<table>
<thead>
<tr>
<th>Article #</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory</td>
<td>617</td>
</tr>
<tr>
<td>110</td>
<td>A two-objective programming approach for Fuzzy linear regression analysis</td>
<td>622</td>
</tr>
<tr>
<td>111</td>
<td>A Framework for Personalized Multi-Device Information Communicating System</td>
<td>625</td>
</tr>
<tr>
<td>112</td>
<td>Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality</td>
<td>631</td>
</tr>
<tr>
<td>113</td>
<td>Feedstock Effects on Selecting the Appropriate Coil Configuration for Cracking Furnaces</td>
<td>634</td>
</tr>
<tr>
<td>114</td>
<td>On Some New Generalized Measures of Fuzzy Information</td>
<td>643</td>
</tr>
<tr>
<td>115</td>
<td>Low Power Password Entry Module using PIC16F877A</td>
<td>644</td>
</tr>
<tr>
<td>117</td>
<td>Congestion Management of a Deregulated Power System Using Nodal Pricing</td>
<td>650</td>
</tr>
<tr>
<td>118</td>
<td>System Reliability by Prediction of Generator Output and Losses in a Competitive Energy Market</td>
<td>652</td>
</tr>
<tr>
<td>119</td>
<td>Comparative Performance and Microbial Community of Single-phase and Two-phase Anaerobic Systems Co-Digesting Cassava Pulp and Pig Manure</td>
<td>656</td>
</tr>
<tr>
<td>120</td>
<td>Thermodynamic Study of Hot Potassium Carbonate Solution Using Aspen Plus</td>
<td>659</td>
</tr>
<tr>
<td>121</td>
<td>Unsteady Flow between Two Concentric Rotating Spheres Along With Uniform Transpiration</td>
<td>662</td>
</tr>
<tr>
<td>122</td>
<td>Effects of Suction and Blowing on Heat Transfer between Two Eccentric Rotating Spheres with Sinusoidal Angular Velocities</td>
<td>663</td>
</tr>
<tr>
<td>123</td>
<td>Development of Knowledge Portal using Open Source Tools: A Case Study of FIIT, UNISEL</td>
<td>666</td>
</tr>
<tr>
<td>124</td>
<td>Approach based aggregation for intrusions detection</td>
<td>669</td>
</tr>
<tr>
<td>125</td>
<td>E-Appointment Scheduling (EAS)</td>
<td>671</td>
</tr>
<tr>
<td>126</td>
<td>The K-means Clustering Algorithm for Separating Nets in Single-row Networks</td>
<td>673</td>
</tr>
<tr>
<td>127</td>
<td>A Family of Minimal Residual Based Algorithm for Adaptive Filtering</td>
<td>675</td>
</tr>
<tr>
<td>128</td>
<td>Aspect Based Reusable Synchronization Schemes</td>
<td>676</td>
</tr>
<tr>
<td>129</td>
<td>Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field</td>
<td>677</td>
</tr>
<tr>
<td>130</td>
<td>Milling Chatter Prevention by Adaptive Spindle Speed Tuning</td>
<td>677</td>
</tr>
<tr>
<td>131</td>
<td>Waste Lubricating Oil Treatment by Adsorption Process Using Different Adsorbents</td>
<td>678</td>
</tr>
<tr>
<td>132</td>
<td>Performance Comparisons of Theoretical and Simulation for Binary Pulse Position Modulation in Free Space</td>
<td>679</td>
</tr>
<tr>
<td>133</td>
<td>Optical Communication Systems</td>
<td>679</td>
</tr>
<tr>
<td>134</td>
<td>Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications</td>
<td>681</td>
</tr>
<tr>
<td>135</td>
<td>Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adsorn Tuantranont, Erik L J</td>
<td>682</td>
</tr>
</tbody>
</table>
Dear Distinguished Delegate,

World Congress on Science, Engineering and Technology is an international scientific forum of distinguished scholars engaged in scientific, engineering and technological research, dedicated to the furtherance of science, engineering and technology. The academic research congress since its inception is at the cutting edge of international nonprofit scientific, engineering and technological progress to promoting excellence in science.

