Asymptotic Behavior of Product of Two Heavy-Tailed Dependent Random Variables

V. Ranjbar
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran, 91775-1159
email:vahidranjbar.y@yahoo.com

M. Amini
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran, 91775-1159

A. Bozorgnia
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran, 91775-1159,

Abstract

Let X and Y be positive weakly negatively dependent (WND) random variables with finite expectations and continuous distribution functions F and G with heavy tails, respectively. The asymptotic behavior of the tail of distribution of XY is studied and some closure properties under some suitable conditions on $F(x) = 1 - F(x)$ and $G(x) = 1 - G(x)$ are provided. Moreover, subexponentiality of XY when X and Y are WND random variables is derived.

MSC2000: 60E05, 60F99

keywords: Weakly negative dependent, Heavy-tailed, Asymptotic behavior.

1 Introduction

The subexponentiality of distribution of XY when X and Y are independent heavy tailed random variables with distribution functions F and G respectively, has been studied by Cline and Samorodnitsky[3]. They proved that, if F belongs to the class of subexponential distributions (S), denoted by $F \in S$ under some suitable conditions on $F(x) = 1 - F(x)$ and $G(x) = 1 - G(x)$, then the distribution of XY belongs to S. Tang [9] by removing conditions of Cline and Samorodnitsky and adding a mild condition to the distribution F, extended these results. Following the works of Tang [9] and Cline and Samorodnitsky[3], we will study asymptotic behavior of the tail distribution of XY, when X and Y are WND random variables with finite expectations and continuous distribution functions F and G, respectively. In fact, we prove, if F and G belong to classes L or D, under some suitable conditions on F and G, then the distribution of XY also belongs to the L or D. Finally, we derive subexponentiality of XY when X and Y are WND random variables.

An important class of heavy tailed distributions is D, which consists of all distributions with dominated variation. By definition, a distribution function F belongs to the class D, if $\lim \sup \frac{F(xy) / F(x)}{y} < \infty$, holds for some $0 < y < 1$ as $x \to \infty$. A wider class of heavy tailed distributions is L, which consists of all distributions with long tailed distributions. By definition, a distribution function belongs to L, if $\lim \frac{F(x+y)}{F(x)} = 1$ holds for any $y \in \mathbb{R}$, as $x \to \infty$. For a distribution F with $F(x) > 0$ for all $x \geq 0$,
the lower Matuszewska index of the function \(F \) is defined as follow,

\[
J_\alpha(F) = \sup \left\{ \frac{F^*(v)}{\log v} \right\} \quad \text{with} \quad F^*(v) = \limsup_{x \to \infty} \frac{F(tx)}{F(x)} \quad \text{for} \quad v > 1.
\]

It is easy to see that, the condition \(0 < J_\alpha(F) \leq \infty \) is equivalent to condition \(F^*(v) < 1 \), for some \(v > 1 \). For details of the lower Matuszewska indices see Bingham et al[1] (chapter 2.1) and for further discussions and applications see Cline and Samorodnitsky [3] and Tang and Tistlshvili [10]. Throughout this paper all distribution functions are defined on \([0, \infty)\) and \(f(x) \sim g(x) \) means that \(\lim f(x)/g(x) = 1 \) as \(x \to \infty \). We denote the tail of distribution of \(F \) by \(F(x) = 1 - F(x) \) and distribution of product of \(XY \) by \(H \), say \(H(t) = P(XY \leq t) \). The Weakly Negative Dependence (WND), which is introduced as follows, is a kind of dependence which has some good and simple property that allows us to prove some useful results.

Definition 1.1. The random variables \(X \) and \(Y \) are said Weakly Negatively Dependent (WND) if there exists some \(C > 1 \) such that, \(f(x,y) \leq C f_1(x) f_2(y) \) where \(f(x,y) \), \(f_1(x) \) and \(f_2(y) \) are joint density and marginal densities of \(X \) and \(Y \), respectively.

Remark 1.2. Let \(X \) and \(Y \) be two WND random variables with distribution functions \(F \) and \(G \) respectively. Then it is easy to show that,

1. For every \(x, y \in \mathbb{R} \) we have \(F_{XY}(x, y) \leq C F(x) G(y) \).
2. For all positive values \(x \), \(P(X + Y > x) \leq C \int_0^x F(z - u) dG(u) \).
3. If \(h_1(.) \) and \(h_2(.) \) are monotone measurable functions then \(h_1(X) \) and \(h_2(Y) \) are WND. In particular, it is valid when \(h_i(x) = c_i x, i = 1, 2 \) where \(c_i \in \mathbb{R} \).

