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Abstract—The theory of adaptive sequence detection incorpo-
rating estimation of channel and related parameters is studied in
the context of maximum-likelihood (ML) principles in a general
framework based on the expectation and maximization (EM)
algorithm. A generalized ML sequence detection and estimation
(GMLSDE) criterion is derived based on the EM approach, and
it is shown how the per-survivor processing and per-branch
processing methods emerge naturally from GMLSDE.

GMLSDE is developed into a real time detection/estimation
algorithm using the online EM algorithm with coupling between
estimation and detection. By utilizing Titterington’s stochastic ap-
proximation approach, different adaptive ML sequence detection
and estimation (MLSDE) algorithms are formulated in a unified
manner for different channel models and for different amounts
of channel knowledge available at the receiver. Computer simu-
lation results are presented for differentially encoded quadrature
phase-shift keying in frequency flat and selective fading channels,
and comparisons are made among the performances of the
various adaptive MLSDE algorithms derived earlier.

Index Terms—Adaptive detection and estimation, estimation
theory, expectation and maximization algorithm, fading channels,
maximum-likelihood detection, maximum-likelihood estimation,
sequence detection theory, statistical communication theory.

I. INTRODUCTION

T HE detection of a signal transmitted through a commu-
nication channel having memory and additive Gaussian

noise has been widely studied for different channel mod-
els. Equalization techniques have been used in communi-
cation systems to combat the intersymbol interference (ISI)
induced by dispersive channels. When the transmitted data
sequences are equiprobable, maximum-likelihood sequence
detection (MLSD) minimizes sequence-error probability and
can, hence, be considered as an optimal equalization method.
MLSD, implemented using the Viterbi algorithm for known
finite channel-impulse response (CIR), is well known [1].
The MLSD algorithm has also been studied for a mobile
communication channel that disperses the transmitted signal in
both time and frequency domains and whose impulse response
is considered as a Gaussian random process [2]–[7].

Due to unknown CIR or unknown statistical parameters of
the CIR, joint data detection and channel estimation meth-
ods were proposed by combining Viterbi algorithm for data
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detection with adaptive methods, such as least mean square,
recursive least squares (RLS), and Kalman filtering for esti-
mating the CIR [3], [8]–[10]. However, the inherent decision
delay in such procedures causes poor channel tracking in a
time-variant environment. The idea of per-survivor processing
(PSP) was proposed to combat the decision delay problem,
where each survivor path of the trellis diagram in the MLSD
structure has its own CIR estimation [11]–[13]. Although
PSP is a practical way to achieve better performance in a
time-variant channel, the nature and degree of optimality of
such PSP-based channel estimation procedures, the influence
of such estimates on the optimality of the MLSD criterion,
and the coupling between estimation, detection, and channel
models are not clear.

In this paper, the maximum-likelihood sequence detec-
tion and estimation (MLSDE) algorithm is considered in
a general framework based on maximum-likelihood (ML)
detection/estimation theory. To detect the transmitted signal,
the receiver usually needs to know some other parameters. We
show that the MLSDE criterion for detecting the data sequence
and estimating the unknown parameters can be achieved by the
expectation and maximization (EM) algorithm, which is an
iterative method. The EM algorithm increases the likelihood
of the detected/estimated parameters in each iteration with
expectation and maximization steps until it achieves the global
or a local maximum [14], [15].

Generalized MLSDE (GMLSDE) is presented as an EM-
based algorithm, which alternates between detection and es-
timation and still satisfies the MLSDE criterion. GMLSDE
is implemented based on the online EM algorithm for real
time detection/estimation where in each recursion, the al-
gorithm increases the likelihood function. It is shown that
the concept of PSP and per-branch processing (PBP), which
estimates a separate CIR for each branch in the trellis dia-
gram, emerge naturally from the EM aspect of the GMLSDE
algorithm as an integral part of a likelihood-increasing pro-
cedure when the previously detected/estimated parameters are
used as given conditions for the next expectation step. Some
adaptive MLSDE receivers are derived based on the GMLSDE
framework in a unified way for different levels of knowledge
that are available at the receiver. The recursive estimation
proposed by Titterington [16] is employed for the estimation of
time-variant/invariant unknown deterministic parameters. Each
adaptive receiver uses those steps of detection and estimation
of GMLSDE generated by the selected channel model. Al-
though two new adaptive MLSDE receivers along with some
previously known ones are derived as examples, the power
of GMLSDE is not limited to these particular algorithms, and
one can use the unified framework of GMLSDE to develop
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new algorithms based on different channel models and levels
of knowledge available at the receiver.

