
3D Object Tracking Using Directional Procrustes 
Snake 

Mehdi kamandar 
Electrical Engineering Dept. 

Ferdowsi university of Mashhad, 
Iran. 

mehdi_kamandar@yahoo.com 
 

 
Seyed Alireza Seyedin 

Electrical Engineering Dept. 
Ferdowsi university of Mashhad, 

Iran. 
seyedin@um.ac.ir 

 
 

 
Hossein Khoshbin 

Electrical Engineering Dept. 
Ferdowsi university of Mashhad, 

Iran. 
khoshbin@um.ac.ir 

 
 

Abstract— A novel method of parametric active contours 
with geometric shape prior is presented in this paper. The 
main idea of the method consists in minimizing an energy 
function that includes additional information on a shape 
reference called a prototype. Shape prior introduced through a 
similarity measurement between evolving contour and 
Procrustes mean shape of desired object. This similarity 
measurement is full Procrustes distance between these two 
contours that is invariant with respect to similarity 
transformations (translation, scaling, and rotation). This extra 
shape knowledge enhances the model robustness to noise, 
occlusion and complex background. We also use gradient 
direction information in addition to gradient magnitude for 
more robustness to complex background. In this paper we 
introduce one important application of this new snake "3D 
object tracking". We obtain promising results for 3D object 
tracking which show the robustness of our method against 
noise, complex background, similarity transformations, 
occlusion, and changing viewpoint of 3D object. 
 

Keywords- parametric active contour, shape prior, similarity 
transformations, full Procrustes distance, Procrustes mean 
shape, directional Procrustes snake, 3D object tracking.  

I. INTRODUCTION 
Image segmentation and 3D object tracking are important 

research topics for many areas, such as military, medical, and 
digital video applications. Recently researchers have 
developed various algorithms for image and video 
segmentation. Among these algorithms, active contour 
models, more widely known as snakes, have been 
extensively used as an edge–based segmentation and 
tracking method [1].  

Snake is a deformable contour on image plane that 
deforms to seek minimum value of its energy function. This 
energy function is defined so cleverly that takes its minimum 
value when fits to a closed boundary of a region in image 
plane. Hence, snake converts the segmentation problem to 
minimizing an energy function. By now, there are two kinds 
of active contour models: parametric and geometric active 
models. Parametric models explicitly parameterize active 
contours or surfaces in some certain ways. A geometric 
model based on curve evolution theory and the level set 

method can automatically handle topology adaptation with 
more complicated computing involved.  

A critical problem is how to add shape prior information 
to energy function of snake, driving it toward boundary of 
desired object in image. By now, several methods have been 
proposed for adding shape prior information to energy 
function of geometric active models and region based active 
contours [2, 3, 4]. Parametric models have lower 
computation complexity. Hence, we decided to add shape 
prior information to energy function of them. Charmi et al. 
[5] have proposed a shape energy term according to distance 
between Fourier descriptors of evolving contour and a 
reference template. In our method [6], shape knowledge was 
introduced through a similarity measurement between 
evolving contour and Procrustes mean shape of desired 
object. This similarity is measured by full Procrustes 
distance between these two contours that is invariant with 
respect to similarity transformations (translation, scaling, and 
rotation) and is added to traditional energy function of 
snakes as an extra shape energy term. Procrustes mean shape 
of desired object is extracted from a training set of its sample 
shapes [5]. This extra shape knowledge enhances the model 
robustness to noise, occlusion, similarity transformations, 
and complex background.  

In general edge information is used as an image energy 
term which usually represented by the gradient magnitude of 
an image. However, when an image has complex 
background or heavy noise, the snake gets confused, and 
finding the correct object boundary from the gradient 
magnitude only is not easy. Hence, we improve robustness of 
the method against complex background and noise, by 
including gradient direction information in the image energy 
term. Because of using full Procrustes distance and gradient 
directional information in energy function, we call this new 
snake “Directional Procrustes snake”. 

