On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction

Mohamad Rezaiee-Pajand *, Sina Sinaie

Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Iran

A R T I C L E I N F O

Article history:
Received 24 December 2008
Received in revised form 5 March 2009
Available online 10 April 2009

Keywords:
Cyclic plasticity
Uniaxial ratcheting
Parameter determination
Kinematic hardening
Calibration methods

A B S T R A C T

A systematic mathematical approach is developed in the context of uniaxial cyclic ratcheting for the parameter determination of the decomposed Chaboche hardening rule. This is achieved by deriving the relation between the evolution of the backstress and the plastic strain accumulation. Unlike current calibration techniques where a trial–error approach is employed to fit the simulation results to experimental data, the proposed method determines the parameters directly from uniaxial ratcheting experiments. Numerical results indicate that Chaboche’s hardening model is much more efficient than what has been demonstrated before. Finally, as an improvement to the decomposed model, a modification is made to one of the backstress components. This improved component enables the model to predict uniaxial ratcheting with more accuracy.

1. Introduction

Ratcheting is defined as the accumulation of plastic strain during cyclic loading in the presence of a mean stress. Many efforts have been made to determine the cyclic characteristics of materials in uniaxial and multiaxial loading. Experiments conducted by Moyar and Sinclair (1963), Benham (1965), Freudenthal and Ronay (1966), Ruiz (1967), Yoshida et al. (1978), Benallal et al. (1989), Hassan et al. (1992), Hassan and Kyriakides (1992, 1994a,b), Yoshida (1995), Delobelie et al. (1995), Corona et al. (1996), Portier et al. (2000), Bocher et al. (2001), Aubin et al. (2003) and Kang et al. (2004) provide data for ratcheting properties of materials. The uniaxial experiments are either stress or strain controlled. Biaxial experiments mostly incorporate stress in one direction (axial tension or internal pressure) and strain in another direction (shear strain or axial strain). One of the best works on uniaxial ratcheting is the experiments conducted by Hassan and Kyriakides (1992) on 1020 and 1026 carbon steels. A set of stress controlled tests were considered in these experiments with focus on the effect of mean stress and stress amplitude on the plastic strain accumulation. Since the work covers a wide range of peak stress values, many researchers have attempted to verify their ratcheting models with these experimental data, for example, Colak (2008) and Dafalias et al. (2008).

Parallel to experiments, various hardening models have been developed to predict the cyclic response of materials using the theory of plasticity. The linear hardening rule proposed by Prager (1956) is the simplest kinematic hardening rule and is capable of representing the Bauscinger effect in cyclic loadings but fails to produce any accumulation of plastic strain in the presence of a mean stress. This is because the stress–strain curves are in the form of closed hysteresis loops. It should be mentioned here that all models which produce a multilinear uniaxial stress–strain relation behave in the same manner and fail to predict ratcheting.

Two main modifications of Prager’s hardening rule where introduced afterward. Besseling (1958) and Mroz (1967) suggested the concept of a multisurface model where each surface evolved according to a linear hardening rule. This idea was further pursued by Dafalias and Popov (1974, 1975, 1976) and Krieg (1975) which introduced a two-surface model and later by the bounding surface theory of Dafalias (1986). These hardening rules present a much better response of materials, but unlike other multilinear models fail to predict ratcheting.

The other modification to Prager’s hardening rule was made by introducing the fading memory of the plastic strain path. This was accomplished by adding the so called “recovery term” to the linear term of Prager’s evolution law making the prediction of plastic strain accumulation possible. Initiated by the nonlinear kinematic hardening rule proposed by Armstrong and Frederick (1966), a wide range of kinematic hardening rules have been presented to simulate the ratcheting phenomena using the idea of strain hardening and a recovery term in their equation. Chaboche et al. (1979) and Chaboche (1986) decomposed the backstress into several components where each of the components, individually evolved according to an AF hardening law. The idea of decomposing the backstress has become a main interest since. Chaboche (1991) and Ohno and Wang (1993) later used a modified version of the original AF equation in their decomposed models. Furthermore, in order to improve the uniaxial and multiaxial ratcheting