Even though the concept behind the EM algorithm was
known in early statistical literature [17], [18], it was the later
seminal paper by Dempsteret al. [14] that spurred much
research on many applications of the EM algorithm including
communication-related ones [15]. Kalehet al. [19] derived
the iterative method for joint channel parameter estimation
and symbol detection using an EM-based forward–backward
algorithm. Georghiades and Han [20] used the EM algorithm to
study sequence estimation in random-phase and fading chan-
nels. We may point to [21]–[23] for some other applications
of the EM algorithm in communication systems.

This paper is organized as follows: GMLSDE is developed
via the EM algorithm and the relation to PSP and PBP is
explained in Section II. Different adaptive MLSDE algorithms
associated with different levels of channel knowledge avail-
able at the receiver are derived in Section III. Section IV
contains computer simulations, results, and comparisons for a
differentially encoded quadrature phase-shift keying (DQPSK)
modulation scheme in flat and selective fading channels with
different fading rates. The results of simulations with time-
variant fading rate for a flat fading channel with different
levels of channel knowledge are also presented in Section IV.
Section V presents some conclusions.

II. GENERALIZED MLSDE ALGORITHM

The main goal in digital communication systems is to detect
the sequence of the transmitted symbols
by observing the received signal ,
where denotes the transpose of. The optimal receiver
maximizes the joint probability density function (pdf) ofand

for detecting . When all the sequencesare equiprobable,
the optimal sequence receiver accomplishes MLSD with the
criterion given by

(1)

where is selected from , a set of all its possibilities .
The detected sequenceis

(2)

The received signal is a function of the transmitted symbols,
media parameters such as channel parameters, and additive
noise

(3)

When the channel is modeled as a linear system, is a
linear function and its arguments areand CIR. To detect
the sequence by observing , the receiver should know the
function , the pdf of , and the CIR (if it is deterministic)
or the pdf of CIR (if it is a random variable/process).

The structure of the MLSD receiver will be different for
different channel models. The linear function is usu-
ally modeled as having finite memory (e.g., a finite impulse
response system model for channels with ISI or multipath
fading). Also, it is very common to model the additive noise

as a stationary white complex zero-mean circularly sym-
metric Gaussian random process with autocorrelation function

. The CIR or its parameters (usually unknown
to the receiver) should be estimated during the detection
procedure.

The MLSD criterion (1) is suitable when the symbolsare
the only parameters that are unknown and the received signaly
provides complete information necessary for such a detection
procedure. However, in general, other parameters that can be
modeled as a set of unknown deterministic parameters, random
variables/processes, or both are also needed to complete the
detection procedure. In detection theory, such problems are
termed as composite hypothesis testing or detection with
unwanted parameters [24].

If we define as the needed unknown deterministic pa-
rameters that should be estimated, the criterion of MLSDE
becomes

(4)

Since sometimes does not provide the complete information
necessary to obtain the ML estimates of the parameters

from (4) directly, we present the solution to (4) using
the EM algorithm [14]. By considering as incomplete
data and as the random variables or processes needed
to complete for detecting/estimating , the log-likelihood
function is given by

(5)

where is the complete data. On taking the
conditional expectation of both sides of (5) with respect to

given and a parameter set (the estimation of at th
iteration or initial estimate of ), we have

(6)

Following [14], one can show that where

(7)

and

(8)

The above iteration, (7) and (8), is repeated until the stationary
estimation of is achieved. In other words, the previous
estimation of is used as the given condition for estimating
based on (7) and (8) until atth iteration, .
Hence, if has only one maximum point, we have

(9)

Otherwise, is a local maximum point. Thus, the MLSDE
criterion can be achieved iteratively by following the EM
algorithm.

The EM algorithm has two steps: 1) expectation (7) and 2)
maximization (8). The first step (7) is to take the expectation
of the log-likelihood function of the complete data given the
current detected/estimated parameters and the incomplete
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(observed) data. The second step (8) provides a new estimate
of the parameters by maximizing the expectation of
the log-likelihood function (computed in the first step) over
the unknown parameters. The EM algorithm repeats the
expectation and maximization steps iteratively in order to
increase the likelihood of the parameters [14], [15]. Therefore,
instead of calculating the ML detection/estimation of

directly from (4) in a closed form or in one iteration
that is very complex and impractical especially for a high-
dimensional problem, the EM algorithm uses the iterative
method that increases the likelihood of detected/estimated
parameters in each iteration until it achieves the MLSDE
criterion (4).

When the unknown parameter setcontains different types
of unknown variables/vectors (i.e., in our problemand
are discrete and continuous, respectively), the maximization
step of the EM algorithm is a challenging job and often
intractable. In order for the maximization step to become
tractable, we partition the set of unknown parameters into
disjoint sets and find the maximum of each partitioned set
separately. Therefore, in this method, each iteration contains
more than one expectation and maximization step. In the
following theorem, we show how this GMLSDE procedure
increases the likelihood at each iteration using the framework
of the EM algorithm.

Theorem 1: Let the unknown parameter set be divided
into separate sets .
where the estimation of at th iteration

is estimated from the following
steps using the EM algorithm:

...

(10)

Proof: See Appendix A. Iteration between some maxi-
mization steps is similar to the Gauss–Seidel method [25] and
is also called the cyclic coordinate ascent method [26]. Meng
and Rubin [27] proposed a similar model reduction to achieve
simple conditional maximization and called it expectation-
conditional maximization.

By following Theorem 1 and noting that is a vector of
discrete parameters, GMLSDE (10) satisfies the ML criterion1

by dividing into and and estimation of (continuous
unknown parameter set) and detection of(discrete unknown
parameter set) are alternated. The estimation and detection
steps at the th iteration for the GMLSDE are:2

1Similar to the EM algorithm, GMLSDE may only achieve a local
maximum point ifLLL(U) has many maxima.

2In general, dividing the parameter set into two separate sets (see Theorem
1) does not guarantee achieving ML criterion; however, sincea is discrete
and the detection part considers all the possibilities ofa, the algorithm is
guaranteed to achieve ML criterion when there are no local maxima.

1) Estimation part

a) 1-E step

(11)

b) 2-M step

(12)

2) Detection part

a) 3-E step

(13)

b) 4-M step3

(14)

Dividing the parameters as discrete and continuous de-
creases the dimension of the parameter space and usually
increases the convergence of the algorithm [29]. Also, it
allows us to use different methods in the maximizing step for
discrete and continuous parameters. GMLSDE shows a natural
coupling between estimation and detection, which should
allow us to get some insight about the influence of either one
on the other. This has not been possible with earlier approaches
to the combined detection/estimation problem, since channel
estimation has been traditionally uncoupled from the detection
problem when developing the detection algorithm.

The proposed GMLSDE algorithm (11)–(14) has been de-
veloped using the entire received signal, or in other words,
the EM algorithm is offline. Since the main purpose of an
adaptive algorithm is to detect the sequentially emittedin
real time, we are interested in an online (recursive) version of
the EM algorithm. By defining and as the complete data
and the incomplete data available up to time, respectively,
the steps of GMLSDE algorithm at time using the online
scheme for estimating and detecting are given as:

1) Estimation part

a) 1-E step

(15)

b) 2-M step

(16)

3The relationship between (11)–(14) and the space-alternating generalized

EM (SAGE) algorithm [28] is shown in Appendix B when̂���
(l+1)

is used in-

stead of̂���
(l)

as a given condition for computing the expectation in (13).
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2) Detection part

a) 3-E step

(17)

b) 4-M step

(18)

where is the parameter set up to time. Also,
and are the detected values of and the estimates of

based on the received data up to time, respectively.
Similar to Theorem 1, since

and
, one can show that

(19)

where is the log-likelihood function
based on the received signal up to time.4 Therefore, the
likelihood function is increased at each recursion5 (increasing
time). Appendix C shows the relation between log-likelihood
function at time and previous log-likelihood functions.
Meanwhile, the time-update vector is given by

where , and is ob-
tained generally from the dynamic evolution of the
process

(20)

The elements of the transmitted symbols are
selected from a finite set [i.e., in quadrature
phase-shift keying (QPSK)] and generally (assuming no cod-
ing), the symbols are independent of each other. In other words
[unlike (20)], there is no dynamic relation between the present
symbol and the previous symbols. Therefore, the time-update

is defined by

where is selected from all the possibilities of the alphabet
set (i.e., in QPSK). Meanwhile, in general, the
estimation part of GMLSDE may contain more than one step
of expectation and maximization. Based on Theorem 1, the
unknown parameter set may be divided into different sets

4We will show in Section III that the maximization step of the online EM
algorithm becomes more tractable in some special cases such as Gaussian
model.

5In general, each recursion (15)–(18) can be implemented with some
iterations (11)–(14). In this case,f~akjk�1;

~���kjk�1g is the set of initial
values for the first iteration at timek and f~akjk; ~���kjkg, which is the
detection/estimation of the unknown parameter set at recursionk (or the result
of the first iteration at timek), and is the initial value for the second iteration
at timek. This procedure is able to increase the likelihood.

and each set will have its own expectation and maximization
steps. This idea is very useful in increasing the convergence
of the algorithm especially when the complete data is different
for each separate set [28]. Meanwhile, from the viewpoint of
increasing the likelihood, estimation and detection can be done
in a different order in GMLSDE. However, in order to decrease
the complexity or due to some other practical issues, it may be
that one order (i.e., estimation after detection) is preferable to
the other order. Doing the estimation part before the detection
part needs to estimate at time for all possibilities of

, since is a given condition
in the estimation part at time. In other words, is estimated
for all the branch metrics in the trellis diagram. This method
is called per-branch processing (PBP) [30] which estimates
different channel parameters for each branch metric. However,
when the detection part is done before the estimation part,
since is a given condition in the estimation part, channel
parameter set is estimated for all at time where
indicates all survivor paths up to time. In other words,
is estimated only for survivor paths, and this method is called
per-survivor processing (PSP) [11].