Finally we perform 3D object tracking by minimizing the 
energy function of directional Procrustes snake. The final 
contour in the current frame or a prediction by Kalman 
filtering will be chosen as initial contour for the next frame 
and will be fitted the boundary of desired object by 
minimizing the energy function of directional Procrustes 
snake. The minimizing process is done by greedy algorithm 
[6]. Greedy is a suboptimum and fast algorithm for 
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minimizing the energy function of snakes. We obtained 
promising results of 3D object tracking by new snake, 
representing the robustness of our tracking method against 
noise, complex background, occlusion, similarity 
transformations, and changing viewpoint of a 3D object.  

This paper organized as follows: section 2 describes 
Procrustes shape analysis. In section 3, we extract the energy 
function of Directional Procrustes snake. Experimental 
results for 3D object tracking are presented and discussed in 
section 4. Conclusion is presented in section 5. 

II. PROCRUSTES SHAPE ANALYSIS 
Procrustes shape analysis is a particularly popular 

method in direction statistics and is intended to cope with 2D 
shapes. A discretized shape in 2D space can be described by 
a vector of n complex numbers: 
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),( ii yx are the Cartesian coordinates of the ith landmark of 
shape, vector z is called a configuration (We will represent 
vectors by using bold letters). Fig. 1 represents a continuous 
shape and its discretization by n equidistant landmarks. For 
two shapes z1 and z2, if their configurations are equal through 
a combination of translation, scaling and rotation (similarity 
transformations), i.e.:  
 

 

(2) 
 
 
We may consider z1, z2 represent the same shape. In (2),  n1  
is a 1×n  vector with entries 1, nR 1×α  translates z2 by Rα  
units in the horizontal axis direction and nIj 1××α  
translates z2 by Iα  units in the vertical axis direction, |β| 
scales and β∠  rotates z2. It is very convenient to center 
shapes by defining the centered configuration as 
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Procrustes distance between two configurations u1, u2 can be 
defined as [7] (we suppose that corresponding points on two 
contours have similar indices in two configurations): 

 
                              (3)                             

 
 

Hence Procrustes distance is Euclidean distance between 
aligned configurations with respect to similarity 
transformations, having similar position, scale, and 
orientation in image plane. Minimizing the above objective 
function with respect to α  and β , we have: ,0=α   

 

 

Figure 1.  A continous  shape and its discretization by n equidistant 
landmaks. 
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complex conjugation transpose. Substituting α and β  in (3), 
we have:                                                                                                   

(4) 

 

Based on Cauchy-Schwarz inequality )|(| 2
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we can show that 1),(0 21 ≤≤ uuFd . When 0),( 21 =uuFd , 
two configurations u1, u2 represent the same shape and 
when 1),( 21 =uuFd , u1, u2 represent two shapes that have 
no resemblance to each other. We conclude that smaller 

),( 21 uuFd  means that u1, u2 represent two shapes that have 
more resemblance to each other. Consequently, full 
Procrustes distance measures degree of resemblance of two 
shapes independent of their position, scale and rotation 
(similarity transformations) in image plane. For using full 
Procrustes distance in snake energy, we need a mean shape 
(prototype) for desired object, to measure resemblance of 
evolving contour 

 with it. Given a training set composed of m sample shapes 
of desired object )( m21 u,...,u,u , we can find their mean by 
finding u that minimizes the objective function in (5) [7]: 

 
(5) 

 
 
Hence, û is the shape that has the smallest possible 
Procrustes distance (maximum resemblance) from each of 
the sample shapes. From (4) and (5), we have: 

 
 

                (6) 
 
 
 

Where m is a constant representing number of sample 
shapes and: 
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                       (7)                           
 

From (6) we conclude that: 

                                      
                            (8)                                        

 

If we suppose that λi and vi (||vi||=1) are corresponding 
eigenvalues and eigenvectors of matrix S, respectively, we 
will have: 

 

(9) 
 
 
Comparing (8) and (9), we conclude that the Procrustes mean 
shape û  is the dominant eigenvector of S, i.e., the 
eigenvector that corresponds to the greatest eigenvalue of S, 
provided that distribution of sample shapes in shape space 
follows Gaussian distribution. 

