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Adaptive MLSDE Using the EM Algorithm

Hossein Zamiri-Jafarianylember, IEEE,and Subbarayan Pasupatii®gllow, IEEE

Abstract—The theory of adaptive sequence detection incorpo- detection with adaptive methods, such as least mean square,
rating estimation of channel and related parameters is studied in recursive least squares (RLS), and Kalman filtering for esti-
the context of maximum-likelihood (ML) principles in a general mating the CIR [3], [8]-[10]. However, the inherent decision

framework based on the expectation and maximization (EM) delay i h d h | King i
algorithm. A generalized ML sequence detection and estimation d€lay In such procedures causes poor channel tracking in a

(GMLSDE) criterion is derived based on the EM approach, and time-variant environment. The idea of per-survivor processing
it is shown how the per-survivor processing and per-branch (PSP) was proposed to combat the decision delay problem,
processing methods emerge naturally from GMLSDE. where each survivor path of the trellis diagram in the MLSD

GMLSDE is developed into a real time detection/estimation . . .
algorithm using the online EM algorithm with coupling between structure has its own CIR estimation [11]13]. Although

estimation and detection. By utilizing Titterington’s stochastic ap- PSP is B practical way to achieve better performgncg in a
proximation approach, different adaptive ML sequence detection time-variant channel, the nature and degree of optimality of
and estimation (MLSDE) algorithms are formulated in a unified  such PSP-based channel estimation procedures, the influence
manner for different channel models and for different amounts ¢ <,ch estimates on the optimality of the MLSD criterion,

of channel knowledge available at the receiver. Computer simu- d th lina bet timati detecti d ch |
lation results are presented for differentially encoded quadrature an € coupling between estimation, detection, and channe

phase-shift keying in frequency flat and selective fading channels, models are not clear.
and comparisons are made among the performances of the In this paper, the maximum-likelihood sequence detec-

various adaptive MLSDE algorithms derived earlier. tion and estimation (MLSDE) algorithm is considered in
Index Terms—Adaptive detection and estimation, estimation @ general framework based on maximum-likelihood (ML)
theory, expectation and maximization algorithm, fading channels, detection/estimation theory. To detect the transmitted signal,
maximum-likelihood detection, maximum-likelihood estimation,  the receiver usually needs to know some other parameters. We
sequence detection theory, statistical communication theory. show that the MLSDE criterion for detecting the data sequence
and estimating the unknown parameters can be achieved by the
I. INTRODUCTION expectation and maximization (EM) algorithm, which is an

T HE detection of a signal transmitted through a commiterative method. The EM algorithm increases the likelihood

nication channel having memory and additive Gaussi&h the detected/estimated parameters in each iteration with

noise has been widely studied for different channel mo@Xpectation and maximization steps until it achieves the global
els. Equalization techniques have been used in commufi-2 local maximum [14], [15]. .
cation systems to combat the intersymbol interference (ISI)Generalized MLSDE (GMLSDE) is presented as an EM-
induced by dispersive channels. When the transmitted d®@Sed algorithm, which alternates between detection and es-
detection (MLSD) minimizes sequence-error probability ari§ implemented based on the online EM algorithm for real
can, hence, be considered as an optimal equalization metH#8€ detection/estimation where in each recursion, the al-
MLSD, imp'emented using the Viterbi a|gorithm for knowrgorlthm Increases the I|kel|h00d funCtlon. It is ShOWﬂ that
finite channel-impulse response (CIR), is well known [1the concept of PSP and per-branch processing (PBP), which
The MLSD algorithm has also been studied for a mobilestimates a separate CIR for each branch in the trellis dia-
communication channel that disperses the transmitted signagl@m, emerge naturally from the EM aspect of the GMLSDE
both time and frequency domains and whose impulse respoaorithm as an integral part of a likelihood-increasing pro-
is considered as a Gaussian random process [2]-[7]. cedure when the previously detected/estimated parameters are

Due to unknown CIR or unknown statistical parameters ¢fsed as given conditions for the next expectation step. Some
the CIR, joint data detection and channel estimation metddaptive MLSDE receivers are derived based on the GMLSDE
ods were proposed by combining Viterbi algorithm for datBiamework in a unified way for different levels of knowledge

o 4 by 7. Kostic. the Editor for Wireless C cat that are available at the receiver. The recursive estimation
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new algorithms based on different channel models and levelsas a stationary white complex zero-mean circularly sym-
of knowledge available at the receiver. metric Gaussian random process with autocorrelation function
Even though the concept behind the EM algorithm waR, (k) = Noé(k). The CIR or its parameters (usually unknown
known in early statistical literature [17], [18], it was the lateto the receiver) should be estimated during the detection
seminal paper by Dempstest al. [14] that spurred much procedure.
research on many applications of the EM algorithm including The MLSD criterion (1) is suitable when the symbalsire
communication-related ones [15]. Kalatt al. [19] derived the only parameters that are unknown and the received signal
the iterative method for joint channel parameter estimatigmovides complete information necessary for such a detection
and symbol detection using an EM-based forward—backwastbcedure. However, in general, other parameters that can be
algorithm. Georghiades and Han [20] used the EM algorithm toodeled as a set of unknown deterministic parameters, random
study sequence estimation in random-phase and fading cheaariables/processes, or both are also needed to complete the
nels. We may point to [21]-[23] for some other applicationdetection procedure. In detection theory, such problems are
of the EM algorithm in communication systems. termed as composite hypothesis testing or detection with
This paper is organized as follows: GMLSDE is developegnwanted parameters [24].
via the EM algorithm and the relation to PSP and PBP isIf we define# as the needed unknown deterministic pa-
explained in Section II. Different adaptive MLSDE algorithmsameters that should be estimated, the criterion of MLSDE
associated with different levels of channel knowledge avaltecomes
able at the receiver are derived in Section Ill. Section IV .
contains computer simulations, results, and comparisons for a CMLSDE = Iﬂﬂx{log p(yla, 0)}- (4)
differentially encoded quadrature phase-shift keying (DQPSK) . . ) .
modulation scheme in flat and selective fading channels witincey sometimes does not provide the complete information
different fading rates. The results of simulations with timg2?€cessary to obtain the ML estimates of the parameters
variant fading rate for a flat fading channel with different® ¢} from (4) directly, we present the solution to (4) using

levels of channel knowledge are also presented in Section f)¢ EM algorithm [14]. By considering =y as incomplete
Section V presents some conclusions. data and? as the random variables or processes needed

to completeZ for detecting/estimating/, the log-likelihood

Il. GENERALIZED MLSDE ALGORITHM function is given by

The main goal in digital communication systems is to detect L(¢) = log p(Z|f) = log p(C|tf) —log p(D, I)  (5)
the sequence of the transmitted symbwls- {ag, -, a7_1}
by observing the received signgl= [y(K — 1),---,4(0)]7,
where X7 denotes the transpose &f. The optimal receiver
maximizes the joint probability density function (pdf) afand
y for detectinga. When all the sequencesare equiprobable,
the optimal sequence receiver accomplishes MLSD with thgz/) = E[log p(ClO) U, 1} _ E[log p(DlU, D), I]
criterion given by 6)