As the estimation and detection parts of GMLSDE (15)–(18)
show, the idea of using the previous decisions and estimates
as tools for detecting and estimating the future arises naturally
in implementing MLSDE based on the EM algorithm. The
decision-based receiver was used in [31] for an ISI channel
with infinite impulse response. Later, it was proposed in many
such joint detection and estimation methods and is generally
known as PSP [11]. The PSP was originally proposed as a
practical way to implement joint detection and estimation;
however, in GMLSDE due to the inherent coupling between
the estimation and detection parts, the temporary decision
of the data at time is a given condition in the
estimation part when the detection part is done before the
estimation part. Therefore, the PSP (estimating different CIR
or other channel parameters for different survivor paths)
comes up naturally as an integral part of the EM-based ML
detection/estimation procedure. Also, when the estimation part
is done before the detection part in the GMLSDE, is a
given condition in the estimation part at time. Since
is the temporary decision of the data for all branch metrics,
the PBP (estimating different channel parameters for all branch
metrics) also appears naturally from the GMLSDE procedure.
Thus, one can say that the EM algorithm provides a solid
theoretical foundation for using PSP and PBP in ML-based
receivers due to the inherent embedding of decision feedback
in the EM approach. Meanwhile, if all survivor paths at time
have the same root in the trellis diagram at time , since
there is only one detected sequence , there will be only
one estimation for at time , . If we assume that

, the detection/estimation procedure leads to
the MLSDE receiver that was proposed by Qureshi [8] before
the idea of PSP emerged in the research literature.

The convergence of the EM algorithm is inversely related
to the dimension of its complete data space. Less necessary
and less informative complete data improves the asymptotic
convergence rate. The online EM algorithm deals with un-
known parameters and complete data only up to the process
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Fig. 1. A discrete model of the communication system for a linear channel, where" M represents up-sampling by a factorM .

time, and their dimensions increase linearly with time, thus
causing faster convergence. This idea is similar to the SAGE
method, which achieves faster convergence by partitioning the
parameters and the complete data [28]. In the online EM
algorithm, the parameters and complete data are naturally
partitioned through time. Meanwhile, due to the parameter
space-time coupling, the online EM algorithm is a recursive
algorithm (each recursion can generally be done by more than
one iteration [32]), whereas the offline EM algorithm is only
an iterative algorithm in general.

The estimation part in the online EM algorithm can be
approximately implemented by a recursive formula based on
Titterington’s approach [16]. Using a stochastic approximation
in order to consider only three elements of a Taylor series
expansion of (15) at point , one
can show (16) becomes

for all (21)

where and denotes conjugate
of . If is an vector, and
are vectors, and also is
a matrix. It should be noted that when the
third and higher derivatives of are zero, as is usually
true for the Gaussian case, the recursive formula (21) is exact.

The detection part, due to the finite alphabet of the trans-
mitted symbols, can be implemented with a dynamic program-
ming (Viterbi) algorithm. The expectation step in the detection
part (17) is obtained for all possibilities of at
time . When is selected from a -ary signaling scheme,
there are possible estimates for and in each
estimated .6 When the
length of the channel memory is , based on the trellis
structure, the number of detection/estimation of is and

the number of the possibilities of is [e.g.,

for ]. Therefore, each is maximized
over values of . To be more precise, each
should correspond with each hypothesis of, the sequence

6In PBP method, there areq possible estimates for channel parameters���k
for each state. However, since the detection is done before the estimation in
PSP, there is only one estimate for each state, and the estimation of���k is
computed only for survivor paths.

of transmitted symbols affecting . For easy presentation,
however, we avoid using the notation.

Meanwhile, although the EM algorithm is a method to
achieve ML criterion with expectation and maximization steps,
the algorithm does not tell us how to do these steps. We only
considered some very general implementation aspects of the
detection and estimation steps in this section. More details of
the GMLSDE implementation by adaptive algorithms will be
explored in the next section based on different channel models.

III. A DAPTIVE MLSDE BASED ON CHANNEL MODELS

The GMLSDE algorithm in Section II was derived in a
general framework without specifying any channel model. In
this section, we show how some adaptive MLSD/MLSDE
algorithms developed previously in the literature, along with
some new adaptive MLSDE algorithms, can be derived from
the GMLSDE. The main goal of this section is to show the
power of the proposed GMLSDE algorithm in deriving joint
detection and estimation algorithms in a unified way based on
the different channel models and available channel knowledge.