III. ENERGY FUNCTION OF DIRECTIONAL PROCRUSTES  
SNAKE 

A traditional snake is a controlled continuity spline that 
moves and localizes onto a specified contour under the 
influence of its energy function minimization [1]. Let a snake 
be a parametric contour, ))(),(()( sysxsv = , where parameter 

∈s [0,1]. It moves around the image spatial domain to 
minimize the traditional discretized energy function as 
defined by:  [10, 11]  
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In the above equation, v is the evolving contour with n 
snaxels, ),( ii yx  are the Cartesian coordinates of ith snaxel 
and ),(),( 00 nn yxyx = . iw s are constant weights used to 

tune the impact of each energy terms. d is the average 
distance between adjacent snaxels on contour. 

The first term in above energy function is called first 
order continuity. Minimization of this term reduces the 
distance between adjacent snaxels. Hence it prevents of gaps 
in contour that are due to noise and pseudoedges. Existence 
of this term is essential, because when snake lies on 
homogeneous regions of image, the image energy is 
negligible and only minimization of this term can move the 

snake toward boundary of desired object. One important 
problem with this term is a tendency for snaxels to bunch up 
on a strong portion of an edge [11]. For solving this problem, 
we use the second term in energy function. This term 
encourages even spacing of snaxels. It tends to keep the 
distance between each pair of adjacent snxels equal and 
prevents this tendency.  

The third term in above energy function is called second 
order continuity. If the ith snaxel is pushed toward the 
midpoint of two adjacent snaxels, this term will be 
minimized. Hence it prevents of sharp corners in contour that 
are usually due to noise and pseudoedges. The first three 
terms in above energy function that are independent of image 
information )),(( yxI , are called internal energy terms. 

The fourth term (image energy term) considers the 
gradient magnitude. Minimizing this term, the snaxels will 
be attracted to locations in image with large gradient 
magnitude, i. e., strong edges.  

Using the traditional energy function, snake suffers from 
many problems such as noise, strong edges in complex 
background, occlusion, and the limited capture range. 
Consequently snake cannot find correct boundary of desired 
object. For overcoming these problems, we add two extra 
terms to traditional energy function, one for shape 
information and one for considering gradient direction 
information. Shape knowledge is introduced through a 
similarity measurement between evolving contour and 
Procrustes mean shape of desired object. This similarity 
measurement is full Procrustes distance between these two 
contours that is invariant with respect to similarity 
transformations and is added to traditional energy function of 
snakes as an extra shape energy term (Eshape). The smaller 
Eshape, the more similar the contour is to the sample shapes.  

For using of Procrustes distance between two contours, 
correspond saxels on them must have similar indices in two 
configurations. For this purpose, we reparametrize v by 
changing the starting snaxel to ith snaxel (applying circular 
shift  to v), representing it by iv , and calculate )ˆ,(2 uvd i

f for 
each parametrization.  The shape energy will be replaced 
with minimum of )ˆ,(2 uvd i

f over n possible parametrization. 
In this case the energy function is invariant with respect to 
the starting snaxel.  

Procrustes mean shape of desired object is extracted from 
a set of m sample shapes according to section 2. In many 
situations, the distribution of sample shapes in shape space 
does not follow Gaussian distribution e. g., different views of 
a single 3D object that form distinct clusters in shape space. 
Hence, firstly we cluster them to k clusters by k–mean 
clustering algorithm (usually mk <≤8 ). In this case the 
distribution of the sample shapes for each cluster, with large 
probability, follows Gaussian distribution. So we can extract 
a mean shape for each cluster (the dominant eigenvector of 
covraiance matrix of sample shapes in each cluster) and 
model the 3D object by these k mean shapes }ˆ,...,ˆ,ˆ{ 21 kuuu . 
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We compute full Procustes distances between evolving 
contour v and these k mean shapes of desired object and 
replace the shape energy term with minimum of them. In 
this case the final energy function is invariant with respect 
to changing viewpoint of 3D object. 