2 Main results

In this section, we study the asymptotic behaviors and some closure properties of classes D and \(L \) for product of two random variables with heavy tail distribution functions.

Theorem 2.1. Let \(X \) and \(Y \) be two WND random variables with distribution functions \(F \) and \(G \), respectively. Suppose that \(F \) and \(G \) belong to \(D \) and \(0 < J_\alpha(G) < \infty \). If there exists some \(0 < p < J_\alpha(G) \) for which \(E(X^{-p}) < \infty \), then \(H \in D \), where \(H(x) = P(XY > x) \).

Proof. Since we study the asymptotic behavior of tail of the distribution functions for sufficiently large positive value of \(x \), hence, without loss of generality we assume that \(x > 1 \). We prove the theorem in three parts

1. If \(X > 1 \) a.s. and \(Y > 1 \) a.s., then we have

\[
\tilde{H}(x) = P(XY > x) = P(\ln X + \ln Y > \ln x) = P(\ln X + \ln Y > \ln x; \ln X < \ln x) + P(\ln X > \ln x) + P(\ln Y > \ln x; \ln Y < \ln x) = P(\ln Y > \ln x; \ln Y < \ln x).
\]

On the other hand, it is easy to see that for any positive values \(a, b, c \) and \(d \),

\[
\frac{a + b}{c + d} \leq \max \left\{ \frac{a}{c}, \frac{b}{d} \right\}.
\]

So, for some \(0 < t < 1 \), we get

\[
\frac{\tilde{H}(tx)}{\tilde{H}(x)} \leq \max \{ I_1, I_2 \}.
\]
where,
\[
I_1 = \left[\frac{P(X > tz) - P(X > x, Y > tz)}{P(X > x) - P(X > x, Y > x)} \right] \leq \frac{P(X > x)}{\frac{C.P(X > x)P(Y > x)}{P(X > x)}} = [I_3 + I_4]^{-1}.
\]

The inequality directly follows from Remark 1.2. Then, by \(F \in D \), we have, \(0 < \lim_{x \to \infty} I_5 < 1 \) and \(\lim_{x \to \infty} I_1 = 0 \), therefore, \(\limsup_{x \to \infty} I_1 < \infty \). Moreover,
\[
I_2 = \frac{P(Y > tx)}{P(Y > x)} + P(XY > tx; Y < tx; X < tx) + P(XY > x; Y < x; X < x) \leq \frac{P(Y > tx)}{P(Y > x)} + C. \int_t^{tx} \frac{G(tx/u) - G(tx)}{G(x)} dF(u) = \frac{P(Y > tx)}{P(Y > x)} + I_5.
\]

Where the last equality follows from remark 1.2. Now, by Tong [9] and the second statement of Proposition 2.2.1 of Bingham et al. [1], we conclude that for each \(0 < p < \mathcal{E}(G) \), there exist positive constants \(C' \) and \(x_0 \) such that the inequality \(G(y)/G(x) \leq C'(y/x)^p \), holds uniformly for \(y \leq x \), or equivalently, that the inequality
\[
\frac{G(tx/u)}{G(x)} \leq C'(t/x)^p, \quad x \leq t \leq x_0, \quad u \leq x \leq t.
\]

holds uniformly for \(x_0 \leq \frac{tx}{u} \leq x \) for \(t \leq u \leq \frac{tx}{x_0} \). So we have
\[
\int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) \leq C'. \int_t^{tx} (t/u)^p dF(u) \leq M_t t^p E(X^{-p}) < \infty. \tag{24}
\]

Where, \(M_t = C.C' \). Now, if \(x_0 \leq 1 \), then, by (24) we can write
\[
I_0 \leq C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) \leq C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) < \infty.
\]

If \(x_0 > 1 \), we have
\[
I_0 \leq C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) = C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) + C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) \]
\[
= C. \int_t^{tx} \frac{G(tx/u)}{G(x)} dF(u) + I_5.
\]

On the other hand, we have
\[
\limsup_{x \to \infty} I_6 = \limsup_{x \to \infty} \frac{G(k)}{G(uk/x)} \frac{tx}{k^2} f(tx/k) dk = 0. \tag{25}
\]