Following [14], one can show thdt(Z/ 1)) > L(U{V) where

where C = {Z, D} is the complete data. On taking the
conditional expectation of both sides of (5) with respect to
D givenZ and a parameter sét!) (the estimation ot/ atith
iteration or initial estimate otf), we have

CMLSD = 1n§x{p(y|a)} = m;xx{log p(yla)} Q)

wherea is selected from4, a set of all its possibilitiea € A. ~\ _ ) ~(D)
The detected sequenéeis Q(UW ) _E[log pleleni ’I} 7)
and
a = arg max{log p(yla)}. ) TA+L) o “ (0
a U = arg max {Q(Z/{V/{ )} (8)

The received signal is a function of the transmitted symhopls
media parameters such as channel paraméternd additive
noisez = [z(K — 1),---,2(0)]7

The above iteration, (7) and (8), is repeated until the stationary
estimation ofl{ is achieved. In other words, the previous
estimation ot/ is used as the given condition for estimatiig
y = fan(a, o) + 2. (3) based on (7) and (8) until dth iteration, 2/ = /-1 = 4.
Hence, if L({{) has only one maximum point, we have
When the channel is modeled as a linear systémy,-) is a )
linear function and its arguments ageand CIR. To detect U = arg max{L(U)}. )
the sequenca by observingy, the receiver should know the
function f.i,(+), the pdf ofz, and the CIR (if it is deterministic) Otherwise,l{ is a local maximum point. Thus, the MLSDE

or the pdf of CIR (if it is a random variable/process). criterion can be achieved iteratively by following the EM
The structure of the MLSD receiver will be different foralgorithm.
different channel models. The linear functigi,(:) is usu- The EM algorithm has two steps: 1) expectation (7) and 2)

ally modeled as having finite memory (e.g., a finite impulseaximization (8). The first step (7) is to take the expectation
response system model for channels with ISI or multipatf the log-likelihood function of the complete data given the
fading). Also, it is very common to model the additive noiseurrent detected/estimated parametéfd and the incomplete
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(observed) datd. The second step (8) provides a new estimate 1) Estimation part

of the parameter&/(+1) by maximizing the expectation of a) 1-E step

the log-likelihood function (computed in the first step) over

the unknown parametedd. The EM algorithm repeats the Ql(alé(l), 9(l)> :Q(é‘(l)7 6lat®, 9(1)>
expectation and maximization steps iteratively in order to

increase the likelihood of the parameters [14], [15]. Therefore, :E|:10g p(c|é<l), 0)|é<l>, 9(1), 1} (11)

instead of calculating the ML detection/estimation f =

{a, @} directly from (4) in a closed form or in one iteration b) 2-M step

that is very complex and impractical especially for a high-

dimensional problem, the EM algorithm uses the iterative 0" = are max{Ql(mﬁ(l)’ @(1))} (12)
4

method that increases the likelihood of detected/estimated
pqrameters in each iteration until it achieves the MLSDE 2) Detection part
criterion (4).

When the unknown parameter $étontains different types
of unknown variables/vectors (i.e., in our problemand & N ) AL oy a0
are discrete and continuous, respectively), the maximization®2 (a|a(l>,0 ) :Q(a’o .0 )
step of the EM algorithm is a challenging job and often ZE[logp(C|a é(l+1))|5(1) é(l) I} (13)
intractable. In order for the maximization step to become ’ o
tractable, we partition the set of unknown parameters into
disjoint sets and find the maximum of each partitioned set
separately. Therefore, in this method, each iteration contains AL @) a®
more than one expectation and maximization step. In the a =alg mﬁx{QQ (a|a 0 )} (14)
following theorem, we show how this GMLSDE procedure ) )
increases the likelihood at each iteration using the frameworkPividing the parameters as discrete and continuous de-

a) 3-E step

b) 4-M step

of the EM algorithm. creases the dimension of the parameter space and usually
Theorem 1:Let the unknown parameter sétt be divided increases the convergence of the algorithm [29]. Also, it

into i separate seté = {0, 0,---,6;}. L(Zf{<’+1>) > L(Zfl@) allows us to use different methods in the maximizing step for

where the estimation off at (I + 1)th iterationa(l+l) _ discrete and continuous parameters. GMLSDE shows a natural

S(141) A(141) (141

(@ 0 0 coupling between estimation and detection, which should
1 » V2 [

allow us to get some insight about the influence of either one
on the other. This has not been possible with earlier approaches

; )} is estimated from the following
steps using the EM algorithm;

A(141) ~() A0 oy to the combined detection/estimation problem, since channel
0 = g {Q(olv 0,0 )} estimation has been traditionally uncoupled from the detection
~(141) A(141) (D) ~(1) o~ problem when developing the detection algorithm.
0, "= mgx{Q(ol 02,0570 | ))} The proposed GMLSDE algorithm (11)—(14) has been de-
veloped using the entire received sigyalor in other words,
: the EM algorithm is offline. Since the main purpose of an
oY _ meax{Q(@iHl), outy Y, 9i|zj[(l)>}_ adaptive algorithm is to detect the sequentially emiteth

real time, we are interested in an online (recursive) version of
(10)  the EM algorithm. By defining;, andZ;, as the complete data
and the incomplete data available up to tiferespectively,

~ Proof: See Appendix A. lteration between some maxine steps of GMLSDE algorithm at time using the online
mization steps is similar to the Gauss—Seidel method [25] aggheme for estimating and detecting are given as:

is also called the cyclic coordinate ascent method [26]. Meng
and Rubin [27] proposed a similar model reduction to achieve
simple conditional maximization and called it expectation-
conditional maximization. . .
By following Theorem 1 and noting that is a vector of Ql:k(0k|ak|’“—1’ okl’“—l)
discrete parameters, GMLSDE (10) satisfies the ML critérion _ ) ~ ~ y;
by dividigg U into a and @ and (esti)mation of (continuous N E[log PACkIAkIk—1, O) Arir—1: O Ik} (15)
unknown parameter set) and detectiomdtiscrete unknown
parameter set) are alternated. The estimation and detection
steps at thél + 1)th iteration for the GMLSDE aré:

1) Estimation part
a) 1-E step

b) 2-M step

éklk = arg IT;%X {Ql,k(0k|ék|k—1a éklk—l)} (16)

1Similar to the EM algorithm, GMLSDE may only achieve a local
maximum point ifL(Z{) has many maxima.