We consider three different model categories for a linear
channel:

1) known CIR;
2) unknown deterministic CIR (time-invariant/variant);
3) stochastic CIR (random vector/process)

known statistical parameters
unknown statistical parameters.

In all above models, the additive noise in (3) is
considered as a circularly symmetric zero-mean white complex
Gaussian random process whose variance is. The main
step for developing an adaptive MLSDE algorithm is to
define , , and in association with the channel model.
Based on the definitions of these parameters, the procedure
to implement adaptive MLSDE may contain only a detection
part, an estimation part, or both. Also, it may need to do
only the maximization step in the detection/estimation part.
We focus on the statistical CIR model, which is suitable for
mobile communications, and briefly mention known CIR and
unknown deterministic CIR models whose MLSD/MLSDE
algorithms are well known in the literature. Meanwhile, in
order to reduce the complexity and implement the algorithm
in a causal manner (as we explain later), adaptive MLSDE
may not achieve the maximum likelihood, but increases the
likelihood function in each recursion.

A discrete model of the communication system for a linear
channel is shown in Fig. 1. is the set of the
transmitted symbols and is upsampling of by a factor

, where is the symbol period and is the
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sample period.7 The received signal is

(22)

where the duration of with respect to is .
is the output of the transmitter filter with impulse response

, is additive noise, , and
.

Model A—Known CIR:The MLSD receiver for known
CIR was derived by Forney [1]. From the GMLSDE point
of view, the complete data is available in the receiver or

, and there is no unknown
parameter set. Therefore, only the maximization step of the
detection part (18) is needed, and it can be done recursively
by the Viterbi algorithm [1].

Model B—Unknown Deterministic CIR:It is common to
consider the CIR as a vector of time-variant/invariant de-
terministic parameters in channels with ISI. In this model
for a time-invariant CIR, the vector of unknown continuous
parameters is defined as , and at
time , the complete and incomplete data are equal to

. Thus, only the maximization steps of estimation and
detection parts (16), (18) are needed in this model. It can be
shown that (16) leads to the RLS algorithm by using (21) [32],
[33]. If is the estimation of CIR at time, (18) becomes

for all (23)

Using the new estimation of at time , in order to
detect from (23) is a very complex and
noncausal process. In order to avoid complexity, a causal
detection procedure8 is considered. Therefore, instead of ,

is used in calculating for in
(23). Thus, (23) becomes

(24)

Since maximizes , (24) can
be implemented in a recursive manner using the Viterbi algo-
rithm. It should be noted that the causal detection procedure
does not guarantee achieving the maximum of the likelihood
function (global or local); however, it guarantees to increase
the likelihood function in each recursion.9 Meanwhile, the
estimation and detection procedures show how the idea of
PSP [11] emerges from the GMLSDE algorithm as a recursive
approach to increase the likelihood function.

7WhenJ > 1, each recursion in the detection part needsJ recursions in
the estimation part.

8Detecting ak from y(l) for l � k is defined as a causal detecting
procedure.

9From Appendix C, it is easy to show thatLl(~hhhjl) � Ll(~hhhjl�1).

For a time-variant deterministic CIR, the estimation part
leads to a Kalman-type algorithm [32] where the causal detec-
tion procedure needs only a causal estimation procedure.10

Model C—Stochastic CIR with Known Parameters:The
CIR is often modeled as a random vector or random process
in a mobile environment. For example, Rayleigh multipath
fading, whose impulse response is considered as a complex
Gaussian random vector (for very slow fading) or process
(for fast fading), is a very common model in mobile com-
munication systems. In Model “C,” we focus on the random
process CIR. The received signal is obtained from (22) with

being considered a Gaussian random process
for . By defining

, the received signal and the
dynamic changing of the CIR represented by the state-space
formulation is given by

(25)

(26)

where , is an zero
row vector, is a zero-mean
white complex stationary Gaussian vector process which is
independent of and its autocorrelation matrix is

, where is an identity
matrix. and matrices are defined by

...

...
(27)

where is an zero matrix.
In this channel model, the complete data and the incom-

plete data at time are and ,
respectively, where . It is easy to show
that the unknown continuous parameters at timeis

where .
Meanwhile, it can be shown that the estimation of

is necessary to estimate [32], [34]. In this
model, all the steps in detecting and estimating parts are
necessary. The expectation step of detection part (17) becomes

(28)

10Estimatingh(k) = [hhh(k)T ; � � � ; hhh(k�M+1)T ]T from y(l) for l � k

is defined as a causal estimation procedure.



ZAMIRI-JAFARIAN AND PASUPATHY: ADAPTIVE MLSDE 1187

Due to the noncausal estimation of for
, detecting from (28) is very complex. Considering

causal estimation of and
cov , the detecting procedure at timebecomes

(29)

such that the branch metric is given by

(30)

where ,
, and cov . By using the Viterbi algo-

rithm, (29) can be implemented in a recursive manner where
is the branch metric of the trellis diagram at time.

It can be shown that causal estimation leads the estimating
part of Model “C” to the Kalman algorithm by using (21),
where and are updated for all possibilities of

using the recursions given by [32], [35]

(31)

(32)

where

(33)

Meanwhile, it is straightforward to compute from
using (26).

The branch metric measure derived in (30) is different from
the branch metric measure proposed in [2], [3], [6], and [36].
Although the same state-space model was chosen in the above
references, the last term in (30) is extra in comparison with
the branch metric proposed in [2], [3], [6], and [36], which
maximizes the logarithm of the pdf of at time to compute
the branch metrics. In GMLSDE using Model “C,” however,
the expectation of the logarithm of the joint pdf of and

over is maximized. Thus, the last term in (30) can be
interpreted as the contribution of the error in estimating
given to the branch metric at time. Meanwhile, since

, if is replaced with (using PSP
method instead of PBP method), the last term of (30) vanishes
in computing the branch metric.

Model D—Stochastic CIR with Unknown Parameters:In
the estimation part of Model “C,” it was assumed that
and matrices were known in updating (31) and (32).
Generally, these matrices are also unknown and should be
estimated from the received signal. In Model “D,” we divide
the unknown parameters into two separate sets

and at time
where . The complete and incomplete data at

time are and , respectively. Since
there are two separate unknown continuous parameter sets, the
estimation part contains four steps where, based on Theorem
1, is estimated in the first two steps of expectation
and maximization. In the second two steps, is
estimated. The detection part and estimation part of
in this model are similar to those of Model “C” based on the
estimation of parameters.

It is more convenient to estimate based on an
autoregressive moving average (ARMA) model of

. Also, without loss of generality and only for easier
presentation, we assume is a diagonal matrix diag

. The ARMA model of is

(34)

where is the th row of matrix. By defining
where for

, the E-step of estimating at time is given by

(35)

Taking the first and the second derivatives of
with respect to and and using (21) along with a
causal estimation procedure with some approximations and
manipulations (see Appendix D), the estimation ofand
at time becomes

(36)

(37)

where , and is given
by

(38)

and , computed from (36) and (37), are used to find
and from (31) and (32) at time in the

framework of GMLSDE. Meanwhile, as can be seen in (36),
the estimation procedure of is similar to the RLS algorithm.

Hart and Taylor have recently proposed a method to estimate
the unknown statistical parameters of fading channels [6].
The method in [6] estimates the mean vector and autoco-
variance matrix of CIR based on computing the mean and
autocovariance of the received signal; however, it is complex
and nonrecursive [37]. The method proposed in Model “D”
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Fig. 2. The baseband-tapped delay line model of the multipath fading channel.

estimates the unknown parameters based on increasing the
likelihood function in a recursive manner.

IV. COMPUTER SIMULATIONS AND COMPARISONS

Computer simulations have been done for different channel
models to evaluate the performances of the adaptive MLSDE
algorithms. The channel model is selected as flat fading and
frequency-selective fading with three fading rates

and . The autocorrelation function of the CIR
is modeled as

(39)

where is the zeroth-order Bessel function, and is the
maximum Doppler frequency. The delay rate in (39) was
chosen as , , and in (39) for flat fading
and selective fading channels, respectively (i.e., the channel
was simulated with three paths in the selective channel) (see
Fig. 2). The impulse response of the transmitter filter is a
raised-cosine pulse

(40)

where the symbol duration and ,
where . The DQPSK modulation

scheme was chosen; therefore, the number of states in the
trellis diagram is 4 and 16 for flat fading and selective
fading channels, respectively. The Bessel fading filter for
omnidirectional antenna is approximated by an all-pole third-
order filter [38]; therefore, the in (27) becomes 33 and
9 9 matrices in flat fading and selective fading channels,
respectively. The data sequence is divided into a sequence
of frames of length , where the overhead of each frame
known by the receiver is two and four symbols for flat and
selective fading, respectively. The length of each frame was
chosen as data.

The bit-error rate (BER) performance of the adaptive
MLSDE algorithm based on the online EM algorithm is
considered for different levels of channel knowledge available
at the receiver. Although the impulse response of the fading
channel was simulated as a stochastic random process, we
consider four levels of available channel knowledge at the
receiver: a) known CIR; b) unknown deterministic CIR; c)

Fig. 3. BER performance for flat fading withfdT = 0:1 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
Estimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters.

stochastic CIR with known channel parametersand
matrices; and d) stochastic CIR with unknownand
matrices.

Figs. 3–5 show the error performances of the adaptive
MLSDE in the flat fading channel for
and respectively. Also, the performances of the adap-
tive MLSDE for the selective fading channel are shown in
Figs. 6–8 for and respectively.

In these figures, the simulation results in curves (a)–(d)
correspond to Models “A,” “B,” “C,” and “D” in Section III,
respectively. Curves (a) show the performance of the receiver
when the CIR is known. Curves (b) show how the receiver
performs when it assumes a deterministic CIR and estimates
it by the modified RLS algorithm with a proper forgetting
factor for different fading rates (in order to optimize the
RLS performance [35]). The performance of the receiver in
curves (c) are achieved based on the assumption of a stochastic
CIR, whose statistical parameters are estimated by Kalman
filtering, with known channel parametersand . Finally,
curves (d) indicate the receiver performance with a stochastic
model for CIR and unknown channel parametersand ,
where both Kalman and RLS algorithms are used in the
estimation part.

As can be seen, the performances of the receiver in (b) is
close to the performance of (c) only for slow flat fading and
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Fig. 4. BER performance for flat fading withfdT = 0:01 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
Estimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters.

Fig. 5. BER performance for flat fading withfdT = 0:001 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
Estimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters.

very slow selective channels. By increasing the fading rate, the
difference in performance between (b) and (c) increases due
to an insufficient number of degrees of freedom in the RLS
updating equation to track the dynamic channel changes.

Meanwhile, the performances of (c) and (d) are close for
and . It should be mentioned

that in order to limit the complexity of the algorithm and
time of simulations in (d), the and matrices were
updated in each frame of data instead of each recursion.
However, in (b)–(d) cases, the CIR is estimated in each
recursion accompanied by PSP, which estimates different CIR
for each survivor path in the trellis diagram. Meanwhile,
the convergence speed of the algorithm in Model “D” for
estimating the elements of unknown and matrices
depends on the fading rate. The length of data for converging
is about five frames, one frame, and less than one frame for

and , respectively.

Fig. 6. BER performance for selective fading withfdT = 0:1 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
Estimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters. (e) Assuming time-variant
deterministic CIR and estimating CIR with a Kalman-type algorithm.

Fig. 7. BER performance for selective fading withfdT = 0:01 and DQPSK
signaling. (a) CIR is known. (b) Estimation of CIR using RLS algorithm. (c)
estimation of stochastic CIR with known parameters using Kalman filtering.
(d) Stochastic CIR with unknown parameters.

Fig. 9 shows the BER’s of a flat fading channel for cases
(a)–(d) when the fading rate is changing periodically between

and . One period of is

(41)

where the period time . The linear change in
fading rate corresponds to a linear change in vehicle speed.
In this situation, the modified RLS algorithm with forgetting
factor is used in estimating the and
matrices. As Fig. 9 shows, the performance of (c) with known
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Fig. 8. BER performance for selective fading withfdT = 0:001 and
DQPSK signaling. (a) CIR is known. (b) Estimation of CIR using RLS
algorithm. (c) Estimation of stochastic CIR with known parameters using
Kalman filtering. (d) Stochastic CIR with unknown parameters.

Fig. 9. BER performance of flat fading for linear changing in the normalized
fading rate betweenfdT = 0:1 and 0:01 for DQPSK signaling. (a) CIR
is known. (b) Estimation of CIR using RLS algorithm. (c) Estimation of
stochastic CIR with known parameters using Kalman filtering. (d) Stochastic
CIR with unknown parameters.

and and (d) with unknown and are close.
However, the performance of (b) with the assumption of
unknown deterministic CIR is far from (c). Therefore, the
maximum fading rate dominates the performance when the
fading rate is time-variant. Meanwhile, in very slow flat
fading channels, the performance of the differentially coherent
detection methods, which are very low in complexity, is close
to MLSD receiver with known CIR (Model “A”) [2], [4], [39].
However, for selective fading and fast flat fading channels, the
performance of the differentially coherent detection methods
is very poor [2], [4], [40].

When the CIR is modeled as a random process (Model
“C”) or time-variant deterministic process (Model “B”), the
estimation part can be done through a Kalman-type algorithm.
However, the branch metrics are computed in a different
manner. For a CIR modeled as a Gaussian random process,
the branch metric is computed from (30) as shown in Model

“C” or from (42), which was derived in [2], [3], [6], and [36],
by maximizing

(42)
For deterministic time-variant CIR similar to Model “B,” the
branch metric becomes

(43)

Simulation results (which have not been shown) for flat
and selective fading do not show a significant difference in
performance between computing branch metrics from (30) and
(42). Also, for flat and selective fading with and

, difference in performance between computing branch
metrics from (43) and (30) or (42) is negligible; however,
for flat fading with , this difference is around 5%
and the branch metric computed from (42) achieves better
performance than the branch metric computed from (43) (not
shown in Fig. 3). For selective fast fading ( ), the
performance of the receiver that computes the branch metrics
from (43) is shown as curve (e) in Fig. 6.

These results show that when the variance of estimation
error is small, computing the branch metrics from (43) is
sufficient. Moreover, in this situation, by doing detection
before estimation in the GMLSDE, where is replaced
by in (43), the complexity of estimation is decreased since
the estimation procedure needs to compute onlybranches
instead of .

V. CONCLUSIONS

In this paper, we derived GMLSDE that generated cou-
pled estimation and detection procedures based on the EM
algorithm. In each recursion, estimation and detection were
done alternately in order to increase the likelihood function.
The PSP and PBP methods appear naturally in GMLSDE.
When the detection part is done before the estimation part
in GMLSDE, the PSP method comes up. However, when the
estimation part is done before the detection part, the PBP
method appears. Adaptive MLSDE algorithms were derived
in the framework of GMLSDE in a unified way for some
important channel models. In association with the channel
model and the level of knowledge available at the receiver,
the adaptive MLSDE contains all or some of the steps of the
GMLSDE in the estimation and detection parts. The detection
part of adaptive MLSDE algorithms is implemented by the
Viterbi algorithm through the trellis structure. Titterington’s
approach, stochastic approximation, was used to implement
the estimation part of the adaptive MLSDE. Although Titter-
ington’s approach is generally an approximate method based
on a Taylor series expansion, when the third and higher order
elements of Taylor series are zero (as was true for the models
considered), it is exact.

Adaptive MLSDE algorithm, although not achieving the
maximum likelihood but increasing the likelihood function in
each recursion, was simulated for frequency flat and selec-
tive fading channels with three different fading rates based
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on four channel model assumptions at the receiver: known
CIR, unknown deterministic CIR, and Gaussian CIR with
known and unknown statistical parameters. The comparison
between the simulation results showed that the deterministic
unknown time-invariant CIR whose estimation leads to the
RLS algorithm achieves a performance close to known CIR
in slow-fading channels. However, in fast or relatively fast
fading channels, the deterministic unknown time-variant CIR,
whose estimation can be done with Kalman filtering and RLS
algorithms for obtaining impulse response and the unknown
constant parameters of channels, respectively, shows good
performance. Only for fast selective fading channels, the
use of a Gaussian process model for CIR achieves better
performance. Meanwhile, by implementing the smoothing
method instead of the filtering method in many of above
procedures, one can derive forward–backward versions of the
corresponding estimation and detection algorithms [17], [19].

APPENDIX A
PROOF OFTHEOREM 1

Without loss of generality, first we assume that . From
the maximization steps of and (10), we conclude

(A.1)

(A.2)

The left-hand side of (A.1) is equal to the right-hand side of
(A.2). Therefore from (A.1) and (A.2), we have

(A.3)

Defining and from
Jensen’s inequality [14, Lemma 1], we can show

(A.4)

Thus, from (6) and considering inequalities (A.3) and (A.4),
it is easy to show

(A.5)

By following the same procedure (A.1)–(A.4), one can achieve
(A.5) for .

APPENDIX B

When is used instead of as a given condition
in (13), one can relate (11)–(14) to the SAGE algorithm [28,
eqs. (5)–(7)] as follows:

For

1) Index set in [28] is chosen as

even
odd.

(B.1)

2) Admissible hidden data is chosen as for all .

3) E-step:

even

odd.

(B.2)

4) M-step: Maximization step for even is

(B.3)

(B.4)

and for odd it is

(B.5)

(B.6)

APPENDIX C

Defining where is the
unknown parameter vector at timeand as the sequence of
transmitted symbols effecting , we have

(C.1)

where . Similar to (19), we have

(C.2)
Also, similar to (C.1) we can get

(C.3)

By substituting the right-hand side of (C.3) in (C.2) and using
(19) and (C.1) and also extending (C.2) and (C.3) for ,
one can conclude

(C.4)
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APPENDIX D

The first derivative of with respect to at
point is

(D.1)

where .
The second derivative of with respect to be-
comes

(D.2)

In association with (D.1) and (D.2) and also using (21), the
recursion formula for estimating the row vectorbecomes

(D.3)

As (D.3) shows, the recursive estimation of at each re-
cursion needs to calculate the inverse of a matrix. Using a
causal procedure (filtering approach) in (D.3) instead of a
noncausal procedure (smoothing) and assuming

and after doing some manipulations, we get (36).
Meanwhile, it can be seen from (D.3) that the estimation of

is independent of the estimation of . The first and the
second derivatives of with respect to become

(D.4)

(D.5)

By using a filtering approach, assuming
and for and

after some manipulations, it can be shown that

(D.6)
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