Where \(k = tx/u \) and \(f \) is density function of \(X \). The last equality follows from \(G \in D \) and the fact that \(\lim_{x \to \infty} tx/k^2 = 0 \). Therefore, using (24) and (25) we can conclude that \(\limsup_{x \to \infty} I_5 < \infty \) and then \(\limsup_{x \to \infty} I_2 < \infty \). So
\[
\limsup_{x \to \infty} \frac{H(tx)}{H(x)} < \infty.
\]

ii. If \(X > 1 \) a.s. and \(0 < Y < 1 \) a.s., then for some \(0 < t < 1 \) and for all \(x > 1 \), Remark 1.2 and \(F \in D \) imply that
\[
\limsup_{x \to \infty} \frac{H(tx)}{H(x)} \leq \limsup_{x \to \infty} \frac{P(XY > tx)}{P(X > x)} \leq \limsup_{x \to \infty} C. \int_0^1 \frac{F(tx/u)}{F(x)} dF(u) < \infty.
\]
iii. The case $0 < X < 1$ a.s. and $Y > 1$ a.s. is similar to (ii).

Using (2.2), and last three section we have

$$
\lim_{x \to \infty} \frac{h(tx)}{H(x)} \leq \lim_{x \to \infty} \sup \left\{ \frac{P(XY > tx; X > 1; Y > 1)}{P(XY > x; X > 1; Y > 1)} \right\}
$$

This completes the proof.

\[\square\]

Theorem 2.2. Let X and Y be two WND random variables with distribution functions F and G, respectively. Suppose that $F, G \in D$ and $E(X) < \infty \ (E(Y) < \infty)$. If $F(x) = O(G(x))$ then $H \in D$.

Proof. The approach of the proof is similar to the proof of Theorem 2.1 just we need to change the relation (2.5). In the new situation, for all $x > 0$ and $0 < t < 1; h > 0$, we have

$$
\frac{P(XY > tx; Y < tx; X < x)}{P(Y > x)} \leq C \int_0^x \frac{G(ty/u)}{G(x)} dF(u)
$$

$$
\leq \sum_{m=0}^{N_0} \int_{nh}^{(m+1)h} \frac{G(ty/u)}{G(x)} dF(u) \leq \sum_{n=0}^{N_0} \frac{1}{G(x)} \sum_{m=0}^{N_0} \left(\frac{tx}{(n+1)h} \right) \left[F(nh) - F((n+1)h) \right]
$$

$$
\leq \frac{G(ty/h)F(0)}{G(x)} + \sum_{n=1}^{N_0} \bar{F}(nh) \left[\frac{G(ty/(n+1)h)) - G(ty/nh))}{G(x)} \right] = K_1 + K_2. \tag{2.6}
$$

Where $N_0 = [tx/h]$. Since $G \in D$, we have $\lim_{x \to \infty} K_1 < \infty$. On the other hand, by Theorem ..., we know for any $t, x > 0$ and $h > 0$ there exist some $n_0 \in N$ such that for every $n > n_0$, $nh > tx$. So we have

$$
K_2 = \sum_{n=1}^{N_0} \bar{F}(nh) \left[\frac{G(ty/(n+1)h)) - G(ty/nh))}{G(x)} \right] = K_3 + K_4. \tag{2.7}
$$

Now we get

$$
\lim_{x \to \infty} K_3 \leq \sum_{n=1}^{N_0} \bar{F}(nh) \left[\frac{\bar{G}(t(n+1)h)) - \bar{G}(ty/nh))}{\bar{G}(x)} \right] \leq M_2, \sum_{n=1}^{N_0} \bar{F}(nh) < \infty.
$$

Where the second inequality follows by

$$
M_2 = \lim_{x \to \infty} \left[\frac{\bar{G}(t(n+1)h)) - \bar{G}(ty/nh))}{\bar{G}(x)} \right] < \infty. \quad \text{(by } G \in D)\]

Furthermore, we have

$$
\lim_{x \to \infty} K_4 \leq \lim_{x \to \infty} \sum_{n=n_0}^{N_0} \frac{\bar{G}(tx)}{\bar{G}(x)} \left[G(ty/(n+1)h)) - G(tx/nh)) \right]
$$

$$
\leq M_2, \lim_{x \to \infty} \frac{\bar{G}(tx)}{\bar{G}(x)} \left[G(ty/(n_0+1)h)) - G(tx/n_0h)) \right] < \infty. \tag{2.8}
$$

Where, last inequality follows from $G \in D$ and $M_2 = \lim_{x \to \infty} \bar{G}(tx)/\bar{G}(tx)$. Now by substituting (2.7), (2.8) and (2.8) in (2.6), proof completes. \[\square\]
Corollary 2.3. Let X_{11}, \ldots, X_{n} be WND random variables with common distribution function $F \in D$. If $E(X) < \infty$ then $P_n = \prod_{i=1}^{n} X_i \in D$.