In general edge information is used as an image energy 
term which usually represented by the gradient magnitude of 
an image (fourth term). However, when an image has 
complex background or heavy noise, the snake gets 
confused, and finding the correct object boundary from the 
gradient magnitude only is not easy. For more robust 
tracking in complex background and heavy noise, we also 
use an extra energy term that minimizes difference between 
gradient direction and contour normal direction because they 
are the same for boundary points. 

The final energy function of directional Procrustes snake 
is a linear combination of six energy terms (11). Gradient 
magnitude term has nonlinear variations versus spatial 
variations i. e., a small spatial variation can change the 
gradient magnitude severely, which is not the case for the 
other terms. To attenuate these nonlinear variations, we 
apply a smoothing Gaussian filter with large standard 
deviation to the gradient map. This facilitates selection of 
free parameters ( iw s) in energy function (11) and leads to 
more robustness to complex background and noise. The final 
energy function of directional Procrustes snake is defined as 
follows: 
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Where smoothedii yxI ),(∇  is the smoothed gradient 

magnitude on ith snaxel. iv is the evolving contour with ith 
snaxel as starting snaxel and jû  is jth Procrustes mean shape 

of desired object, )ˆ,(2
j

i
f uvd is full Procrustes distance 

between them. ),( iit yxθ , ),,( iin yxθ  and ),( iiG yxθ  are 
contour tangent direction, contour normal direction, and 
gradient direction at ith snaxel in terms of radian. Floor(x), is 
a function that returns the highest integer less than or equal 
to x. With the mentioned definition for ),( iin yxθ  
and ),( iiG yxθ , the range of their values is ]2/,2/[ ππ− that 
covers whole directions in image plane because θ  and πθ +  
represent the same direction. It is easy to check 
that 2/),(),(0 πθθπ ≤−−×≤ iiGiin yxyxm . Finally we 
mention that gradient direction is always normal to contour, 
but outward or inward depends on background. 

By now several methods have been used for minimizing 
energy function of snakes. Calculus of variations (gradient 
descent) and random search algorithms are two main 
procedures. Main drawbacks of gradient descent 
minimization are trapping in local minimum due to noise and 
pseudoedges, numerical instability, and the continuous 
nature of it [1]. In an effort for overcoming these difficulties, 
many researchers have used random search algorithms for 
solving this minimization problem. Simulated annealing, 
genetic algorithm [9], and particle swarm optimizer [10] are 
more convenient algorithms for this purpose. These 
algorithms are capable of detecting global minimum while 
escaping local ones. The main drawback of these algorithms 
is computation complexity. By using of suboptimum 
minimization algorithms such as greedy algorithm, one can 
implement this minimization problem so faster. For using of 
greedy, one needs a good initialization contour near the 
boundary of desired object. Because of the discrete nature of 
the energy function of Directional Procrustes snake (11), we 
use greedy or random search algorithms for minimizing it. 

IV. EXPRIMENAL RESULTS 
As an important application of directional Procrustes 

snake, we present experimental results of 3D object tracking. 
We perform 3D object tracking by minimizing the energy 
function of directional Procrustes snake. The final contour in 
the current frame or a prediction by Kalman filtering will be 
chosen as initial contour for the next frame and will be fitted 
the boundary of desired object by minimizing the energy 
function of Directional Procrustes snake in a predefined 
search region around each snaxel. The size of the search 
region depends on maximum expected displacement of the 
object in two consecutive frames. The gradient map is only 
computed over these search regions, not all of image plane. 
Hence, we have n (the number of snaxels) sub gradient maps.  
The minimizing process is done by greedy algorithm [9]. 
Greedy is a suboptimum and fast algorithm for minimizing 
the energy function of snakes.  