An important feature in relation with ratcheting simulation is determining the material parameters used in each hardening model. Little effort has been made to develop a unified strategy for this purpose. Bari and Hassan (2000) divided the uniaxial strain controlled hysteresis curve into segments and related a number of the material constants to each segment. However, some of the parameters where eventually determined by trial and error in order to produce a good fit to the uniaxial hysteresis curve. Koo et al. (2004) took advantage of the monotonic uniaxial tensile curve to incorporate in the model. Among all hardening rules available, the kinematic hardening rule is the most favorite for ratcheting simulations. This hardening rule governs the evolution of the backstress denoted by a in Eq. (1). As stated in before, various hardening rules have been proposed for hardening and ratcheting simulation. The Armstrong–Frederick hardening rule is an original form which has been modified by many researchers for improved cyclic ratcheting simulation. This model and the decomposed model of Chaboche considered in this study will be briefly discussed here. Detailed characteristics of these models can be found in Bari and Hassan (2000, 2002).

2.1. The Armstrong–Frederick nonlinear hardening model

Armstrong and Frederick (1966) added a recovery term to the linear hardening rule of Prager and proposed a nonlinear hardening rule in the following form:

$$\sigma_i = \frac{2}{3} \beta \sigma_i^p - \gamma_2 \sqrt{\frac{2}{3} \sigma_i^p \sigma_i^p}$$

The added term, takes into account a fading memory of the plastic strain path. Starting with a plastic modulus of $B = (3/2) \gamma_2$ in a uniaxial loading condition, σ_i eventually stabilizes at a value of $(2/3) \beta \gamma_2$. Incorporating the recovery term was a major development eliminating the deficiencies of linear and multilinear hardening rules. Uniaxial ratcheting can be simulated by this model. However, since few material constants are available to produce an acceptable shape of the stress–strain curve, the AF model is no longer considered suitable for ratcheting prediction.

2.2. The nonlinear hardening rules of Chaboche

Chaboche et al. (1979) and Chaboche (1986) proposed their decomposed hardening rule in the following form:

$$\sigma_i = \sum_i d_{x_i}$$

$$d_{x_i} = \frac{2}{3} \beta \sigma_i^p - \gamma_2 \sqrt{\frac{2}{3} \sigma_i^p \sigma_i^p}$$

where each component has the form of an AF type rule. By increasing the material parameters of the hardening rule, the Chaboche model is able to simulate a more accurate prediction of ratcheting than the AF model. However, numerical examples indicate that the model is definitely not suitable for multiaxial ratcheting predictions. The use of three components ($i = 1, 2, 3$) is suggested by researchers to predict acceptable ratcheting predictions, but as will be established later, utilizing four components will be more precise.

As stated earlier, a systematic method for the determination of material constants of kinematic hardening models has not been developed yet. A general mathematical approach will be established for the decomposed Chaboche model in the following sections. The results indicate that if the material constants of the model are mathematically determined, the accuracy of the original
3. Parameter determination of the Armstrong–Frederick hardening rule

The AF hardening rule is described as in Eq. (3), which takes the following form for uniaxial loading:

\[dx = \frac{2}{3} B ds + \gamma x (ds | d\gamma |) \]

The solution of Eq. (5) is as follows:

\[
\begin{align*}
\sigma_x &= \sigma_0 + \left(\sigma_{so} - \frac{3}{2} \sigma_0 \right) \exp \left[-\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p \geq 0 \\
\sigma_x &= -\sigma_0 + \left(\sigma_{so} + \frac{3}{2} \sigma_0 \right) \exp \left[\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p < 0
\end{align*}
\]

