کنترل عمل سازه با بیش بینی نوسان زمین به وسیله شبکه های عصبی در هنگام زلزله

محمد رضا یایی پژنده*، محمد رضا اکبر زاده توتونچی**، علی نیکدل*

* دانشکده مهندسی، گروه عمران، دانشگاه فردوسی مشهد
** دانشکده مهندسی، گروه قدر، دانشگاه فردوسی مشهد

akbazar@eece.unm.edu, nikdel456@yahoo.com

چکیده: هدف این مقاله کمیته کردن پاسخ سازه در برابر نوسان زمین با بهره‌گیری از ساختار کنترل حلقه باز

می‌باشد. در این گونه کنترل فقط یک شبکه عصبی بیش بینی استفاده شده و نه اندازه‌گیری از تغییرات زمین

مورد نیاز است. شبکه عصبی بر اساس چند شبکه نگاشت نسبی می‌یابد و توانایی دارد به‌کلی و در یک

گام جلو این بیش بینی کند. در راهان، کنترل یک سازه سه درجه آزادی با استفاده از شبکه عصبی بیش بینی فوق بر روی

شبکه نگاشت جدیدی آزمایش می‌شود. سپس نتایج آن با روش کنترل LQR مقایسه و شده‌می‌شود. نتایج

نشانگر بهتر بودن کنترل سازه با استفاده از شبکه عصبی بیش بینی می‌باشد.

کلمات کلیدی: کنترل سازه، شبکه عصبی، بیش بینی، زلزله، حلقه بز

پیش‌گفتار

در سال‌های اخیر پژوهش‌های کنترل عمل سازه به طور چشمگیری افزایش یافته است. به سختی، روش‌های زیادی

برای کنترل عمل سازه بیش‌بینی شده است. از میان روش‌های شیوه‌های مبتنی بر سدل مانند، کنترل بهینه، کنترل

تصادفی و کنترل ترکیبی را می‌توان نام برد. هر کدام از این روش‌ها دارای زیان‌های خود را دارایی می‌پاشند.

تئوری به تحلیل و یا تشخیص سیستم دارند که با انجام این کار با استفاده از یک کنترلر نوسان سازه را کنترل می‌کنند.

1. Optimal Control
2. Stochastic Control
3. Hybrid Control
در مقایل کنترل هوشمند، سعی در شناختی سیستم با وجود عدم قطعیت های موجود در آن را دارد. برای مثال، شبکه عصبی ابزار قدرتمندی برای تشخیص سیستم و کنترل می‌باشد. توانایی شبکه عصبی در شیب‌های سازی‌های حذف است که می‌تواند رفتار غیر خطي سازه‌های با شمار زیادی درجه آزادی را در بر گیرد. نوسان زمین، شبیه‌سازی کرده و یا حتی پیش‌بینی کننده‌ها. [5] 6

شبیه‌سازی براى گزارش سازه به صورت حلقه بسته با استفاده از شبکه عصبی در دست است. سازه ترین روش استفاده از سیستم عصبی در کنترل سازه، بهره‌جویی از یک شبکه عصبی معکوس همراه با یک کنترل خطي است. [3] در این روش تیروی کنترل کننده از مجموع خروجی کنترل و خروجی شبکه عصبی به دست می‌آید. روش دوم، سیستم کنترل شامل یک شبکه عصبی و تغییر می‌باشد. در این شیوه سعی می‌شود که با استفاده از یک شبکه عصبی، رفتار سازه به رفتار الگوی مرجع مشابه شود. روش سوم، که معمولاً ترین راه راه است، استفاده از شبکه عصبی در کنترل سازه می‌باشد. از دو شبکه عصبی صورت می‌گیرد. شبکه عصبی یکم که شبکه ساز نام دارد، رفتار سازه را پیش‌بینی می‌کند. شبکه عصبی دوم، که کنترل ساده‌تری می‌باشد، حالت تکامل یافته روش سوم می‌باشد. فقط از یک شبکه عصبی کنترل استفاده می‌کند و به جای پیش‌بینی از داده‌های الگو استفاده می‌کند. [2]

در این مقاله، از روشنگری و بیان ساده در زمینه شبیه‌سازی در جهت کنترل سازه استفاده می‌شود. در واقع، به‌جای استفاده از پیش‌بینی رفتار سازه با الگوی سازه برای کنترل از پیش‌بینی شتاب‌های زمین استفاده می‌شود. همچنین در شبیه‌سازی جدید، برای بدست‌آوردن نیروی کنترل کننده به خروجی سازه اختیار نیست. بنابراین، از روش استفاده از ساختار کنترل یک گره‌پیچی با یک خروجی پیدا می‌شود. پس برای سیستم کنترل، تنها از یک سیستم رفت استفاده شده است. در شبیه‌سازی، هدف پیش‌بینی شتاب‌های زمین در هر لحظه می‌باشد. سپس نیروی کنترل کننده را می‌توان از ضرب جرم هر طبقه در شتاب پیش‌بینی شده بدست آورد و با وارد کردن این نیرو می‌توان تغییر مکان سازه را به صفر نزدیک نمود.

