subseteq S(\Delta)$ and there exist $\{u_n\} \subseteq U$ and $\{r_n\} \subseteq J$, such that $u_n \rightarrow 0$, $r_n \rightarrow 0$, and $ea_n = u_n + r_n$. We
have $\Delta(ea_n) \to e$. Since U is finite dimensional $\Delta(u_n) \to 0$. Therefore $\Delta(r_n) \to e$, and so $e \in \Delta(J) \subseteq \overline{Q(A)}$. Thus by [6, Corollary 2.4.8], the spectrum of e is a connected set containing the origin. It follows that the spectrum of e is nothing but the set $\{0\}$ and this contradicts the fact that e is non-zero. Thus $S(\Delta) \subseteq R$.

(ii) If J is nilpotent, then $J \subseteq B$. Suppose on the contrary that $S(\Delta)$ is not nilpotent, then $S(\Delta) \neq J$. Using the same notation as in the proof of (i), it follows that $e \in \Delta(J) \subseteq \Delta(B)$. Hence by (A1) and Theorem 2.1 $e \in \overline{B} \subseteq R$ which is a contradiction.

Corollary 3.2. Each Φ-derivation Δ on a semisimple Banach algebra is continuous.

Proof. As before let R denote the Jacobson radical. We have $S(\Delta) \cap R \subseteq R = \{0\}$ and by Theorem 3.1(i), $S(\Delta) \subseteq R$. Thus $S(\Delta) = \{0\}$, and Δ is continuous.

Theorem 3.3. Let Δ be a Φ-derivation on a Banach algebra A such that $[\Delta, \Phi]$ and Φ are continuous. Let I be a closed ideal of A with $\Phi^{-1}(I) \subseteq I$. Then $S(\Delta) \cap I$ is nilpotent if and only if $\Delta^2 \bigg|_{\prod_{n=1}^{\infty}(S(\Delta) \cap I)^n}$ is continuous.

Proof. We have $\Phi^{-1}(S(\Delta \cap I)) \subseteq S(\Delta) \cap I$. Suppose that Δ^2 is continuous on $\bigcap_{n=1}^{\infty}(S(\Delta) \cap I)^n$. Consider $a \in S(\Delta) \cap I$, thus $\Phi^{-1}(a^n) = (\Phi^{-1}(a))^n \in (S(\Delta) \cap I)^n$. Since $S(\Delta)$ is a separating ideal, there exists $N \in \mathbb{N}$ such that $S(\Delta)\Phi^{-1}(a^n) = S(\Delta)\Phi^{-1}(a^N)$ ($n \geq N$). Hence by Mittag-Leffler theorem and the fact that $S(\Delta)\Phi^{-1}(a^n) \subseteq (S(\Delta) \cap I)^n$, we have

$$S(\Delta)\Phi^{-1}(a^N) = \bigcap_{n=1}^{\infty} S(\Delta)\Phi^{-1}(a^n) = \bigcap_{n=1}^{\infty} S(\Delta) \cap \Phi^{-1}(a^n) \subseteq \bigcap_{n=1}^{\infty} (S(\Delta) \cap I)^n.$$

Now, let $\{x_n\} \subseteq A$, $x_n \to 0$ and $\Delta(x_n) \to a^{N+1}$. Take $y_n = x_n\Phi^{-1}(a^{N+1})$, then $y_n \in S(\Delta)\Phi^{-1}(a^N) \subseteq \bigcap_{n=1}^{\infty}(S(\Delta) \cap I)^n$, $y_n \to 0$, and $\Delta(y_n) = \Delta(x_n)a^{N+1} + x_n\Delta(\Phi^{-1}(a^{N+1})) \to a^{2(N+1)}$. Also by the hypothesis, $\Delta^2(y_n) \to 0$ and $\Delta^2(y_n\Phi^{-1}(y_n)) \to 0$. On the other hand, by the continuity of $[\Delta, \Phi]$

$$\Delta^2((y_n)\Phi^{-1}(y_n)) = (y_n)\Delta^2(\Phi^{-1}(y_n)) + \Delta(y_n)^2 + \Delta(y_n)\Phi(\Delta(\Phi^{-1}(y_n))) + \Delta^2(y_n)\Phi(y_n)$$

$\to 2a^{4(N+1)}$ as n tends to ∞. Therefore $a^{4(N+1)} = 0$, that is $S(\Delta) \cap I$ is a nil and hence a nilpotent ideal by closedness. The converse is trivial.

Note that the assumptions of Theorem 3.3 hold whenever Φ is inner.
Corollary 3.4. Let Δ be a Φ-derivation on a Banach algebra A and let Φ satisfy (A1), then $S(\Delta)$ is a nilpotent ideal if and only if $\Delta^2 \big| \bigcap_{n=1}^\infty (S(\Delta) \cap R)^n$ is continuous.

Proof. Since $\Phi^{-1}(R) \subseteq R$, then $S(\Delta) \cap R$ is nilpotent, by Theorem 3.3. Now Theorem 3.1 implies that $S(\Delta)$ is nilpotent. The converse is trivial. \hfill \blacksquare

Corollary 3.5. Let Δ be a Φ-derivation on a Banach algebra A and let Φ satisfy (A1). If $\dim (\bigcap_{n=1}^\infty (S(\Delta) \cap R)^n) < \infty$, then $S(\Delta)$ is nilpotent, and hence Δ leaves each primitive ideal of A invariant.

Proof. This is immediate by Corollary 3.4 and Theorem 2.2. \hfill \blacksquare

Remark 3.6. Using the above results, the same notations and slightly different arguments as in [7], we observe that theorems 2.5, 2.6, 2.7 in [7] are also valid in the case of Φ-derivations whenever Φ satisfies assumption (A1). In particular, [7, Theorem 2.7] together with Corollary 2.1 above, show that "if Φ is inner and the set $M(\Delta) = \{x \in S(\Delta) \cap R : \Delta(x) \in R\}$ is a nil set, then Δ leaves each primitive ideal invariant".

REFERENCES

S. Hejazian
Department of Pure Mathematics,
Ferdowsi University of Mashhad,
P. O. Box 91775-1159,
Mashhad, Iran
E-mail: hejazian@ferdowsi.um.ac.ir

A. R. Janfada
Department of Pure Mathematics,
Ferdowsi University of Mashhad,
P. O. Box 91775-1159,
Mashhad, Iran
E-mail: ajanfada@wali.um.ac.ir