The congress plays an influential role in science and promotes developments in science, engineering and technology in a wide range of ways. The congress aims to foster research in the area of science and technology and its impact to mainstream human activities. Specifically, it serves as a venue for discussion and exchange of ideas on current issues in science and technology.

All full paper submissions to the congress are peer reviewed & refereed and evaluated based on originality, research content, and correctness, relevance to contributions, and readability. In this context, the full paper submissions are chosen based on technical merit, interest, applicability, and how well they fit a coherent and balanced technical program. The accepted full papers after rigorous peer reviewing process have been published in the refereed international congress proceedings.

INTERNATIONAL SCIENTIFIC COMMITTEE:

Abdel-Badeeh M. Salem, Egypt
Faculty of Computer and Information Sciences
Ain Shams University, Egypt

Antych, Bohdan, Ill.
Rzeszow University of the Silesian
Rzeszow, Poland

Bung-Chae Zhang, P.K.
School of Computer Science and Engineering
Seoul National University - Seoul, Korea

Carlo Lastra, R.
Department of Electrical and Computer Engineering, University of Tehran

Peter Provinko, A.
Melbourne School of Engineering
Department of Biomedical Engineering

Changqiu He, USA
Department of Geography
Western Michigan University

Christos Grecos, UK
School of Computing
University of West of Scotland

Edgardo Bucciarelli, IT
Department of Quantitative Methods and Economic Theory, LaMia (Texas State) University
University of Chieti-Pescara - Italy

Eric Fleury, FR
Ecole Superieure d'Informatique, d'Electronique et d'Astronomie, France

Gilliano Gabbay, IT
Department of Quantitative Methods and Economic Theory, University of California, Davis
University of Chieti-Pescara - Italy

Giuseppe Tino, IT
World Academy of Biomedical Sciences and Technologies, School of Mathematical Sciences
Executive President, Italy

Karen Armstrong, CA
York University
Faculty of Education

Kenneth Reuter, U.K.
University of Westminster
Harrow School of Computer Science, London, UK

Moez A. Haddad, USA
University of Kentucky
College of Pharmacy

Miltos S. Eftychiou, CZ
Braun University of Technology
Institute of Automation and Computer Science

Mohammad Siddique, USA
Department of Mathematics and Computer Science
Fayetteville State University

Omar J. Khan, USA
Maine Business School
University of Maine

Paola Iaccone, IT
The Microsoft Research - University of Trento Centre for Computational and Systems Biology

Quoc-Nam Tran, USA
Beaumont, Texas, USA

S. M. A. Borney, PK
Department of Computer Science
University of Karachi, Pakistan

Wang Zhiping, USA
Mechanical & Aeronautical Engineering

Zurita Zainudin, MY
Universiti Saint Malaysia
Abstract— In this paper, the effects of suction and blowing on the temperature field between two eccentric rotating spheres which rotate about a common axis of rotation are presented. The angular velocity of outer sphere is constant and the angular velocity of inner sphere is considered as sinusoidal function. The Navier-Stokes and energy equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns and temperature distributions are presented for various values of the flow parameters including rotational Reynolds number Re, and a blowing/suction Reynolds number Re_w. In this work, the effect of viscous dissipation is ignored. The eddies created in the flow field are found as preventive means for heat transfer. Also, it is observed, where the distance between two spheres is reduced the diffusion of heat becomes more, because the Coriolis forces are bigger in these regions.

Keywords— Eccentric spheres, Heat transfer, numerical solution, sinusoidal angular velocities, suction and blowing.

I. INTRODUCTION

The flow and heat transfer in an annulus between two spheres has been studied in various cases by many researchers. Such studies can be classified into two main groups. In the first group, there is neither suction nor blowing at the spherical walls. Such containers are used in engineering designs like centrifuges and fluid gyroscopes and also are important in geophysics. Available theoretical works concerning such problems are primarily of a boundary-layer or singular-perturbation character considered by Howarth [1], Greenspan [2], Carrier [3] and Stewartson [4].