Fig. 2 represents four example views of the 3D object. 
Fig. 3 represents the aligned contours for 30 sample shapes 
of different views of the object with 12 landmarks and 
extracted mean shape from them. Because of non Gaussian 
distribution of sample shapes in shape space, there is large 
difference between mean shape and many of the sample 

(11) 
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shapes. Hence we cluster sample shapes to 8 clusters by k – 
mean clustering algorithm. Fig. 4 represents sample shapes 
for two clusters of 8 clusters and the Procrustes mean shape 
extracted for each cluster.  

Fig. 5 represents 3D object tracking for different values 
of free parameters )( iw . Everywhere the values of some iw s 
are not mentioned, they are appropriate values opposite zero. 
The first row represents results for conventional 
snake 0( 65 == ww ). Because of complex background and 
occlusion, snake cannot follow the object. The second row 
represents results after adding shape prior to energy 
function 0,1( 65 == ww ). Although the snake can preserve 
the shape of desired object, it traps in complex background i. 
e., snaxels are attracted to points with high gradient 
magnitude in background. For solving this problem, we add 
gradient direction information to energy function 1( 6 =w ).  
The third row represents the results for this case.  We 
observe that many of snaxels cannot still follow the correct 
boundary of the object and are attracted to strong edges in 
complex background.  This is due to nonlinear variations of 
gradient magnitude. Hence, we apply smoothing Gaussian 
filters with standard deviation equals 3 to each of sub 
gradient maps computed over search region around each 
snaxel. The fourth row represents the tracking results 
obtained by minimizing the complete energy function of 
Directional Procrustes snake (11). This results show 
robustness of the method against complex background, 
occlusion, noise, and changing viewpoint of 3D object. 

The computation complexity of the method depends on 
the number of snaxels, the size of predefined search region, 
and the number of iterations of minimizing process. In the 
above example, the number of snaxels is 12, the size of 
predefined search region is 4×4 (15 pixels around each 
snaxel), and 2 iterations. Hence we should compute the 
energy function (11), 12×16×2=384 times for each frame. 
For the above example the average processing time, on a 
serial computer (Intel Celeron 3GHz, 512 MB RAM), for 
each frame is only 0.1 second.   

V. CONCLUSION 
We have developed a parametric active contour model, 

named the Directional Procrustes snake, which uses 
information about shape prior of desired object and gradient 
direction in addition to its magnitude. By incorporating this 
information provides better segmentation and tracking results 
in the scenes with complex background, heavy noise, 
occlusion, and changing viewpoint of 3D object. Shape 
information is introduced through similarity measurement 
between evolving contour and Procrustes mean shape of 
desired object. This similarity measurement is full Procrustes 
distance between these two contours that is invariant with 
respect to similarity transformations. Mean shape of desired 
object is extracted from a set of sample shapes according to 
Procrustes mean shape algorithm. We also apply k – mean 
clustering algorithm to sample shapes and extract a mean 
shape for each cluster, to solve the viewpoint changing of 3D 
object during tracking process.  

 
Figure 2.  Example views of a 3D object. 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.  30 aligned contours (solid) and mean shape of them (dashed). 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.  Sample shapes (solid) for two clusters of 8 clusters and the 
mean shape (dashed) extracted for each cluster (top and down). 
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Figure 5.  The first row represents the tracking results for conventional snake (w5=0, w6=0), the second row represents the tracking results after adding shape 
prior to energy function(w5=1, w6=0),  the third row represents the tracking results after adding gradient direct information to energy function (w5=1, w6=1), the 
fourth row represents the tracking results for minimizing complete enregy function of directional procrustes snake including smoothing of sub gradient maps by 

applying smoothing Gaussian filters with standard deviation equals 3 to them. 
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