Solving Eq. (6) for \(\varepsilon_{pl}^0 \), the accumulated plastic strain can be determined for one cycle of loading as given below:

\[\Delta \varepsilon_{pl}^0 = \frac{1}{\gamma_1} \ln \left[\frac{(\sigma_{so} - \sigma_0 + \frac{3}{2} \sigma_0)^2}{(\sigma_{so} + \sigma_0 - \frac{3}{2} \sigma_0)^2} \right] \] (7)

where \(\sigma_0 \) and \(\gamma_0 \) are the maximum and minimum values of the backstress during positive and negative loading, respectively. If however both \(\sigma_0 \) and \(\gamma_0 \) attain a same value in a cycle, the term inside the bracket becomes unity and the net plastic strain increment will be zero for that cycle. This will be the case where no mean stress is present during the loading (\(\sigma_{so} = 0 \)) or when a decomposition of the backstress is used for the hardening model and the backstress components stabilize due to a small value of \(B_i/j_1 \).

For the von-Mises yield criteria along with the associated flow rule, the increments of the backstress tensor take place in the deviatoric plane. Therefore, \(\sigma_x = \sigma_y = -1/(2\delta) \sigma_x \). Referring to the definition of the yield criteria (Eq. (1)), the relation between stress and backstress during uniaxial loading is \(|\sigma_x - 3/2 \sigma_0| = \sigma_0 \), which by introducing into Eqs. (6) and (7), the following relations can be written:

\[
\begin{align*}
\sigma_x &= \sigma_0 + \frac{3}{2} \sigma_{so} + \frac{3}{2} \sigma_0 \exp \left[-\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p \geq 0 \\
\sigma_x &= -\sigma_0 + \frac{3}{2} \sigma_{so} + \frac{3}{2} \sigma_0 \exp \left[\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p < 0
\end{align*}
\]

and

\[\Delta \varepsilon_{pl}^0 = \frac{1}{\gamma_1} \ln \left[\frac{(\sigma_{so} - \sigma_0 + \frac{3}{2} \sigma_0)^2}{(\sigma_{so} + \sigma_0 - \frac{3}{2} \sigma_0)^2} \right] \] (8)

where \(\sigma_0 \) is the mean and \(\sigma_0 \) is the amplitude of the axial stress cycle. Eq. (9) indicates that the AF hardening model can only produce steady state ratcheting. This equation along with Eq. (6) can be used as a simple calibrating formula for the AF model.

4. Parameter determination of Chaboche’s decomposed hardening rule

The hardening rule of Chaboche is defined by Eq. (4). Implementing the same methodology as before, it can be demonstrated that Eqs. (6) and (7) hold for each component of the backstress, therefore the following relations can be written:

\[
\begin{align*}
\sigma_x &= \sigma_0 + \frac{3}{2} \sigma_{so} + \frac{3}{2} \sigma_0 \exp \left[-\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p \geq 0 \\
\sigma_x &= -\sigma_0 + \frac{3}{2} \sigma_{so} + \frac{3}{2} \sigma_0 \exp \left[\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right], \quad ds_0^p < 0
\end{align*}
\]

and

\[
\begin{align*}
\Delta \varepsilon_{pl}^0 &= \frac{1}{\gamma_1} \ln \left[\frac{(\sigma_{so} - \sigma_0 + \frac{3}{2} \sigma_0)^2}{(\sigma_{so} + \sigma_0 - \frac{3}{2} \sigma_0)^2} \right] \\
\Delta \varepsilon_{pl}^0 &= \frac{1}{\gamma_1} \ln \left[\frac{(\sigma_{so} + \sigma_0 + \frac{3}{2} \sigma_0)^2}{(\sigma_{so} - \sigma_0 + \frac{3}{2} \sigma_0)^2} \right]
\end{align*}
\] (11)

where \(\sigma_0 \) and \(\gamma_0 \) are, respectively, the maximum and minimum values of the backstress component during positive and negative loading. By dividing a loading cycle and the corresponding plastic strain into a positive phase (\(\Delta \varepsilon_{pl}^0 > 0 \)) and a negative phase (\(\Delta \varepsilon_{pl}^0 < 0 \)) and assuming that each phase enters the plastic region, the following conditions will be valid:

\[
\begin{align*}
\sigma_x &= \sigma_0 + \frac{3}{2} \sigma_0 \exp \left[-\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right] \quad (\text{positive phase}) \\
\sigma_x &= -\sigma_0 + \frac{3}{2} \sigma_0 \exp \left[\gamma (\varepsilon_{pl}^0 - \varepsilon_{so}) \right] \quad (\text{negative phase})
\end{align*}
\] (12)