1. Intelligent Control
2. Feed back
3. Feed forward
پیش بینی شتاب زمین

رفتار زمین در هنگام زمین لرزه بهطور کامل گیرختی و نامشخص است و نمی‌توان آن را با رابطه ساده‌ای مشخص کرد. از این رو، باید از توانایی شبکه‌های عصبی برای تشخیص و پیش بینی رفتار زمین استفاده کرد. برای انجام این کار، شبکه عصبی را طوری آموزش می‌دهند که بتواند مقدار تغییرات شتاب در گام بعدی را بر اساس تأخیر زمانی در نظر گرفته را پیش بینی کند. از جمع مقدار تغییرات شتاب پیش بینی شده برای گام بعدی و مقدار شتاب در گام پیشین، مقدار شتاب در گام بعدی به دست می‌آید. شبکه عصبی که برای این منظور استفاده می‌شود، همانند شکل (۱)، پرسپترون چند لایه است. ورودی شبکه عصبی پرسپترون شامل چند گام پیشین شتاب زمین و خروجی آن تغییرات شتاب زمین برای گام بعدی است. برای آموزش این شبکه عصبی از روش‌های مارکوری-لونبرگ که همگرايی زیادی ندارد بهره گرفته شده است.

شکل (۱): شبکه عصبی پرسپترون چند لایه

الگوریتم کنترل

حالت اول: تخمین حالت به سازه کنترل نشده اختصاص داده شده است. در این حالت، فقط شتاب زمین به سازه اعمال می‌شود و هیچگونه کنترلی نشده. برای کنترل سازه استفاده نمی‌شود.

حالت دوم: در این حالت از شیوه LQR برای کنترل سازه استفاده شده است. بکارگیری این شیوه برای کنترل سازه برای مقایسه با روش‌های دیگر می‌باشد. شکل (۲) مشاهده می‌گردد.
حالات سوم: الگوریتم کنترل همانند شکل(3)، شامل شبکه عصبی پیش‌بین و سازه می‌باشد. شبکه عصبی پیش‌بین با توجه به شبکه نگاشت‌های ثب‌ت شده آموزش داده می‌شود و سپس در داخل الگوریتم قرار می‌گیرد. در هنگام زمین‌لرزه، با پیش‌بینی شتاب زمین در یک گام جلوتر، نیروی کنترل به دست می‌آید. از این رو، نیروهایی که به سازه وارد می‌شوند، به قرار زیرند:

\[m_j \ddot{u}_j \]

1- نیرویی که شتاب زمین به سازه وارد می‌کند.

2- نیرویی که از مجموع شبکه پیش‌بین و تغییرات شتاب پیش‌بینی شده توسط شبکه عصبی پیش‌بین ایجاد می‌شود.

در این الگوریتم کنترل، کاهش تغییر مکان سازه به‌عنوان یک شرایط پیش‌بینی می‌شود که شبکه عصبی دارد و هر مقدار که شبکه عصبی پیش‌بین پیش‌بینی می‌کند، باعث بهبود شده در دست قرار می‌گیرد.

حالات چهارم: در این الگوریتم، به چای استفاده از پیش‌بینی شتاب برای گام بعدی از شتاب در گام پیشین استفاده می‌شود. شکل(5) راهکاری مزبور را نشان می‌دهد. در این شیوه، هر مقدار تأخیر زمان کمتر باشد، باسخ سازه بهتر خواهد بود.