2 S .
In general, dividing the parameter set into two separate sets (s_ee Theoremrhe relationship between (11)—(14) and the space-alternating generalized
1) does not guarantee achieving ML criterion; however, simde discrete

. . . . ~(1+1) . .
and the detection part considers all the possibilitiesapthe algorithm is EM (SA(}(IIE)) algorithm [28] is shown in Appendix B wh is used in-
guaranteed to achieve ML criterion when there are no local maxima. stead of¢" * as a given condition for computing the expectation in (13).
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2) Detection part and each set will have its own expectation and maximization
a) 3-E step steps. This idea is very useful in increasing the convergence

R of the algorithm especially when the complete data is different

QQ,k(ak|ék|k_1, 0k|k—1) for each separate set [28]. Meanwhile, from the viewpoint of

N R - increasing the likelihood, estimation and detection can be done
= E[log p(ck|akv aklk) [Aki—1, Orjp—1, Ik} (17) " in a different order in GMLSDE. However, in order to decrease
b) 4-M ste the complexity or due to some other practical issues, it may be
P that one order (i.e., estimation after detection) is preferable to
Ay = arg max {Q2, N (ak|ék|k_17 @klk_l)} (18) the other order. Doing the estimation part before the detection
ak part needs to estimat@, at time & for all possibilities of
. . . = _ =T T cinees ; ; i
where {ay, 0} is the parameter set up to tinke Also, a,; 2klk-1 = [ax, &,_y,_,]", sinceay,—; is a given condition
and 6y, are the detected values af, and the estimates of in the estimation part at time. In other words@;, is estimated

9, based on the received data up to tirherespectively. for all the branch metrics in the trellis diagram. This method

Similar to Theorem 1, sin€g, k(ék|k|ék|k—laék|k—l) > Q.. 1S called per-branch processing (PBP) [30] which estimates
(é B ) ) and ’Q (Brla ) _) iy different channel parameters for each branch metric. However,
FlE— 1SR 1) klk_él 2k klkh k"“_ﬂl" t""k_l = when the detection part is done before the estimation part,
Q2. (8kjk-1[axik-1, Bjx-1), ONe can show tha sinceay,;, is a given condition in the estimation part, channel
= i ~ i ~ A ter sd;, is estimated for alh;; at timek whereay;,
L( H,ou)>L<( H_,ou)>L<( H_,ou_) parame k1S Kk Kk

FA\Bkller Pklke ) = Sabe\ Bkf—1s Vhlk | = Sabe A\ AklR—15 PRIE=1 ] icates all survivor paths up to timie In other words g,

(19) s estimated only for survivor paths, and this method is called
per-survivor processing (PSP) [11].

As the estimation and detection parts of GMLSDE (15)—(18)
show, the idea of using the previous decisions and estimates
as tools for detecting and estimating the future arises naturally
In implementing MLSDE based on the EM algorithm. The
decision-based receiver was used in [31] for an ISI channel
with infinite impulse response. Later, it was proposed in many
0 e such joint detection and estimation methods and is generally

k+llk = | g known as PSP [11]. The PSP was originally proposed as a
practical way to implement joint detection and estimation;

where Ly(-) = log p(yx|.) is the log-likelihood function
based on the received signal up to tirhé Therefore, the
likelihood function is increased at each recurSi@increasing
time). Appendix C shows the relation between log-likelihoo
function at time k and previous log-likelihood functions.
Meanwhile, the time-update vectép;+l|k is given by

Ok

where Orr = [¢k7|k, ¢Z_1|k,~~~,¢07|@]7, and.¢k+1|k is ob- however, in GMLSDE due to the inherent coupling between
tained generally from the dynamic evolution of thg ., the estimation and detection parts, the temporary decision
process of the dataa,, at time k£ is a given condition in the

— 1o(Br, an). (20) estimation part when the detection part is done before the
Pr+1 = JoATk, A estimation part. Therefore, the PSP (estimating different CIR
The elements of the transmitted symbals= {ak}i;é are or other channel parameters for different survivor paths)
selected from a finite set [i.ea; € {1 + j} in quadrature comes up naturally as an integral part of the EM-based ML
phase-shift keying (QPSK)] and generally (assuming no codetection/estimation procedure. Also, when the estimation part
ing), the symbols are independent of each other. In other wotggione before the detection part in the GMLSDz._; is a

[unlike (20)], there is no dynamic relation between the prese@iven condition in the estimation part at timke Sinceay, s,

symbol and the previous symbols. Therefore, the time-updéagethe temporary decision of the data for all branch metrics,

a1 is defined by the PBP (estimating different channel parameters for all branch
metrics) also appears naturally from the GMLSDE procedure.

Apgijp = |:ka+1:| Thus, one can say that the EM algorithm provides a solid

ay|k theoretical foundation for using PSP and PBP in ML-based

wherea.1 is selected from all the possibilities of the amhabe_rpceivers due to the inherent_em.bedding _Of decision fe.edback
set (i.e., {+1 = j} in QPSK). Meanwhile, in general, theln the EM approach. Meanwhile, if all survivor paths at tilne

estimation part of GMLSDE may contain more than one stﬁive the same root in the trellis diagram at tifne L, since

of expectation and maximization. Based on Theorem 1, tH'e iS only one detected sequemge ., there will be only

unknown parameter sé may be divided into different sets©N€ estimation fo;._r, attimek, 6., If we assume that

Orjp ~ 9k_Ld|k, the detection/estimation procedure leads to
4 . . ) Lo . ' .
We will show in Section Il that the maximization step of the online EMthe MLSDE receiver that was proposed by Qureshi [8] before
algorithm becomes more tractable in some special cases such as Gaussian, . .
model. the idea of PSP emerged in the research literature.

5In general, each recursion (15)-(18) can be implemented with some The convergence of the EM algorithm is inversely related
iterations (11)-(14). In this casda,,_1, 04 x—1} is the set of initial to the dimension of its complete data space. Less necessary
values for the first iteration at timé and {a, 8)x}, which is the  gnq |ess informative complete data improves the asymptotic
detection/estimation of the unknown parameter set at recuks{onthe result Th l EM al ithm deal ith
of the first iteration at timér), and is the initial value for the second iterationCONvergence rate. € online algorithm deals with un-

at ime k. This procedure is able to increase the likelihood. known parameters and complete data only up to the process
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z (k)

a(k)=a b(k)=b g /L
3 T\ Iy (3 " s (k) Rk v(k) \_*_J y (k)

Fig. 1. A discrete model of the communication system for a linear channel, whéderepresents up-sampling by a factbf.

time, and their dimensions increase linearly with time, thusf transmitted symbols affecting(k). For easy presentation,
causing faster convergence. This idea is similar to the SAGlwever, we avoid using twé(lgll’lz_l notation.

method, which achieves faster convergence by partitioning thevieanwhile, although the EM algorithm is a method to
parameters and the complete data [28]. In the online Edthieve ML criterion with expectation and maximization steps,
algorithm, the parameters and complete data are naturalig algorithm does not tell us how to do these steps. We only
partitioned through time. Meanwhile, due to the parametepnsidered some very general implementation aspects of the
space-time coupling, the online EM algorithm is a recursiugetection and estimation steps in this section. More details of
algorithm (each recursion can generally be done by more th@e GMLSDE implementation by adaptive algorithms will be

one iteration [32]), whereas the offline EM algorithm is onlgxplored in the next section based on different channel models.
an iterative algorithm in general.