Theorem 2.4. Let X and Y be two WND random variables with distribution functions F and G, respectively. If $F, G \in D \cap L$ and $G^*(t) < 1 \ (F^*(t) < 1)$, then $H \in D \cap L$.

Proof. By the same approach as used in the proof of Theorem 2.1, we have:

i. If $X > 1$ a.s and $Y > 1$ a.s., then for any $u > 0$ and for all $x > 1$, applying (2.1) and (2.2), we have

$$J_1 = \frac{P(X > x - u) - P(X > x - u; Y > x - u)}{P(X > x) - P(X > x; Y > x)} \leq \frac{P(X > x - u)}{P(X > x)} - C P(X > x) P(Y > x).$$

Since $F \in L$, then $\lim_{x \to \infty} J_1 \leq 1$. For J_2 we have

$$J_2 \leq \frac{1}{G(x)} \left[\tilde{G}(x - u) + P(XY > x - u; X < x - u; Y < x - u) \right] = J_3 + J_4,$$

where $J_3 = \tilde{G}(x - u)/G(x)$ and

$$J_4 \leq C \int_{0}^{\infty} \frac{G((x - u)/t) - G(x - u)}{G(x)} dF(u).$$

Now, for each $t > 0$, $G \in L$ and $\tilde{G}^*(t) < 1$ we have $\lim_{x \to \infty} J_3 = 1$. Also, by Remark 1.2,

$$\lim_{x \to \infty} J_4 \leq C \int_{0}^{\infty} \limsup_{x \to \infty} \frac{I_{(0, x - u)}(G((x - u)/t) - G(x - u))}{G(x)} dF(t) \leq 0.$$

So, for each $u > 0$,

$$\lim_{x \to \infty} \frac{H(x - u)}{H(x)} = 1. \tag{2.9}$$

ii. If $X > 1$ a.s. and $0 < Y < 1$ a.s., then

$$1 \leq \frac{P(XY > x - u)}{P(XY > x)} = 1 \frac{P(x < XY < x)}{P(XY > x)} = 1 + J_5.$$

By Remark 1.2 and $F \in D \cap L$ we have,

$$\lim_{x \to \infty} J_5 \leq \lim_{x \to \infty} \frac{P(x < XY < x)}{P(X > x)} \leq \lim_{x \to \infty} C \int_{0}^{1} \frac{\tilde{F}((x - u)/t) - \tilde{F}(x)/t)}{\tilde{F}(x)} dG(t) = 0.$$

Hence,

$$\lim_{x \to \infty} \frac{H(x - u)}{H(x)} = 1. \tag{2.10}$$

iii. If $Y > 1$ a.s. and $0 < X < 1$ a.s., then, similar to (ii) we can obtain (2.10). Combining (2.2), (2.9) and (2.10), we derive

$$1 \leq \lim_{x \to \infty} \frac{H(x - u)}{H(x)} = \lim_{x \to \infty} \max \left\{ \frac{P(XY > x - u; X > 1; Y > 1)}{P(XY > x; X > 1; Y > 1)}, \frac{P(XY > x - u; X < 1; Y > 1)}{P(XY > x; X < 1; Y > 1)}, \frac{P(XY > x - u; X > 1; Y < 1)}{P(XY > x; X > 1; Y < 1)} \right\} \leq 1$$

This completes the proof. \qed
Theorem 2.5. Let Y_1 and Y_2 be two WND random variables with common distribution function $F \in L$ and $E(Y) < \infty$. Suppose that X_1 and X_2 are two independent random variables which are independent of Y_1 and Y_2, with distribution functions F_1 and F_2, respectively, then

$$P(X_1Y_1 + X_2Y_2 > x) \sim P(X_1Y_1 > x) + P(X_2Y_2 > x) \quad \text{as} \quad x \to \infty.$$

Proof. For every $x > 0$, we have

$$P(X_1Y_1 + X_2Y_2 > x) = \int_0^\infty \int_0^\infty P(x_1Y_1 + x_2Y_2 > x|X_1 = x_1, X_2 = x_2)dF_1(x_1)dF_2(x_2)$$

$$\sim \int_0^\infty \int_0^\infty [P(x_1Y_1 > x) + P(x_2Y_2 > x)]dF_1(x_1)dF_2(x_2) \quad (\text{as} \quad x \to \infty)$$

$$= P(X_1Y_1 > x) + P(X_2Y_2 > x).$$

The asymptotic relation follows by Theorem 2 of Ranjbar, et al.[8], and this completes the proof. \qed

Conclusions: All Theorems and Lemmas are valid for $C = 1$, as a matter of fact, the independence structure is special case of our work.

References