Combining Eqs. (10) and (12) will result in the following relations:

\[
\begin{align*}
\sigma_x &= \sigma_0 + \frac{3}{2} \sigma_0 \exp \left[-\gamma (\varepsilon_{pl}^0) \right] \quad (\text{positive phase}) \\
\sigma_x &= -\sigma_0 + \frac{3}{2} \sigma_0 \exp \left[\gamma (\varepsilon_{pl}^0) \right] \quad (\text{negative phase})
\end{align*}
\] (13)

Eq. (13) can be used to calibrate the material constants \((B_i/j_1) \) of a decomposed hardening rule. A set of equations can be attained by using known states of \((\sigma_0, \varepsilon_{pl}^0, \Delta \varepsilon_{pl}^0) \). Different cases of the parameter determination procedure will be discussed in the following sections. These cases will be developed in sequence until an efficient model is obtained.

4.1. One nonlinear component and one linear attachment component \((N1-L1)\)

In the first case a two-component hardening rule composed of one nonlinear and one linear component is considered \((i = 1, 2 \quad \gamma_2 = 0)\). If the hardening rule only consisted of one component, the model would lead to a steady state ratcheting case. However, a linear component also exists and its magnitude \((\Delta \varepsilon_{pl}) \) tends to increase as the accumulated plastic strain increases. Since the maximum and minimum values of the backstress are constant \((\sigma_0 \) and \(\gamma_0 \), this leads to the limitation of the maximum and minimum attainable values of \(\sigma_0 \) and \(\Delta \varepsilon_{pl} \). This process will continue until \(|\sigma_0 - \Delta \varepsilon_{pl}| = |\sigma_0 - \varepsilon_{so}| \) and there would further be no accumulation of plastic strain.

For the calibration procedure, the material constants of the nonlinear component \(\sigma_0 \), are evaluated first. To achieve this, the plastic strain increments of the positive and negative phase of the first cycle are introduced into Eq. (11) and the equation is solved for \(B_i/j_1 \). Next, the plastic strain accumulation of the kth cycle is considered. The magnitude of the linear component of the backstress is denoted by \((\Delta \varepsilon_{pl}) \) and by using Eq. (13) the following relation can be written:

\[
(\Delta \varepsilon_{pl})_k = (\Delta \varepsilon_{pl})_k + (\Delta \varepsilon_{pl})_k = \frac{1}{\gamma_1} \ln \left[\frac{(\sigma_0 - (\Delta \varepsilon_{pl})_k - \frac{3}{2} \sigma_0)^2}{(\sigma_0 - (\Delta \varepsilon_{pl})_k - \frac{3}{2} \sigma_0)^2} \right] \]

\[
\frac{1}{\gamma_1} \ln \left[\frac{(\sigma_0 - (\Delta \varepsilon_{pl})_k + \frac{3}{2} \sigma_0)^2}{(\sigma_0 - (\Delta \varepsilon_{pl})_k + \frac{3}{2} \sigma_0)^2} \right]
\] (14)

Solving the above equation for \((\Delta \varepsilon_{pl})_k \) and knowing the total accumulated plastic strain after \(k \) cycles, leads to the determination of \(B_i/j_1 \) by using Eq. (4) with \(\gamma_2 = 0 \).

Using results of Hassan and Kyriakides (1992) for the experiments conducted on CS 1026, the following values have been obtained by implementing the abovementioned procedure:
Eq. (13) for more known states of γ. Calculations show that appropriate values of the equations can directly be obtained by experimental data.

It is evident from Fig. 2 that the obtained material constants can produce a very good fit to exp1 which they where calibrated for. However, the main shortcoming of the model for other tests is the value of plastic strain in the first cycle. Adding more components to the backstress can overcome this deficiency.

4.2 Three nonlinear components and one linear attachment component (N3-L1)

By utilizing more backstress components, a more precise curve of $\alpha - \Delta \epsilon^p$ can be attained. This can be accomplished by writing Eq. (13) for more known states of $\alpha - \Delta \epsilon^p$. However, when multiple components are present, direct use of Eq. (13) is not applicable for two reasons. First, because, experimental data can only be used to determine the values of α and not its components ($x_{\alpha n}$ and $x_{\alpha p}$). Secondly, solution of a multi-set nonlinear equation in the form of Eq. (13) involves great complexity.

In order to overcome the first problem, Eq. (13) is rewritten in the following form where the terms including $x_{\alpha n}$ and $x_{\alpha p}$ are transferred to the left side of the equation:

$$
\left\{ \begin{array}{l}
\begin{align*}
\alpha_{\exp} - \sum x_{\alpha n} \exp (-\gamma_1 \Delta \epsilon^p) &= \frac{1}{\gamma_1} \left[-\frac{1}{\gamma_1} \exp (\gamma_1 \Delta \epsilon^p) \right] (\text{positive phase}) \\
\alpha_{\exp} - \sum x_{\alpha p} \exp (\gamma_1 \Delta \epsilon^p) &= \frac{1}{\gamma_1} \left[\frac{1}{\gamma_1} \exp (\gamma_1 \Delta \epsilon^p) \right] (\text{negative phase})
\end{align*}
\end{array}
\right.
\right.

\text{(15)}

In the above equation, if the values of γ_1, $x_{\alpha n}$, and $x_{\alpha p}$ on the left side are somehow to be suitably chosen, the terms of the right side of the equations can directly be obtained by experimental data. Calculations show that appropriate values of γ_1, $x_{\alpha n}$, and $x_{\alpha p}$ can be effectively evaluated using the method discussed in Section 4.1.

The solution to the second deficiency of solving a nonlinear set of equations in the form of Eqs. (13) and (15) is to predetermine the values of $\frac{B_1}{\gamma_1}$ and only consider the values of γ_1 as unknowns. Although this would increase the number of required components for an acceptable curve fit, but reproduces the set of nonlinear equations to a more easily solved form. The solution process is discussed in the Appendix.

Using results of Hassan and Kyriakides (1992) for the experiments conducted on CS 1026, the following values have been obtained by implementing the abovementioned procedure:

$$
E = 181.300 \text{ MPa}, \quad \nu = 0.302, \quad \sigma_y = 186.2 \text{ MPa}
$$

$$
B_1 = 56.330 \text{ MPa}, \quad \gamma_1 = 680.9
$$

$$
B_2 = 8710 \text{ MPa}, \quad \gamma_2 = 841.7
$$

$$
B_3 = 1000 \text{ MPa}, \quad \gamma_3 = 35.5
$$

$$
B_4 = 1100 \text{ MPa}
$$

It should be noted that the value of B_4 for the linear component is determined using the same method described in Section 4.1.

Fig. 3a and b compares the predictions of the model with experimental values of the plastic strain at positive peak stresses of each cycle. The parameters are calibrated using the curve of exp2 and the plastic strain in the first cycle of exp3. Fig. 3c and d shows the predictions obtained by Bari and Hassan (2000) with the three component Chaboche model (C-H3). Fig. 3e and f is the results obtained by Bari and Hassan (2000) using the four component Chaboche model with threshold (C-H4T). The C-H3 model consists of three AF components in the form of Eq. (4). The C-H4T model is composed of three AF components and takes advantage of one modified AF component. This modified AF component utilizes a threshold for the activation of the recovery term of Eq. (3). More details on these models can be found in Bari and Hassan (2000, 2002).