The estimation part in the online EM algorithm can be
approximately implemented by a recursive formula based on
Titterington’s approach [16]. Using a stochastic approximation The GMLSDE algorithm in Section Il was derived in a
in order to consider only three elements of a Taylor serigeneral framework without specifying any channel model. In
expansion Ole,k(ochlk—l) (15) at point®; = 9k|k_1, one this section, we show how some adaptive MLSD/MLSDE

I1l. ADAPTIVE MLSDE BASED ON CHANNEL MODELS

can show (16) becomes algorithms developed previously in the literature, along with
some new adaptive MLSDE algorithms, can be derived from
2 ~ -t the GMLSDE. The main goal of this section is to show the
5 g Qs 1 (Onlthii ) f th d GMLSDE algorithm in deriving joi
Orpie =~ Opppey — _ power of the propose: DE algorithm in deriving joint
0920, ~ detection and estimation algorithms in a unified way based on
0 =051 the different channel models and available channel knowledge.
an,k(okV;{Mk—l) We consider three different model categories for a linear
. ; channel:
aok 0k=9k‘k71 1) known CIR;
for all 21) 2) unknown deterministic CIR (time-invariant/variant);
k=1 3) stochastic CIR (random vector/process)
wherely ;.1 = {axx_1, Oxx—1} and @ denotes conjugate known statistical parameters
of 0. If ¢, is anL+1 vector,8;, and(0Q x(Ox|Usrjs—1)/967) { unknown statistical parameters.

arek(L + 1) vectors, and als¢d” Q1 x (O |[Ux—1)/0%0%) is - _ _ _
ak(L+1)x k(L +1) matrix. It should be noted that when the In all above models, the additive noisgk) in (3) is
third and higher derivatives @, (.|.) are zero, as is usually considered as a circularly symmetric zero-mean white complex
true for the Gaussian case, the recursive formula (21) is exdegussian random process whose variancé/gs The main

The detection part, due to the finite alphabet of the trangep for developing an adaptive MLSDE algorithm is to
mitted symbols, can be implemented with a dynamic progra@efineok, Ck, andZy in association with the channel model.
ming (Viterbi) algorithm. The expectation step in the detectioBased on the definitions of these parameters, the procedure
part (17) is obtained for all possibilities dfi . 1, éklk} at to |mplemen_t adgptlve MLSDE may contgln only a detection
time k. Whena; is selected from a-ary signaling scheme, Part, an estimation part, or both. Also, it may need to do

there areg possible estimates fa¥,,;,_; and 6y, in each only the maximization step in the detection/estimation part.
estimatedZf,_yj5—1 = {A_1jk_1, O_1jx—1}.° When the We fpcus on thg stf':\tlstlcal CIR model, whlch is suitable for
length of the channel memory i&, based on the trellis mobile communications, and briefly mention known CIR and
structure, the number of detection/estimatiogf;, is ¢* and unknown deterministic CIR models whose MLSD/MLSDE
the number of the possibilities &f is o™+ [ 4 algorithms are well known in the literature. Meanwhile, in

ri klk—1 7> 1 ] 9. “klk—=1  order to reduce the complexity and implement the algorithm
for 4 = 1,---,¢""]. Therefore, eacrum_ is maximized 5 3 causal manner (as we explain later), adaptive MLSDE
over g values oflf ;.. To be more precise, eadd,.—1  may not achieve the maximum likelihood, but increases the
should correspond with each hypothesisagf the sequence |ikelihood function in each recursion.

A discrete model of the communication system for a linear

6 ; ; . . . .
In PBP method, there gzppossmle estimates for channel parame@%rs_ channel is shown in Fig. la = {ak}£_0 is the set of the

for each state. However, since the detection is done before the estimation in itted bol . l.— fo. b f

PSP, there is only one estimate for each state, and the estimatiép isf transmitted symbols antl, is upsampling ola;. by a factor

computed only for survivor paths. J = [T/T], whereT is the symbol period and’; is the
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sample period. The received signal is For a time-variant deterministic CIR, the estimation part
L leads to a Kalman-type algorithm [32] where the causal detec-
(k) = Rl B)s(k — 1) + 2(k) = s(B)R(k) + 2(k) (22) tion procedure needs only a causal estimation procédure.

Model C—Stochastic CIR with Known Parameteihe
CIR is often modeled as a random vector or random process
where the duration of(l, k) with respect td is L + 1. s(k) in a mobile environment. For example, Rayleigh multipath
is the output of the transmitter filter with impulse responsading, whose impulse response is considered as a complex
g(k), z(k) is additive noises(k) = [s(k),---,s(k — L)], and Gaussian random vector (for very slow fading) or process
h(k) = [r(0, k),---,h(L, k)]7. (for fast fading), is a very common model in mobile com-
Model A—Known CIR:The MLSD receiver for known munication systems. In Model “C,” we focus on the random
CIR was derived by Forney [1]. From the GMLSDE poinprocess CIR. The received signal is obtained from (22) with
of view, the complete data is available in the receiver g(l, k) = hi(k) being considered a Gaussian random process
Cr =Tr = yx = [y(k),---,y(0)]”, and there is no unknown for 0 < I < L. By defininghy, = h(k) = [h(k)7, h(k —
parameter sefl. Therefore, only the maximization step of thel)7 ... h(k — M + 1)7]7, the received signaj(k) and the
detection part (18) is needed, and it can be done recursivellyhamic changing of the CIR represented by the state-space
by the Viterbi algorithm [1]. formulation is given by
Model B—Unknown Deterministic CIRt is common to

=0

consider the CIR as a vector of time-variant/invariant de- y(k) =s(k)h(k) + =(F) (25)
terministic parameters in channels with ISI. In this model h(k) = Fh(k — 1) + Gu(k) (26)
for a time-invariant CIR, the vector of unknown continuousvhere s(k) = [s(k), 0], 0 is an (M — 1)(L + 1) zero
parameters is defined @ = h = [h(0),---,h(L)]7, and at row vector, w(k) = [wo(k),---,wr(k)]F is a zero-mean

time k, the complete and incomplete data are equalie= white complex stationary Gaussian vector process which is
Ix = yx. Thus, only the maximization steps of estimation anshdependent of(%) and its autocorrelation matrix By (k) =
detection parts (16), (18) are needed in this model. It can bg1)6(k), where I(; ;) is an (L + 1) x (L + 1) identity
shown that (16) leads to the RLS algorithm by using (21) [32fpatrix. ' and G matrices are defined by

[33]. If qu is the estimation of CIR at tim&, (18) becomes - B F Fy
. . - T 0 0
ag|p = arg H}llE]}X {QQ,k (ak|ak|k_1, h|k—1)} F= (L+1) (L41) (L41)
~ ' 0(L+1)
= arg a 1 : . . h .
ars HQX{ 0% p(yk|ak, ““)} L Or+1y L1y Owany
k g
= arg max —ly(1) — s(Dhy]? b, O¢r41
5 ma {; (D) ()|k|} a0 27

for all {axus, b }- 23) 0c11)
where0(z, 1) is an(L + 1) x (L 4 1) zero matrix.

In this channel model, the complete data and the incom-
plpte data at timek are C, = {yx, hy} and Z, = ya,

Using the new estimation ok at time k, fz|k in order to
detecta,, = {ay, --,a0} from (23) is a very complex and
noncausal process. In order to avoid complexity, a cau ¢ pkd 5 AR
detection procedufeis considered. Therefore, instead/gf, 'cSPectively, wherdy, = [hy, -, hy]”. Itis easy to show
i d leul _ FER: <1<k that the unknown continuous parameters at titnis 6;,;, =
;i is used in calculatingy () — s(1)h|* for 0 in T T 71T wh _ — Em
(23). Thus, (23) becomes [Phips P pop]” where gy = py = Elhilya].
L Meanwhile, it can be shown that the estimationof, =
S — are ma (D) — (D12 L o4y cov(lylyx) is necessary to estimaje,, [32], [34]. In this
Aklk = A8 HQX{; [ul) = sl } (24) model, all the steps in detecting and estimating parts are

necessary. The expectation step of detection part (17) becomes
Sinceay,_yx—1 maX|m|zesE L) —s(l Yhyi?, (24) can v P P part (17)

be implemented in a recurswe manner using the Viterbi algo- @2, (aklam 1 oklk 1)
rithm. It should be noted that the causal detection procedure

does not guarantee achieving the maximum of the likelihood = E[log p(y’“ hy|ay, aklk)|ak|k—1’ Ori—1, y’“}
function (global or local); however, it guarantees to increase k

the likelihood function in each recursiSnMeanwhile, the = Z{log p(y(D)|ag, Pk—1> Yio1)

estimation and detection procedures show how the idea of =0

PSP [11] emerges from the GMLSDE algorithm as a recursive + E[Iog p(h(D)|aw, Gyp, 1l — 1), y1)
approach to increase the likelihood function.

"WhenJ > 1, each recursion in the detection part negdeecursions in |Akj—1, Oujg—1 yk} } (28)
the estimation part.

8Detecting a;, from y(1) for I < k is defined as a causal detecting
procedure. } ) 10Estimatingh(k) = [k(k)7,-- -, h(k—M +1)7]7 fromy(l) forl < k
9From Appendix C, it is easy to show thay(k);) > Li(hj—1). is defined as a causal estimation procedure.
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Due to the noncausal estimation m‘”k,l for 0 < I < timek areC, = {yx, Hk} andZ; = yy, respectively. Since
k, detectinga; from (28) is very complex. Consideringthere are two separate unknown continuous parameter sets, the
causal estimation ofy;,_; = E[h|y,—1] and >, , = estimation part contains four steps where, based on Theorem
cov(h;|yx—1), the detecting procedure at tinkebecomes 1, 0, i, is estimated in the first two steps of expectation
k and maximization. In the second two sted#;, GG} is
ay|, = arg max {Z_ﬁ(z)} (29) estimated. The detection part and estimation par8of;
& | =0 in this model are similar to those of Model “C” based on the

such that the branch metrjg() is given by estimation of {¥", GG™} parameters.
ly(1) — Sy, | It is more convenient to estimatgF’, GG"} based on an
< - Ili—-1

) =— =g autoregressive moving average (ARMA) model iafk) =
s(D2q—15(1)" + No h(l, k). Also, without loss of generality and only for easier
+log (3(DS_15(D™ + N, presentation, we assume is a diagonal mafcrix digg) =

o8 (S( JXui-150) 0> {g°, g',---,g’}. The ARMA model ofh(k) is
. S 3 ol
+ log (det (Fog, 7)) (30) (k) = f'hy 1 +glw(k), O0<I<L  (34)

_ NT N 7T J7 —
wheres = [A(k)%, -+, A(b=M)T" F = i rn), =Ly oo i the 1th row of # matrix. By definingy, =
—Fy, and Xg,, = cov(zi|y:). By using the Viterbi algo- ., ~ £ R, .. Ry|T where Ry — glg’ for | =
rithm, (29) can be implemented in a recursive manner wh e’ L7 tr71 IIQEL-jt ’ f‘g timati ‘Ej[l t'_ %5 . b o
A(l) is the branch metric of the trellis diagram at tiche 7 77 € E-step of estimaling, at ime & 1S given by
It can be shown that causal estimation leads the estimatin

A @olarii—1s 01 kjk_1, Pop
part of Model “C” to the Kalman algorithm by using (21), @2’k((p2|ak|k b L klk—1> P21k 1)

where g, and 3, ,,, are updated for all possibilities of =log p(yk|Hk7 Anjk_1, 01 1k (p2>
{agi-1, ém,l} using the recursions given by [32], [35] Lok
ﬂ’l+1|l :Fﬂ’lﬂfl + Fi”l_lé(l)H + lzg Z)E[log p(hl(j)|hj*17 Z~lk|k—17 01,k|k7 (pQ)
- -1 ==
A No +8(D)Sy_8()™ 1) —s(D) - - i
( 0+ 8(D)Xy—18(1) ) (y( ) — 8( )qu_l) kg1 01, kot @a_1s Yk:|- (35)
(31)
iz+1|z IFizuFH IWeles (32) Taking the first and the second derivatives @ ,(g|.)

with respect tof! and R, and using (21) along with a
B B B causal estimation procedure with some approximations and
Y =1+ E”z_lé(l)H manipulations (see Appendix D), the estimatiorfbaind R,

= oo\ at time £ becomes
'(N0+S(Z)Ez|z—15(l) ) s(D)>q—1- (33)

Py - H o - H o - -t

Meanwhile, it is straightforward to computgz,, from ¥y, T e VAT T (1 + ”kfllkpk—llk”k—llk)
using (26). -(”‘ i ) <<

The branch metric measure derived in (30) is different from gl fllk_luk_llk ’ O=i=t (36)
the branch metric measure proposed in [2], [3], [6],_ and [36]Rgl|k gfggllk_l + E(Rgllk—l _ |/:L§c|k _ fllk—ll)’kfllk|2)7
Although the same state-space model was chosen in the above 0<i<L (37)
references, the last term in (30) is extra in comparison with ==
the branch metric proposed in [2], [3], [6], and [36], whic o N o R o e i
maximizes the logarithm of the pdf of, at timek to compute hgherepk_llk (2 jmr Bimayihti=ay) ™ andly, ., s given
the branch metrics. In GMLSDE using Model “C,” however,
the expectation of the logarithm of the joint pdf gf, and P,f|k+1
hy, over by is maximized. Thus, the last term in (30) can be . . . . -1
interpreted as the contribution of the error in estimath{g) =1k — kfllkp’kfllk(l + Il’k—1|kPk—1|kp’k71|k)
given y(k) to the branch metric at timé. Meanwhile, since I (38)
FXg,,_, =0, if Xg,, is replaced withXg, ,_, (using PSP
method instead of PBP method), the last term of (30) vanish@sand R,:, computed from (36) and (37), are used to find
in computing the branch metric. Byq1 s and Sqapk from (31) and (32) at timé: + 1 in the

Model D—Stochastic CIR with Unknown Parametems: framework of GMLSDE. Meanwhile, as can be seen in (36),
the estimation part of Model “C,” it was assumed tht the estimation procedure €f, is similar to the RLS algorithm.
and GG™ matrices were known in updating (31) and (32). Hart and Taylor have recently proposed a method to estimate
Generally, these matrices are also unknown and should th@ unknown statistical parameters of fading channels [6].
estimated from the received signal. In Model “D,” we dividerhe method in [6] estimates the mean vector and autoco-
the unknown parameters into two separate $hts;, = variance matrix of CIR based on computing the mean and
[0 kix @1 ka2 @1 ol and {F, GG™} at time k  autocovariance of the received signal; however, it is complex
where ¢, ;;;, = py;- The complete and incomplete data and nonrecursive [37]. The method proposed in Model “D”

where
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s(k-1) s(k-L)

Delay Delay

s{k)

W, (k) —

Fig. 2. The baseband-tapped delay line model of the multipath fading channel.

estimates the unknown parameters based on increasing the 1 r . . ;
likelihood function in a recursive manner.

RLS

IR WA

YT T TTIT
A

IV. COMPUTER SIMULATIONS AND COMPARISONS

Computer simulations have been done for different channd] ~ 1e-1
models to evaluate the performances of the adaptive MLSDE
algorithms. The channel model is selected as flat fading angl
frequency-selective fading with three fading ratésl’ = 35

T T YT
Lt o1 il

0.1, 0.01, and 0.001. The autocorrelation function of the CIR é’ 1e-2 ) e :

is modeled as & E x,

L E 3

Ri(1y, 1y; §) = Z exp(—bly 1) Jo(27 faiTs)6(1y — 12), L _ 1
a=0 1e-3 : : : .

0<l,LLL-—-x<j< > (39) 5 10 SNH(dB;s 20 25

Whe'_’e Jo is the zeroth-order Bessel function, anQ is the Fig. 3. BER performance for flat fading witli;7 = 0.1 and DQPSK

maximum Doppler frequency. The delay rate in (39) wasgnaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)

chosena$—!=27. L =0. andL = 2in (39) for flat fading Estimation of stochastic CIR with known parameters using Kalman filtering.
. 5 ’ : . l(1dé Stochastic CIR with unknown parameters.

and selective fading channels, respectively (i.e., the channel

was simulated with three paths in the selective channel) (see

Fig. 2). The impulse response of the transmitter filter is stochastic CIR with known channel parametétsand GG™

raised-cosine pulse matrices; and d) stochastic CIR with unknowhand GG™
_ " T matrices.
g(t) :smc<T> <%) (40) Figs. 3-5 show the error performances of the adaptive
! MLSDE in the flat fading channel forfy7’ = 0.1, 0.01,
where the symbol duratiof = 1 and» = 0.35, g(k) = and0.001, respectively. Also, the performances of the adap-

g(t) |t=sT, WhereJ = (T'/T,) = 2. The DQPSK modulation tive MLSDE for the selective fading channel are shown in
scheme was chosen; therefore, the number of states in Eigs. 6-8 forf,7" = 0.1, 0.01, and 0.001, respectively.
trellis diagram is 4 and 16 for flat fading and selective In these figures, the simulation results in curves (a)—(d)
fading channels, respectively. The Bessel fading filter faorrespond to Models “A,” “B,” “C,” and “D” in Section I,
omnidirectional antenna is approximated by an all-pole thirdespectively. Curves (a) show the performance of the receiver
order filter [38]; therefore, thd” in (27) becomes 83 and when the CIR is known. Curves (b) show how the receiver
9x9 matrices in flat fading and selective fading channelperforms when it assumes a deterministic CIR and estimates
respectively. The data sequence is divided into a sequeiicby the modified RLS algorithm with a proper forgetting
of frames of lengthL;, where the overhead of each framdactor A for different fading rates (in order to optimize the
known by the receiver is two and four symbols for flat an&LS performance [35]). The performance of the receiver in
selective fading, respectively. The length of each frame wasrves (c) are achieved based on the assumption of a stochastic
chosen ad.; = 160 data. CIR, whose statistical parameters are estimated by Kalman
The bit-error rate (BER) performance of the adaptivBitering, with known channel parameteFsand GG’*. Finally,
MLSDE algorithm based on the online EM algorithm isurves (d) indicate the receiver performance with a stochastic
considered for different levels of channel knowledge availabieodel for CIR and unknown channel parametgrand GG™,
at the receiver. Although the impulse response of the fadimgere both Kalman and RLS algorithms are used in the
channel was simulated as a stochastic random process, egémation part.
consider four levels of available channel knowledge at theAs can be seen, the performances of the receiver in (b) is
receiver: a) known CIR; b) unknown deterministic CIR; ctlose to the performance of (c) only for slow flat fading and
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RLS (b
Unknown ch. (d
(c
(a

Lol
T TITTTT

T

—L t i

7o

Kalman
Known ch.

X
T

T T U AT

2 etk . 2 et .
@ £ ] 2 E T ]
3 o ] = " : ]
K] r 1 k] r 1
= i T z i 1
E - B = L T
g 2 .
09_ Te-2 £ E d_o‘ 1e-2 | 3
F 3 E RLS (b) - 3

L ] L Unknown ch. {d) -+~ ]

L Ry = Kalman (c) -a-- B

L 3 |l  Knownch. (a) -x-- ]

Det. Kalman (e) -+—
1e-3 n L 1 1 1e-3 1 1 Sl 1
5 i0 15 20 25 5 10 15 20 25
SNR (dB) SNR (dB)

Fig. 4. BER performance for flat fading witfi;7" = 0.01 and DQPSK Fig. 6. BER performance for selective fading with?" = 0.1 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (ckignaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
Estimation of stochastic CIR with known parameters using Kalman filteringstimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters. (d) Stochastic CIR with unknown parameters. (e) Assuming time-variant
deterministic CIR and estimating CIR with a Kalman-type algorithm.

1E , ; : . 5 ,
g 3 e r T T T 3
- RLS (b) -+~ ] E- ALS (o) = ]
r Unknown ch. (d) -+~ ] k. Unknown ch. gd; _+ 1
Kalman (c) ~&-- 1e-1 E Kalman (c) -a-- E
Known ch. (a) - E Known ch. (a) -»x- 3
S i - F “-\.\ -‘.'"o\ ]
L E 2 ezt > ~. 3
pot F ] o E a, 3
= r 4 = E . e 3
3 i ] 3 i ™ ]
= > 1e-3 g x ""-x.\ E
£ I 1 £ : a, 3
_g 1e-2 3 E i ) i
& M E £ ted - \u”‘-.,
i ] [ ™
1e-5 E E
i e E -3
1e-3 : . : . i i

19_6 1 1 1 1
5 o] SNR dB15 20 25 5 10 15 0 o

(dB) SNR (dB)

Fig. 5. BER performance for flat fading witfi;7” = 0.001 and DQPSK _. . . . A
. : - I . : ig. 7. BER performance for selective fading with7' = 0.01 and DQPSK
SElgt?;léS%n(?))f g:(l?c;]zlggg V(V:rl]ll?(\t/)v)itﬁslzlnngsvt:]ona(;gﬁle'?telilﬂgir? Lijln%g::ﬂf]i?e.ri(ﬁggna"ng' () CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
. ; p 9 Ustimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters. (d) Stochastic CIR with unknown parameters.

very slow selective channels. By increasing the fading rate, theFig. 9 shows the BER’s of a flat fading channel for cases
difference in performance between (b) and (c) increases d@—(d) when the fading rate is changing periodically between
to an insufficient number of degrees of freedom in the RL&Z = 0.1 and f,7" = 0.01. One period off,T'(¢) is

updating equation to track the dynamic channel changes.

Meanwhile, the performances of (c) and (d) are close fchT(t) -
f4T = 0.01 and f;7 = 0.001. It should be mentioned (0.1, 0<t<Ty/4
that in or_der to IimiF the complexity of the algorithm and 1 <t— ﬂ) Y01, Ti/A<t<T;)2
time of simulations in (d), the?" and GG™ matrices were 800007 4 a1)
updated in each frame of data instead of each recursion.] 0.01, Tp)2 <t < 37;/4
However, in (b)—(d) cases, the CIR is estimated in each 1 31,
recursion accompanied by PSP, which estimates different CIR | W( — T) +0.01, 37;/4<t<Ty

for each survivor path in the trellis diagram. Meanwhile,
the convergence speed of the algorithm in Model “D” fowhere the period tim&’; = 288007". The linear change in
estimating the elements of unknowi and GG™* matrices fading rate corresponds to a linear change in vehicle speed.
depends on the fading rate. The length of data for convergihgthis situation, the modified RLS algorithm with forgetting

is about five frames, one frame, and less than one frame factor A = 0.999 is used in estimating thé" and GG™

faT = 0.001, 0.01, and 0.1, respectively. matrices. As Fig. 9 shows, the performance of (c) with known
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1 T . . T “C” or from (42), which was derived in [2], [3], [6], and [36],

ALS (b) o~ by maximizinglog p(yx|ax)
toot Unkn?(w?mchﬁ ((g; -+
- alma -3 -
Known ch. (@) -x- |y(l) - S(l)ll'lll—1|2

B0 = +1og(s(1)il|l_ls(1)” + NO)

(42)
For deterministic time-variant CIR similar to Model “B,” the
branch metric becomes

Bk) = [y(1) = s(Dhyp|*. (43)

1e-2 s()E_1s()™ + No

1e-3

1e-4

Probability of bit error

T TTTInr T TYI0mT - ¥ 1T rrmmm LA LI T-T T T e v
e
TBEYY AR A S R IT TEEE IS ST TS T 11 (TR e R T ITT!

15 Simulation results (which have not been shown) for flat

and selective fading do not show a significant difference in
1ot ) , [ ) performance between computing branch metrics from (30) and
o

N
[5,]

(42). Also, for flat and selective fading witf,7" = 0.01 and
0.001, difference in performance between computing branch
Fig. 8. BER performance for selective fading with T = 0.001 and metrics from (43) and (30) or (42) is negligible; however,
e ESinaon of Socste. O v nown s w12 fading wit (4T = 0.1, this dlference is around 8%
Eagl(r)rr\;n filltering. (d) Stochastic CIR with unknown paramepters. gnd the branch metric computed _from (42) achieves better

performance than the branch metric computed from (43) (not
shown in Fig. 3). For selective fast fading,{" = 0.1), the
performance of the receiver that computes the branch metrics
from (43) is shown as curve (e) in Fig. 6.

These results show that when the variance of estimation
error is small, computing the branch metrics from (43) is
sufficient. Moreover, in this situation, by doing detection
before estimation in the GMLSDE, whefq”_l is replaced
by Bl” in (43), the complexity of estimation is decreased since
the estimation procedure needs to compute aflybranches
instead ofgltt.

5 10 15 20
SNR (dB)

RLS (

Unknown ch. (

N Kalman (
L Known ch. {

T7 T T TTTIT
A1 11

te-1

T T T T YTT

— L 1t

1e-2

Probability of bit error

T T T T

L

V. CONCLUSIONS

. . , ‘ In this paper, we derived GMLSDE that generated cou-

le-3 5 10 15 20 o5  pled estimation and detection procedures based on the EM
SNR (dB) algorithm. In each recursion, estimation and detection were

Fig. 9. BER performance of flat fading for linear changing in the normalizédON€ alternately in order to increase the likelihood function.
fading rate betweerf4I = 0.1 and 0.01 for DQPSK signaling. (a) CIR The PSP and PBP methods appear naturally in GMLSDE.
is known. (b) Estimation of CIR using RLS algorithm. (c) Estimation oyzx/hen the detection part is done before the estimation part
stochastic CIR with known parameters using Kalman filtering. (d) Stochastic
CIR with unknown parameters. In GMLSDE, the PSP method comes up. However, when the
estimation part is done before the detection part, the PBP

"y . H method appears. Adaptive MLSDE algorithms were derived
I and GG™ and (d) with unknowns” and GG are close. j, the framework of GMLSDE in a unified way for some

However, the performance of (b) with the assumption Qf,nortant channel models. In association with the channel
unknown deterministic CIR is far from (c). Therefore, thenodel and the level of knowledge available at the receiver,
maximum fading rate dominates the performance when g adaptive MLSDE contains all or some of the steps of the
fading rate is time-variant. Meanwhile, in very slow flaigmLSDE in the estimation and detection parts. The detection
fading channels, the performance of the differentially cohereﬁl&rt of adaptive MLSDE algorithms is implemented by the
detection methods, which are very low in complexity, is closgiterbi algorithm through the trellis structure. Titterington’s
to MLSD receiver with known CIR (Model “A”) [2], [4], [39]. approach, stochastic approximation, was used to implement
However, for selective fading and fast flat fading channels, tige estimation part of the adaptive MLSDE. Although Titter-
performance of the differentially coherent detection methO(iﬁgton’s approach is generally an approximate method based
is very poor [2], [4], [40]. on a Taylor series expansion, when the third and higher order
When the CIR is modeled as a random process (Modslements of Taylor series are zero (as was true for the models
“C") or time-variant deterministic process (Model “B”), theconsidered), it is exact.
estimation part can be done through a Kalman-type algorithm.Adaptive MLSDE algorithm, although not achieving the
However, the branch metrics are computed in a differemtaximum likelihood but increasing the likelihood function in
manner. For a CIR modeled as a Gaussian random processh recursion, was simulated for frequency flat and selec-
the branch metric is computed from (30) as shown in Mod#Ve fading channels with three different fading rates based
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on four channel model assumptions at the receiver. known3) E-step:
CIR, unknown deterministic CIR, and Gaussian CIR with

known and unknown statistical parameters. The comparison Q) mod2+1(*)
between the simulation results showed that the deterministic ) () (1) A(z)

unknown time-invariant CIR whose estimation leads to the _ E[log p(Cla 0)|a 0 } feven
RLS algorithm achieves a performance close to known CIR E[Iog p(C|a, P )| 0} g(l) 1} I odd.
in slow-fading channels. However, in fast or relatively fast (B.2)
fading channels, the deterministic unknown time-variant CIR, )
whose estimation can be done with Kalman filtering and RLS

algorithms for obtaining impulse response and the unknown4) M-step: Maximization step fof even is

constant parameters of channels, respectively, shows good ~(1+1) W A
performance. Only for fast selective fading channels, the 0 = arg maX{Ql(9| , 0 )} (B.3)
use of a Gaussian process model for CIR achieves better AL _ A
. : . . a =a (B.4)
performance. Meanwhile, by implementing the smoothing
method instead of the filtering method in many of above d forl odd it i
procedures, one can derive forward—-backward versions of the and for¢ odd 1t I1s
di timati d detecti Igorith 17], [29]. . N
corresponding estimation and detection algorithms [17], [19] A0+ _ are max{Q2 (a|a(l), 0(1))} (B.5)
~(l+1 ~(
APPENDIX A 0( _ 0() (B.6)
PROOF OF THEOREM 1
Without loss of generality, first we assume that 2. From }
the maximization steps @, and#- (10), we conclude
APPENDIX C
AGR YR ONES A A0 -
0,7, 0, [tUV) > (6, 0, |U® Al .
Q( L | )‘Q( | ) (A1) Defining 8, = [¢7, 9l _,,---,9¢]* where ¢, is the

Q(éilﬂ) ity |Ll<’)) >Q( (“rl) v |L{<l)). (A.2) unknovyn parameter vector at timenda; as the sequence of
transmitted symbols effecting(l), we have

The left-hand side of (A.1) is equal to the right-hand side of

(A.2). Therefore from (A.1) and (A.2), we have Ly, (5k|k—17 ék|k—1)
Q(L}(l+1)|zj[(l)) > Q(z](l) |1j[(l))_ (A.3) = Lk—1(5k71|k71, ékfllkfl) + Li(@rjk—1, Prjr—1)
(C.1)
Defining V(U[UD) = E[log p(DU, T)|t4DV, Z] and from o
Jensen’s inequality [14, Lemma 1], we can show whereLy(-) = log p(y(k)|-, y» —1). Similar to (19), we have
V(Zfl(l+1)|1fl(l)) < V(Zf{(l) |L?(l)). (A4) Lxp— (ék—1|k—17 ék—1|k—1) > Ly, (ék—1|k—27 ék—1|k—2)-
(C2)

Thus, from (6) and considering inequalities (A.3) and (A.4Also, similar to (C.1) we can get
it is easy to show

L(Zf{(l*l)) . L(Zf{(l)). A5 Ly 4 (5k—1|k—27 ék—llk—Q) =Ly o (5k—2|k—27 ék—Qlk—Q)

+L—1(@k1jk—2> Pr—1jk—2)-

By following the same procedure (A.1)—(A.4), one can achieve (C.3)

(A.5) fori > 2. o ) ) _ )
By substituting the right-hand side of (C.3) in (C.2) and using

(19) and (C.1) and also extending (C.2) and (C.3)fark—1,
APPENDIX B one can conclude
When 6(+1 is used instead of") as a given condition
in (13), one can relate (11)—(14) to the SAGE algorithm [28L (auk, oklk)

egs. (5)—(7)] as follows: N ~ N
For{=0,1--{ > Ly (ak—1|k—17 9k—1|k—1) + Li(@rjp—1, Prip—1)
1) Index setS’ in [28] is chosen as . N K )
> Ly > (ak—2|k—27 9k—2|k—2) + Z Li(ayi—1, @10-1)
gl — 0, [ even (B.1) I=k—1
Tl a, { odd. ' ~ k
>z Ly (50, 90) + ZLl(dlUfla ¢1|1—1)- (C.4)

2) Admissible hidden data is chosen &s$' = C for all . =1
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APPENDIX D

The first derivative ofQ» 1(¢,|.) with respect tof’ at
point ¢, = @op_y IS

0Q2 (‘P2|ék|k—17 91, klk—1 ¢2|k71)
"

By
(P2=(~p2\k71

k
] s
Ti—1,4k l[k—1%j—1,j—1|k

1

Rg\lk—l J
i (ﬁﬁ'm - f|lk—1i"j—1|k) }7

0<I<L (D.1)

Whereaé’—l,jlk = E[(hﬁ'—l - I‘j—1|k)H(hl(j) - N§_1|k)|3’k]-

The second derivative of)2, 1 (g,|.) with respect tof’ be-
comes

Q21 (Palakjk—1,01 k-1, Pop_1)
O2ft

(pz =(~p2\k—1 [1]

k
1 ~ . Y
7 Y1k T ik, 0SS L.
9l 1 J=1

(2]

(D.2)
(3]
In association with (D.1) and (D.2) and also using (21), the
recursion formula for estimating the row vectrbecomes 4]

k
G -1 al
fr =fp1 + Z o5 1 gk~ 2o -1 5]
Jj=1
6]
NH N,l ~l -~
+ 85k G — fe—1brj_ag)

(7]

-1

k
\- H
{0 S e e |
=1

0<I<L.

(8]
(D.3)

El
As (D.3) shows, the recursive estimation fif at each re-
cursion needs to calculate the inverse of a matrix. Using#
causal procedure (filtering approach) in (D.3) instead of a
noncausal procedure (smoothing) and assurbing, ;_,; < [
ﬁj_w;l}{_lu and after doing some manipulations, we get (36).
Meanwhile, it can be seen from (D.3) that the estimation ¢¥2]
f! is independent of the estimation &f .. The first and the
second derivatives af_x(g,|.) with respect tcR;l become [13]

0Q2, 1 (‘P2|5k|k—17 01, kjk—1 ¢2|k—1)

[14]
IR, By
=P [15]
- [16]
= |kRyp—1 — E(hi(j) — £'hy_1)(ha(4)
j=1 [17]
—f'hy_1) " yx (D.4) [18]

(p2:(~p2\k—l

1 Rgl|k:Rgl|k—l+
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Q2 k (‘P2|5k|k—17 01 rj—1, ¢2|k—1)

1
aQRgllk

Po=Ps1_

= kR . (D5)

using a filtering approach, assumin@j_lu <

By ity and X5 < i for 00 < <k oand
after some manipulations, it can be shown that

1 . w0 -
I (Rgllk—l - |N§e|k - fllk—lll’k—1|k|2)-
(D.6)
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