شکل (2): الگوریتم سازه کنترل نشده

شکل (3): الگوریتم کنترل با شیوه LQR

شکل (4): الگوریتم کنترل با استفاده از گام پیش‌بینی شتاب زمین

شکل (5): الگوریتم کنترل با استفاده از گام پیش‌بینی شتاب زمین
مثال: نخستین مرحله، آموزش شبکه عصبی است که قادر به پیش بینی مقادیر تغییرات شتاب زمین در گام بعدی باشد. برای انجام این کار از شبکه عصبی پرسیترون چهار لایه استفاده می‌شود. لایه ورودی دارای 10 نرون، دو لایه مخفی با 10 و 15 نرون و لایه خروجی با یک نرون می‌باشد. این شبکه عصبی را با دو شتاب نگاشت‌سنترال و هجیجو 2 که شماره 19800 اگو می‌باشد، آموزش داده شده است. مقدار تأخیر زمان 585/100 در نظر گرفته شده است. در شکل‌های 16، پیش بینی یک گام جلوتر را برای شتاب شتاب نگاشت‌سنترال و هجیجو 2 مشاهده می‌کنید. جدول (1) میزان انحراف معیار مقادیر عادی پیش بینی شده نسبت به مقدار معیاری شتاب زمین را برای شتاب نگاشت‌سنترال و هجیجو، نورسیریج و کوه نشان می‌دهد. مرحله دوم، کنترل سازه با استفاده از شبکه عصبی پیش بینی شتاب نگاشت نورسیریج می‌باشد. برای این کار، یک سازه سه درجه آزادی در نظر گرفته شده است (شکل 8). نتایج کنترل با سه روش: LQR، با شبکه عصبی پیش بینی و با گام پیشین را می‌توان در شکل های 100 و 11 مشاهده کرد. با یکسان کنترل نشده مقایسه نمود. در جدول 1 و 2 نتایج چهار حالت فوق با یکدیگر مقایسه شده است.

1- Elcentro
2- Hachinhe
3- Northridge
4- Kobe
Figure 6: Chart showing actual and predicted Earth acceleration.

Figure 7: Chart showing actual and predicted Earth acceleration.
جدول (1): میزان احتمال معیار مقترن های پیش بینی شده شبکه نسبت به شبکه واقعی

<table>
<thead>
<tr>
<th>شتاب نگاشت</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>السترو</td>
<td>2.9410^{-2}</td>
</tr>
<tr>
<td>حچینو</td>
<td>1.1710^{-2}</td>
</tr>
<tr>
<td>نورسیرج</td>
<td>2.8710^{-1}</td>
</tr>
<tr>
<td>کویه</td>
<td>2.88410^{-1}</td>
</tr>
</tbody>
</table>

شکل (8): الگو سازه سه درجه آزادی
شکل (۹): شتاب طبقه سوم سازه در چهار حالت: کنترل نشده، کنترل شده با روش LQR، کنترل شده با شبکه NN، کنترل شده با روش u(k-1).

شکل (۱۰): سرعت طبقه سوم سازه در چهار حالت: کنترل نشده، کنترل شده با روش LQR، کنترل شده با شبکه NN، کنترل شده با روش u(k-1).
شکل (11): تغییر مکان طبقه سوم سازه در چهار حالت: کنترل نشده، کنترل توسط روش \textit{LQR}، کنترل شده با شبکه عصبی و کنترل شده توسط گام پیشین

شبکه عصبی و کنترل شده توسط گام پیشین نقطه زمین تحت شتاب نگاشت نورسیرج

شیوه های

<table>
<thead>
<tr>
<th>نوع کنترل</th>
<th>تغییر مکان</th>
<th>سرعت</th>
<th>شتاب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>کمینه</td>
<td>بیشینه</td>
<td>کمینه</td>
</tr>
<tr>
<td>Uncontrol</td>
<td>1.57810^{-1}</td>
<td>-1.69910^{-1}</td>
<td>2.51</td>
</tr>
<tr>
<td>LQR Control</td>
<td>5.1810^{-2}</td>
<td>-8.0610^{-2}</td>
<td>1.0692</td>
</tr>
<tr>
<td>NN Control</td>
<td>1.4210^{-2}</td>
<td>-1.6410^{-2}</td>
<td>0.2641</td>
</tr>
<tr>
<td>u(k-1) Control</td>
<td>1.8810^{-2}</td>
<td>-1.6510^{-2}</td>
<td>0.248</td>
</tr>
</tbody>
</table>

جدول (2): مقدار های بیشینه و کمینه تغییر مکان، سرعت و شتاب طبقه سوم سازه تحت شتاب نگاشت نورسیرج
بنابراین، نتیجه گیری می‌شود که...

نشانه‌ها:

- y: پایان سازه
- y_d: پایان مطلوب سازه
- u: شتاب زمین
- \dot{u}: شتاب بینی شده

1. feedback
\(i_{g}(k-n) \)

\(b \)

\(w \)

\(t \)

\(f \)

\(1/z \)

\(n \)

References:

