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Interconnected ZnO nanowires were grown in a two-stage process, using spray pyrolysis deposited ZnO seed
layers as a nucleation platform for subsequent hydrothermal growth. We present a comparison between the
effect of these spray pyrolysis deposited seed layers and well-ordered sputter deposited seed layers, along
with their respective ZnO nano-morphologies that were obtained via hydrothermal growth. It will be shown
that the growth of interconnected ZnO nanowires was influenced by the physical and crystallographic
orientations of the underlying seed crystallites. Sputtered seed layers resulted in fairly vertical nanorods
which were approximately 80 nm in width, while seed layers deposited by spray pyrolysis resulted in arrays
of interconnected ZnO nanowires measuring approximately 15 nm in width.
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1. Introduction

Many different morphologies of low dimensional ZnO structures
have been synthesized in gaseous and liquid environments [1]. It has
been demonstrated that nanostructured ZnO is a suitable candidate
for many applications including: piezoelectric power generation [2],
resonators and cantilevers [3,4], one-dimensional transistors [5], gas
sensing [6], biosensing [5,7], electrowettable surfaces [8], optical
devices [9,10], solar cells [11], and many others [12]. However,
controlled fabrication of one-dimensional metal oxide nanostructures
is still one of the most important technological hurdles for the
development of ZnO based nanodimensional devices.

The deposition of interconnected ZnO nanostructured arrays onto
glass substrates is a two-stage process: i) the deposition of a ZnO seed
layer via spray pyrolysis for the formation of an angular seed layer
[13], and ii) a subsequent hydrothermal growth step by our modified
method based on the pioneering work of Vayssieres [14]. This two-
stage synthesis is relatively “environmentally” friendly, scalable,
inexpensive, and can be applied to a variety of different substrates.
A comparison of ZnO nanostructures grown from RF sputtered seed
layers and layers deposited by spray pyrolysis will also be presented.

ZnO deposition via spray pyrolysis [15,16] was adopted for the
synthesis of rough seed layers, and as will be shown, was found to be
critical in the formation of an interconnected one-dimensional ZnO
morphology. Additionally, as a process, it has many advantages such
as: effective stoichiometry control, excellent homogeneity, relatively
low processing temperature, and low cost fabrication for large area
films [15,17].
2. Experimental/method

In this two-stage process, ZnO seed layers were first deposited onto
rotating glass substrates at 450 °C using a typical spray pyrolysis
deposition system [13]. The precursor solution (100 mL) was prepared
by dissolving 0.15 M of zinc acetate dihydrate [Zn(CH3COO)2·2H2O] in
a solvent mixture of double DI water and isopropyl alcohol with a 1:3
volume ratio. To enhance the solubility of zinc acetate, 0.4 mL of acetic
acid was also added to the solution. This solution was sprayed onto
substrates through a 0.2 mm nozzle, using a N2 carrier gas. ZnO thin
films were deposited on rotating (25 rpm) hot substrates; the solution
flow rate, carrier gas pressure and nozzle to substrate distance were
held constant at 10 ml/min, 2 atm and 40 cm, respectively. The
deposited seed layer thickness was determined to be approximately
300 nm using an Ambios-Technology XP-2 profilometer. To compare
the influence that different seed layers have on the resultant
nanostructures, multiple glass substrates were also covered with a
~1.2 µm ZnO seed layer deposited by RF sputtering. The sputtering
conditions included: target to substrate distance of 7.5 cm, and
sputtering power of 100W in a process gas of 60% N2/40% O2, at 260 °C.

During the second stage of deposition, ZnO nano-morphologies
were grown in a sealed reaction vessel via the hydrothermal
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decomposition of hexamethylenetetramine (HMT) and zinc nitrate
hexahydrate (Zn(NO3)2·6H2O) solutions based on a modified method
first described by Vayssieres [14]. In this process, glass substrates with
sputtered or sprayed seed layers were placed into a sample holder,
which were then placed inside a reaction vessel filled with an
equimolar solution of a 10 mM HMT/Zn(NO3)2·6H2O. These vessels
were sealed and then placed inside a laboratory oven for 16 h at 80 °C.
Following this, the coated glass substrates were removed and washed
with DI water to eliminate any residual zinc salts and dried in a stream
of N2 prior to analysis.

The final growth step resulted in high density low dimensional
ZnO nanostructures: vertical nanorods where sputtered seeded layers
were employed (Fig. 1). Interconnected nanowires emanating from
the tips of emerging nanorods were observed in all spray pyrolysis
deposited seed layer samples (Figs. 2 and 3). As shown in Figs. 2 and 3
at the terminations of the ZnO nanowires, many nanowires bundle
together along the ends of their non-polar crystal facets, with
individual nanowires having an average width of approximately
15 nm.
3. Results and discussion

It has been previously shown that ZnO nanostructures grown via
hydrothermal means and using highly orientated seed layers tend to
adopt the direction of the seed crystallites [18,19]. ZnO seed layers
formed via physical vapour deposition processes typically produce
highly orientated seed layers [18]. There are also a few other factors
that may affect these morphologies and may promote the formation
of interconnections between nanostructures. The orientation of the
underlying substrates, and hence, the emerging nanorod/nanowire
orientation greatly influences the likelihood of forming interconnec-
tions between neighbouring structures.

As shown in Fig. 1, the growth of ZnO nanorods from a highly
orientated seed layer consisting of regular sputtered crystallites (with
hemispherical terminations) resulted in an array of high density ZnO
Fig. 1. Different growth stages of ZnO nanorods: (1) RF sputtered seed laye
nanorods, which rarely deviate from their perpendicular growth
habits. By utilising a rough seed layer deposited by spray pyrolysis, we
have facilitated the growth of interconnected nanostructures. The
scanning electron micrograph presented in Fig. 2, indicates that the
nanowires stem directly from the tip of a ZnO nanorod. The nanowires
typically connect with neighbouring structures, resulting in free-
standing wire clusters.

Unlike the ZnO sputtered seed layers with periodic hemispherical
crystallites, ZnO seed layers deposited via spray pyrolysis are
comparatively rougher, typically consisting of sharp polygonal
crystallites. As the ZnO nanorods emerge from their underlying seed
crystallite they do so perpendicularly, and as the underlying layer is
non-uniform, many of the nanorods grow very close to one another;
as is schematically represented in Fig. 3. It is possible that the close
proximity between the emerging nanorods generates a localised
electric field, attracting charged precursors in solution. Thus,
promoting rapid growth at the sharp hexagonal tips, resulting in the
fine ZnO nanowires that were observed in Fig. 3. This may sustain the
rapid growth of ZnO, effectively decreasing the width of the
nanostructures, resulting in nanowires: ~15 nm for spray pyrolysis
vs ~80 nm for sputtered seed layers. It is also possible that during
growth, these tips generate strong dipoles which have the potential to
bend the highly flexible piezoelectric nanowire tips towards each
other, which later coalesce along the terminations of their non-polar
crystal facets.
3.1. XRD investigations of interconnected ZnO nanowires

X-ray diffraction studies of the different seed layers and the effect
of hydrothermal treatment are presented in Fig. 4. Here it is clear that
the sputtered seed layer has a preferential (002) reflection centered
upon 34.4° which is intensified and splits into two well-defined peaks
at 34.4 and 34.8° 2θ after hydrothermal treatment. Sprayed seed
layers demonstrated comparatively weaker reflections corresponding
with (002) and {100} crystal planes. It was observed in sputtered
r, (2) Initial rod formation from the seed layer, and (3) ZnO nanorods.



Fig. 2. Different growth stages of interconnected ZnO nanowires: (1) spray pyrolysis deposited seed layer, (2) initial rod formation from the seed layer, and (3) nanowire growth
from the extended tips of the ZnO nanorods, which bundle together along their non-polar crystal facets.
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films, that the (002) plane was also intensified after hydrothermal
treatment, notably, the minor reflections of {100} were also
augmented. Thus, confirming that the hydrothermal treatment
which results in either free standing or interconnected nanorods
adopts the crystallographic orientation of the underlying seed layer.
All specimens were in good agreement with ICDD #36-1451
corresponding to wurtzite ZnO, with some minor contributions from
ICDD #38-0385 Zn(OH)2 denoted in Fig. 4 as “*”.
Fig. 3. Interconnected ZnO nanowires: (a) from above, (b) at 45° rotation, and (c) high
magnification image of the nanowires bundled along their non-polar facets.
4. Conclusion and further suggestions

Interconnected ZnO nanowires were fabricated on glass sub-
strates. XRD studies revealed that the hydrothermal growth step
followed the preferential crystallographic orientation of the underly-
ing seed layer. Electron microscopy observations indicate that the fast
growing ZnO nanowires emanate from the tips of larger ZnO
nanorods, and these nanowires frequently connect with neighbouring
nanowires to form freestanding localised connection hubs. At present,
the interconnected ZnO nanostructures do not form contiguous
networks, however, it may be possible to engineer interconnects
with well-defined orientations by selectively patterning the seed
layer surface. By photo-lithographically patterning the underlying
substrate, and etching patterns appropriately after spray pyrolysis, it
may be possible to implement the observed interconnectivity for the
next generation nanodimensional electronic devices. The developed
Fig. 4. XRD comparison of ZnO seed layers and the ensuing nanostructures after
hydrothermal growth.
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process is relatively simple and utilises inexpensive reagents; given
the flexibility that spray pyrolysis and hydrothermal growth offer, the
presented method is also suitable for large substrates. This method
could be used with minor modifications to form other interconnected
metal oxide nanostructures by substituting reagents, while account-
ing for the acidic or basic nature of the target metal oxide.
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