Some Properties of the Schur Multiplier with Algebraic Topological Approach

H. Mirebrahimi
Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
ha-mi82@um.ac.ir

Abstract: In this talk, using a relationship between the Schur multiplier of a group G, the fundamental group, and the second homology group of the Eilenberg-MacLane space of G, we present new proofs for some famous properties of the Schur multiplier and it’s structure for the free product and the direct product, with an algebraic topological approach.

1 Introduction and Preliminaries

Let F/R be a free presentation of a group G, then the Schur multiplier of G is defined to be

$$M(G) = (R \cap F')/[R,F]$$

(see [2] for further details). There are some well-known facts about $M(G)$. By a theorem of Schur [2], with respect to the presentation of G, there exists an upper bound for the number of the generators of $M(G)$. In particular, if G is a cyclic group, $M(G)$ is trivial [2]. A theorem of C. Miller [2], says that

$$M(G_1 * G_2) \cong M(G_1) \oplus M(G_2).$$

Also Schur Theorem [2] asserts that

$$M(G_1 \times G_2) \cong M(G_1) \oplus M(G_2) \oplus G_1 \otimes G_2.$$

In this talk, we are going to give some new proofs in algebraic topological methods for the above results. We suppose that the reader is familiar with some well-known notions in algebraic topology such as homotopy groups, homology groups, CW-spaces, and basic notion in group theory.

In order to find a suitable relation between the Schur multiplier and some famous notions of algebraic topology, we mention the following notes.
Theorem 1.1 ([6]) For any group G, there exists a CW-complex X with
\[\pi_1(X) \cong G \text{ and } \pi_n(X) = 1 \text{ for all } n \geq 2. \]

The space X is called an Eilenberg-MacLane space of G.

Theorem 1.2 (Hopf Formula [1]) If K is a CW-complex with $\pi_1(K) = G$ and F/R is a presentation of G then
\[\frac{H_2(K)}{h_2(\pi_2(K))} \cong \frac{R \cap F'}{[R, F]}, \]

where $H_2(K)$ is the second homology group of K and h_2 is the corresponding Hurewicz map. (see Theorem 1.4)

Corollary 1.3 For any group G and its Eilenberg-MacLane space, K say, we have
\[\pi_1(K) \cong G \text{ and } H_2(K) \cong M(G). \]

Remark ([4], [6]) For any CW-complex K with k_i many i-cells, $d(H_i(K)) \leq k_i$. In addition, the number of 2-cells in an Eilenberg-MacLane space, obtained from a presentation of a group G, is equal to the number of its relators.

Theorem 1.4 ([3], [5]) For any numbers $n, m \in \mathbb{N}$, there exists a CW-complex $L(n, m)$, called Lens space, with
\[\pi_1(L(n, m)) \cong \mathbb{Z}_n \text{ and } H_2(L(n, m)) = 1. \]

Theorem 1.5 (Mayer-Vietoris Sequence [4]) For any two subspaces X_1 and X_2 of space X, with $X = X_1 \cup X_2$, there is an exact sequence as follows
\[\cdots \to H_n(X_1 \cap X_2) \to H_n(X_1) \oplus H_n(X_2) \to H_n(X) \to H_{n-1}(X_1 \cap X_2) \to \cdots. \]

Theorem 1.6 (Hurwicz Theorem [4]) For any path connected space X, there exists an isomorphism called Hurewicz map, as follows
\[\frac{\pi_1(X, x_0)}{(\pi_1(X, x_0))'} \cong H_1(G). \]

Theorem 1.7 (Kunneth Formula [4]) For any pair of topological spaces X and Y and for every integer $n \geq 0$, we have the following relation between their homology groups
\[H_n(X \times Y) \cong \sum_{i+j=n} H_i(X) \otimes H_j(Y) \oplus \sum_{p+q=n-1} \text{Tor}(H_p(X), H_q(Y)). \]
2 Main Results

Theorem 2.1 For any group \(G \) and it's arbitrary presentation with \(k \) relations, we have an upper bound for the number of the generators of it's Schur multiplier, as follows

\[
d(M(G)) \leq k
\]

Proof. First, suppose that \(K \) is the Eilenberg-MacLane space of \(G \), then using the remark 1, the number of 2-cells in the complex \(K \) equals exactly to \(k \) and consequently \(d(H_2(K)) \leq k \). Finally by Hopf Formula for the Eilenberg-MacLane space \(K \), \(M(G) \cong H_2(K) \) and so the result holds. \(\Box \)

Theorem 2.2 The Schur multiplier of any cyclic group \(G \) is trivial.

Proof. If \(G \) is an infinite cyclic group, we can consider a circle \(S^1 \) as it's Eilenberg-MacLane space (\(S^1 \) is a CW-complex whose fundamental group is infinite cyclic and it's higher homotopy groups are trivial [4]). Hence using the Hopf isomorphism \(M(G) \cong H_2(S^1) \) and the fact of \(S^1 \) whose second homology group is trivial, in this case, the result is satisfied.

Also for a finite cyclic group \(G \) of order \(n \), using the theorem 1.2, we have the Lens space \(L(n,1) \) as an Eilenberg-MacLane space of \(G \). So by a similar argument to the above and Theorem 1.2, the proof is completed. \(\Box \)

Theorem 2.3 For any two groups \(G_1 \) and \(G_2 \), we have the isomorphism

\[
M(G_1 \ast G_2) \cong M(G_1) \oplus M(G_1).
\]

Proof. First, using the theorem 1.1, let \(K_1 \) and \(K_2 \) be the Eilenberg-MacLane spaces of \(G_1 \) and \(G_2 \), respectively. By Van-Kampen Theorem for the fundamental group of wedge space, \(\pi_1(K_1 \vee K_2) \cong \pi_1(K_1) \ast \pi_1(K_2) \). Also using the definition, \(\pi_n(K_1 \vee K_2) = 1 \), for all \(n \geq 2 \). Hence the wedge spaces \(K_1 \vee K_2 \) can be considered as an Eilenberg-MacLane spaces of \(G_1 \ast G_2 \) and with respect to the Hopf Theorem, we have

\[
M(G_1) \cong H_2(K_1), \ M(G_2) \cong H_2(K_2)
\]

\& \(M(G_1 \ast G_2) \cong H_2(K_1 \vee K_2) \).

Finally, by using the Mayer-Vietories sequence for the wedge space \(K_1 \vee K_2 \), we conclude the following isomorphism which completes the proof

\[
H_2(K_1 \vee K_2) \cong H_2(K_1) \oplus H_2(K_2). \Box
\]
THEOREM 2.4 For any two groups G_1 and G_2, we have the relation

$$M(G_1 \times G_2) \cong M(G_1) \oplus M(G_2) \oplus (G_1)_{ab} \otimes (G_2)_{ab}.$$

Proof. Similar to the previous proof, suppose that K_1 and K_2 are the Eilenberg-MacLane spaces of G_1 and G_2, respectively. Using one of the properties of the homotopy functor π_n to preserve the direct product, we have $\pi_1(K_1 \times K_2) \cong \pi_1(K_1) \times \pi_1(K_2)$ and $\pi_n(K_1 \times K_2) = 1$, for all $n \geq 1$.

So the space $K_1 \times K_2$ is an Eilenberg-MacLane spaces of $G_1 \times G_2$. Hence by Hopf isomorphism, we have $M(G_i) \cong H_2(K_i)$, for $i = 1, 2$, and

$$M(G_1 \times G_2) \cong H_2(K_1 \times K_2).$$

Also using Kunneth Formula, the properties of the functor Tor and tensor product, and the fact of $H_0(X)$ which is isomorphic to the infinite cyclic group \mathbb{Z} where X is a path connected space (note that Eilenberg-MacLane spaces are path connected), we have the following relation between the first and the second homology groups,

$$H_2(K_1 \times K_2) \cong H_2(K_1) \oplus H_2(K_2) \oplus H_1(K_1) \otimes H_1(K_2)$$

Finally, by Hurewicz isomorphisms $H_1(K_i) \cong (\pi_1(K_i))_{ab} = (G_i)_{ab}$, for $i = 1, 2$, we conclude the result of the theorem. \square

References