The first numerical study of time-dependent viscous flow between two rotating spheres has been presented by Pearson [5] in which the cases of one (or both)sphere is given an impulsive change in angular velocity starting from a state of either rest or uniform rotation. Munson and Joseph [6] have considered the case of steady motion of a viscous fluid between concentric rotating spheres using perturbation techniques for small values of Reynolds number and a Legendre polynomial expansion for larger values of Reynolds numbers.

Recently a numerical study of flow and heat transfer between two rotating spheres has been done by Jabari Moghadam and Rahimi [7] in which the fluid contained between two vertically eccentric spheres maintained at different temperature and rotating about a common axis with different angular velocities when the angular velocities are arbitrary functions of time. Jabari Moghadam and Rahimi [8] have also studied the similarity solution for spheres rotating with constant angular velocity.

In the second group, the effects of transpiration on flow in an annulus between two spheres have been investigated. The study of flow in a spherical annulus along with transpiration is used in many practical applications, such as rotary machines and spherical heat exchangers and in the design of spherical fluid storage systems. In these applications transpiration is used to regulate the rate of heat transfer.

Effects of transpiration on free convection in an annulus between two stationary concentric porous spheres have been considered by Gulwadi et al. [9]. Gulwadi et al. [10] studied the laminar flow in an annulus between rotating porous spheres and with injection and suction at spherical walls. They used a perturbation technique to solve the steady-state Navier-Stokes equations of motion and also used a finite difference method to validate their analytical results. Their results are valid for small values of the rotational Reynolds number ($Re < 50$) and an injection/suction Reynolds number. A review of the literature reveals that there is no study on the transient motion and heat transfer between two eccentric rotating spheres with uniform transpiration. In the present study, a numerical solution of unsteady momentum and energy equations is presented for eccentric spheres in high Reynolds numbers ($Re = 1000$).
II. PROBLEM FORMULATION

The geometry of the spherical annulus considered is indicated in Fig. 1.

Fig. 1: Geometry of problem

The vertical eccentricity of the outer sphere is measured by the distance e. If the outer sphere is placed above the central position, e has a positive value, otherwise it is negative. The origin of the spherical coordinate system is the inner sphere center and the characteristic radius of the outer sphere, R'_o, is a function of θ. A Newtonian, viscous, incompressible fluid fills the gap between the inner and outer spheres, which are of radii R_i and R_o and with constant surface temperatures T_i and T_o, respectively. The components of velocity in r, θ and ϕ directions are v_r, v_θ and v_ϕ, respectively. These velocity components for incompressible flow and in meridian plane satisfy the continuity equation and are related to stream function ψ and angular momentum function Ω in the following manner:

$$v_r = \frac{\psi_\theta}{r^2 \sin \theta}, v_\theta = -\frac{\psi_r}{r \sin \theta}, v_\phi = \frac{\Omega}{r \sin \theta}$$ \hspace{1cm} (1)

The blowing/suction Reynolds number is defined as:

$$Re_w = \frac{v_\phi r_o}{\nu}$$ \hspace{1cm} (2)

In which v_ϕ and r_o are radial velocity and radius reference values, respectively. The blowing/suction Reynolds number Re_w is positive for blowing at inner sphere and negative for suction. Since the flow is assumed to be independent of the longitude, ϕ, the non-dimensional Navier-Stokes equations and energy equation can be written in terms of the stream function and the angular velocity function as follows:

$$\frac{\partial \Omega}{\partial t} + \frac{\psi_\theta}{r^2 \sin \theta} v_r - \frac{\Omega}{r} \frac{\partial \Omega}{\partial \theta} = \frac{1}{(Re)} D^2 \Omega$$ \hspace{1cm} (3)

$$\frac{\partial}{\partial t} (D^2 \psi) + \frac{2}{r^2 \sin^2 \theta} [\Omega, r \cos \theta - \Omega, \sin \theta]$$