In order to investigate more characteristics of the suggested calibration technique, Figs. 4 and 5 are presented. Fig. 4 compares the N3-L1 and C-H4T models on their response to a strain controlled hysteresis loop. As can be seen in this figure, the C-H4T model has a slightly better fit to the experimental curve. The reason is that the calibration method suggested by Bari and Hassan (2000) makes direct use of this hysteresis curve to determine the parameters of the model. Fig. 5 exclusively demonstrates the difference between the calibration methods suggested in this paper and by Bari and Hassan (2000). This figure shows the development of plastic strain in a partial reverse loading/reloading stress controlled cycle. It is evident that the C-H4T model traces the plastic strain more closely than the N3-L1 model, however, the total plastic strain accumulated in the cycle is more accurately predicted by the N3-L1 model. These different responses are due to the different strategies and purposes of each parameter determination technique, whereby Bari and Hassan (2000) calibrate the model mainly on the strain controlled hysteresis loop, the present work focuses on the accumulation of plastic strain in nonsymmetric loading cycles.

5. An additional example

Another calibration example has also been prepared for demonstration. Three sets of experiments carried out by Hassan and Kyriakides (1992) on a different material (CS 1020) are considered.

Fig. 2. Comparison of the N1-L1 model with experimental data from Hassan and Kyriakides (1992) for axial plastic strain at positive stress peaks. (a) Experiments 1–3. (b) Experiments 4–7.
Fig. 3. Comparison of different models with experimental data from Hassan and Kyriakides (1992) for axial plastic strain at positive stress peaks. (a and b) Predictions of model N3-L1 using the material constants obtained in this paper. (c and d) Predictions of the Chaboche model using the material constants obtained by Bari and Hassan (2000). (e and f) Predictions of the Chaboche model with threshold using material constants obtained by Bari and Hassan (2000).

Fig. 4. Simulation of a strain controlled hysteresis loop by (a) N3-L1 and (b) C-H4T models. Data and C-H4T simulation from Bari and Hassan (2000).
for this purpose. These are also stress controlled uniaxial experiments with the loading values indicated in Table 2.

The method suggested in this paper is utilized to calibrate the Chaboche hardening model. Noting that using one linear and one nonlinear backstress components (N1-L1) produced satisfactory results, the parameter values obtained were as follows:

\[E = 173,200 \text{ MPa}, \quad \nu = 0.3, \quad \sigma_y = 324.1 \text{ MPa} \]
\[B_1 = 16.092 \text{ MPa}, \quad \gamma_1 = 35.8 \]
\[B_2 = 68.9 \text{ MPa} \]

In addition, the method described by Bari and Hassan (2000) is also used for the parameter determination of the Chaboche model with threshold (C-H4T). The attained values are:

\[E = 173,200 \text{ MPa}, \quad \nu = 0.3, \quad \sigma_y = 324.1 \text{ MPa} \]
\[B_1 = 6895.8 \text{ MPa}, \quad \gamma_1 = 92.0 \]
\[B_2 = 1241.1 \text{ MPa}, \quad \gamma_2 = 88.5 \]
\[B_3 = 13,800 \text{ MPa}, \quad \gamma_3 = 89.2 \]
\[B_4 = 690.0 \text{ MPa}, \quad \gamma_4 = 50.0, \quad \alpha_4 = 4.8 \]

Fig. 6 shows the ratcheting prediction obtained by the above-mentioned parameters.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_m) (MPa)</td>
<td>64.1</td>
<td>64.1</td>
<td>64.1</td>
</tr>
<tr>
<td>(\sigma_x) (MPa)</td>
<td>331.6</td>
<td>337.8</td>
<td>351.6</td>
</tr>
</tbody>
</table>

As can be seen in the above figure, for this set of experiments, the predictions of the Chaboche hardening model with only two components is more acceptable than the four-component Chaboche hardening model with threshold. This solely lies in the method utilized to determine the parameters of each hardening model and not in the model itself. The parameter determination method suggested by Bari and Hassan (2000) takes advantage of a stable stress–strain hysteresis curve. Since the bounding stresses of the hysteresis curve used for this example were close to the limiting stresses of exp9 and exp10, it is understandable why these experiments are better predicted by the obtained parameters. It should also be mentioned that in this method, five of the parameters \((B_2, \gamma_2, B_4, \gamma_4, \alpha_4)\) are determined by a trial–error approach. This implies the fact that the results can be further improved, however, this would be a time consuming task.

6. Three nonlinear components and one improved attachment component (N3-A1)

As can be seen in Fig. 3, although the four-component hardening model (N3-L1) improves the ratcheting predictions, but over predicts some experiments and under predicts some other experiments. Further calculations indicate that this cannot be resolved by using more backstress components in the hardening rule. Also shown in Fig. 3a are the results of using the same parameter constants for the nonlinear components but utilizing different values of \(B_4\) for the linear component in each experiment. These results imply the idea of employing a modified component instead of the linear attachment component used in this section.

In order to overcome the over- and under-prediction of ratcheting encountered previously (Fig. 3a), the parameter constants for the three nonlinear components of the backstress are determined in the same manner discussed in Section 4.2, but an improved definition of the forth component is introduced in the following form:

\[dx_4 = \left[\frac{2}{3} C + \eta F(\beta) \right] dx \]

(16)

where \(C\) and \(\eta\) are material constants and \(F()\) has the same form of the yield function. Tensor \(\beta\) can be assumed as a virtual backstress, with the following evolution rule:

\[d\beta = H(F(\alpha) - F(\beta)) - \ddot{\alpha} dx \]

(17)

In the above equation, \(\ddot{\alpha}\) is a constant scalar value and \(H\) is the Heaviside step function (\(H(x) = 0\) for \(x < 0\) and \(H(x) = 1\) for \(x \geq 0\)). This rule indicates that whenever the distance between \(x\) and \(\beta\) exceeds \(\ddot{\alpha}\), the evolution of the virtual backstress will be equal to the total backstress. Eq. (16) has the form of Prager’s hardening rule with a varying hardening coefficient. The virtual backstress is employed only to designate the variation of this hardening coefficient and is not a component of the total backstress.

It should be stated that a quite similar approach has also been suggested by Dafalias et al. (2008), which introduced the multiplicative AF kinematic hardening rule. However, while the virtual backstress changes the value of the hardening coefficient of a Prage-type hardening rule, the multiplicative scheme essentially has its influence on the recovery term of an AF hardening rule.

Unlike the AF hardening rule where the second derivative of \(x_i\) with respect to \(d\beta\) is negative, the backstress component defined by Eqs. (16) and (17) has a positive second derivative. This might be controversial, since after some plastic flow has taken place during uniform loading, the predicted stress–strain curve would have an increasing slope. The fact is that the influence of the modified backstress component is much smaller than the sum of the other components in strain ranges encountered in ratcheting simulation or even in cyclic loadings of higher amplitudes, but when dealing with monotonic loading, the increasing tangential modulus is a
rather new property. However, the primary attention of this work is towards ratcheting and the effect of using the new modified component on both monotonic and cyclic stress–strain curves will be discussed briefly, later in this section.

The values of \(B_k \) and \(\gamma_i \) are determined according to the method given in Section 4.2. The values of \(C, \eta \) and \(\bar{a} \) can be evaluated by using the variation of \(B_4 \) given in Eq. (18) for this purpose the following equation must be solved:

\[
B_k = \frac{2}{3} C + \eta \left(\frac{\sqrt{2} \gamma_k}{\gamma_k} - \bar{a} \right) \quad (k = 1, 2, 3)
\]

where \(B_k \) is the optimum value of \(B_4 \) for each test and \(\gamma_k \) is the maximum absolute value of the backstress for that test. In this case, the following values are obtained:

- \(E = 181,300 \) MPa, \(\nu = 0.302 \), \(\sigma_f = 186.2 \) MPa
- \(B_1 = 56.330 \) MPa, \(\gamma_1 = 680.9 \)
- \(B_2 = 8710 \) MPa, \(\gamma_2 = 841.7 \)
- \(B_3 = 1100 \) MPa, \(\gamma_3 = 35.5 \)
- \(C = 690 \) MPa, \(\eta = 7.78 \), \(\bar{a} = 29.6 \) MPa

Fig. 7 shows the ratcheting predictions obtained by the new model and the above parameter values. Comparison of these results with Fig. 3 clearly indicates the accuracy of the new model in ratcheting predictions.

The result of employing the modified hardening rule in monotonic and cyclic loading is given in Fig. 8. Fig. 8a shows that the new model behaves quite similar to the N3-L1 model in a strain controlled hysteresis loop (compare to Fig. 4a). This is due to the small influence of the modified component compared to the other components of the backstress. Fig. 8b indicates that during monotonic loading, the tangent modulus increases as plastic deformations take place. This response is different from commonly used hardening rules where the slope of the stress–strain curve always decreases during plastic flow. Although it will not be studied further in this paper, but this response can be used to simulate the strain hardening phenomenon encountered in some materials after initial yielding.

7. Conclusions

A general systematic approach is established for the parameter determination of Chaboche’s hardening model. The suggested method is developed through using one, two and four components of the backstress. The result of the new parameters is compared to the ones suggested by Bari and Hassan (2000). Numerical analyses indicate that if the decomposed hardening model is calibrated with this technique, the hardening rule of Chaboche can be used more efficiently than what has been credited before. After realization of the deficiency of the model, an improvement is made by applying a new formulation to one of the backstress components. The new model is demonstrated to be more precise in simulating all seven uniaxial ratcheting experiments conducted on CS 1026 by Hassan and Kyriakides (1992).

Appendix A

The multi-set nonlinear equation (Eq. (15)) encountered in Section 4.2 can be rewritten in the following form:
The sum of A_1, A_2 and A_3 are taken to the left side of the equations and $e^{M_i x_i}$ is replaced with U_i, leading to:

$$L_1 = A_1 U_1 + A_2 U_2 + A_3 U_3$$

$$L_2 = A_1 U_{1M_i} + A_2 U_{2M_i} + A_3 U_{3M_i}$$

$$L_3 = A_1 U_{1M_iJ} + A_2 U_{2M_iJ} + A_3 U_{3M_iJ}$$

where $L_j = \sum A_i - C_j$ and obviously $U_i (i = 1,2,3)$ are the unknowns.

This equation is in a rather restricted form and may easily not have a solution. The condition $\sum A_i > |\beta_i| |\alpha_i|$ is a prerequisite for the existence of a solution. If the solution exists, it can be achieved by any iterative technique, for example the Newton–Raphson approach.

$$\begin{align*}
L_1 &= A_1 U_1 + A_2 U_2 + A_3 U_3 \\
L_2 &= A_1 U_{1M_i} + A_2 U_{2M_i} + A_3 U_{3M_i} \\
L_3 &= A_1 U_{1M_iJ} + A_2 U_{2M_iJ} + A_3 U_{3M_iJ}
\end{align*}$$

$$f_1(U_1, U_2, U_3) = A_1 U_1 + A_2 U_2 + A_3 U_3$$

or the more simple backward approach, which is written as:

$$U_1^{(\text{new})} = \frac{1}{A_1} (L_1 - A_2 U_2 - A_3 U_3)$$

$$U_2^{(\text{new})} = \frac{1}{A_2} (L_2 - A_1 U_{1M_i} - A_3 U_{3M_i})$$

$$U_3^{(\text{new})} = \frac{1}{A_3} (L_3 - A_1 U_{1M_iJ} - A_2 U_{2M_iJ})$$

Calculations have shown that a suitable starting point for the iterative solution is essential for convergence. Proper predefinition of values of A_i can also help for faster convergence. It is advised that the values of A_i not be close to each other and have the condition $L_i < A_i$.

Acknowledgement

The authors greatly acknowledge the grant provided by the Ferdowsi University of Mashhad for the financial support of this work.

References