$$- \frac{1}{r^2 \sin \theta} [\psi_r, (D^2 \psi)_\theta - \psi_\theta (D^2 \psi),]$$

$$+ \frac{2D^2 \psi}{r^2 \sin^2 \theta} [\psi_r, r \cos \theta - \psi_\theta \sin \theta] = \frac{1}{(Re)} D^2 \psi$$ \hspace{1cm} (4)

$$\frac{\partial T}{\partial t} + \frac{v_r}{r} \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} =$$

$$\frac{1}{(Pe)} \left[\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial T}{\partial \theta} \right]$$ \hspace{1cm} (5)

in which the non-dimensional quantities Reynolds number Re, Prandtl number Pr, Peclet number Pe are defined as:

$$Re = \frac{\omega_o r_o^2}{\nu}, Pr = \frac{\nu}{\alpha}, Pe = Re \cdot Pr = \frac{\omega_o r_o^2}{\alpha}$$ \hspace{1cm} (6)

The following non-dimensional parameters have been used in the above equations and then the asterisks have been omitted:

$$t^* = t \omega_o, r^* = \frac{r}{r_o}, \psi^* = \frac{\psi}{r_o \omega_o}, \Omega^* = \frac{\Omega}{r_o^2 \omega_o}, T^* = \frac{T - T_i}{T_o - T_i}$$ \hspace{1cm} (7)

in which ω_o is reference value which is selected as Ω_o. The non-dimensional boundary and initial conditions for the above governing equations are:

For $t = 0$:

$$\begin{cases} \psi = 0 \\ \Omega = 0 \quad \text{everywhere} \\ T = 0 \end{cases}$$

688
For \(t > 0 \):

\[
\theta = 0 \rightarrow \{ \psi_r = 0, \psi_\theta = 0, \Omega = 0 \}, \quad \frac{\partial T}{\partial \theta} = 0 \\
\theta = \pi \rightarrow \{ \psi_r = 0, \psi_\theta = 0, \Omega = 0 \}, \quad \frac{\partial T}{\partial \theta} = 0 \\
r = R_o / R_i \Rightarrow \\
\Rightarrow \left\{ \psi_\theta = \frac{\text{Re}}{\text{Re}} \sin \theta, \psi_t = 0, \Omega = \frac{2}{\omega}, \sin^2 \theta, T = 0 \right. \\
\Rightarrow r = R_i / R_o = e \cos \theta + \sqrt{\left(1 - e^2 \sin^2 \theta \right)} \Rightarrow \\
\Rightarrow \left\{ \psi_\theta = \frac{\text{Re}}{\text{Re}} \frac{R_i^2}{R_o^2} \sin \theta, \psi_t = 0, \Omega = \frac{2}{\omega}, \sin^2 \theta, T = 1 \right. \\
\text{where:} \\
D = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} \right) \\
(9)
\]

III. PROBLEM SOLUTION

In this section, we firstly present the Computational Procedure and discuss then on the obtained results.

A. Computational Procedure

The two equations governing the fluid motion show that each is describing the behavior of one of the dependent variables \(\Omega \) and \(\psi \). On the other hand, these two equations are coupled only through nonlinear terms. To solve the problem, the momentum equations were discretized by the finite-difference method and implicit scheme. Because of the known velocity field, the energy equation is linear and is solved keeping all its terms.

In each time step \((n+1)\), the value of the dependent variables are guessed from their values at previous time steps \((n), (n-1), \) and \((n-2)\) and after using them in difference equations and repeating it until the desired convergence, will lead to the corrected values at this time step. This procedure is applied for the next time step.

The flow field considered is covered with a regular mesh. To solve the system of linear difference equations, a tridiagonal method algorithm is used in both directions \(r \) and \(\theta \).

Direct substitution of previous values of dependent variables by new calculated values can cause calculation un-stability in general. To overcome this problem, a weighting procedure is used in which the optimum weighting factor depends on Reynolds number. The mesh size used in numerical solution for equator of the circle is a uniform 40x20, 60x30, 80x40 and 100x50(\(\theta \)-direction x \(r \)-direction, respectively) with the ratio of \(R_{out} / R_{in} = 2 \), which all of them show that the problem is independent of mesh size, but on the one hand by noting to calculations time and on the other hand since a finer mesh size is better we choose the 80x40 mesh size.

In this work, the sphere angular velocity has been considered a function of time (sinusoidal) and to apply this function to the program, an average value at the beginning of each time step has been calculated and used for the sphere angular velocity function. Therefore, for each considered time step, the sphere velocity is defined and sectionally continues.

B. Results and Discussions

The streamlines and temperature distribution in the meridian plane for \(\text{Re} = 1000, \text{Re}_{w} = -5, \) \(\text{Pr} = 10 \)

\(e = 0.1, \Omega_{i o} = \frac{\Omega}{\Omega} = 2 \sin(\pi t / 2) \) in \(t = 4.01 \text{sec} \) are presented in Fig.2. In Fig.3 the contours of the streamlines and temperature field are presented for the same conditions in Fig.2 except \(t = 11.01 \text{sec} \). As can be seen, the size of the eddies created in flow field comparison with the Fig.2 (a), is smaller. Also Looking at Fig.3 (b), it is found that the diffusion of heat in the vicinity of the poles is less, because the eddies created in the vicinity of the poles are as preventive means for heat transfer.

Fig.4 shows the temperature distribution in the annulus for the same before conditions except \(\text{Re}_{w} = -10 \). As can be seen, the increase in suction increases the diffusion of heat transfer toward the inner sphere which has less temperature. Finally, in Fig.5 the streamlines and temperature distribution are presented for blowing case \((\text{Re}_{w} = 5) \) and two Prandtl numbers \(\text{Pr} = 1 \) and \(\text{Pr} = 10 \). In this case, by considering the flow field, it is found out that the eddies near the outer sphere are the preventive means for transferring the inner sphere coldness toward the outer sphere. Also, the effect of Prandtl number on temperature field is considerable, as is shown in Fig.4, case (b) \((\text{Pr} = 1) \) and case(c) \((\text{Pr} = 10) \). In all of the temperature fields, diffusion of heat in lower hemisphere is more visible, because of more Coriolis forces in this hemisphere.
Fig. 2: Flow and heat transfer for $Re = 1000$, $Re_\theta = -5$, $Pr = 10$, $e = 0.1$,
$\Omega_\omega = 2\sin(\pi t / 2)$ at $t = 4.01 \text{sec}$

Fig. 3: Flow and heat transfer for $Re = 1000$, $Re_\theta = -5$, $Pr = 10$, $e = 0.1$,
$\Omega_\omega = 2\sin(\pi t / 2)$ at $t = 11.01 \text{sec}$
In this paper, the effects of suction and blowing on flow and especially heat transfer between two vertically eccentric spheres are studied. The angular velocity of the inner sphere was considered as a sinusoidal function while the outer sphere was stationary. The obtained results show that the eddies are as the preventive means for heat transfer so that the diffusion of heat is more in the regions that there are no the eddies. Also it is found; where the distance between two spheres is reduced the diffusion of heat becomes more, because the Coriolis forces are bigger in these regions. Likewise, it is seen that with suction and blowing the rate of heat transfer can be regulated.

IV. CONCLUSION

In this paper, the effects of suction and blowing on flow and especially heat transfer between two vertically eccentric spheres are studied. The angular velocity of the inner sphere was considered as a sinusoidal function while the outer sphere was stationary. The obtained results show that the eddies are as the preventive means for heat transfer so that the diffusion of heat is more in the regions that there are no the eddies. Also it is found; where the distance between two spheres is reduced the diffusion of heat becomes more, because the Coriolis forces are bigger in these regions. Likewise, it is seen that with suction and blowing the rate of heat transfer can be regulated.

ACKNOWLEDGMENT

This study has been supported by the research grant of Shahrood University of Technology.

REFERENCES

