Mechanical Behavior of Gypsum Soils and the Effects of Cycles of Wetting and Drying and Cycles of Loading and Unloading on their Properties

J. Bolouri Bazaz Civil Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad
K. Sajedi Civil Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad

Abstract

The soils, when saturated, swell or settle are referred as problematic soils. Due to the complicated behavior, such soils damage to the structures. Gypsum soils are generally porous due to the presence of gypsum and apply huge settlement, in proportion with degree of porosity, to the structures. The present research is an effort to identify the soils of South East of Mashhad city, which naturally contain relatively high gypsum and have a special behavior. In this regard, so many samples with different magnitudes of gypsum were gathered and classified to seven samples with different magnitudes of gypsum. Preliminary tests reveal that with increasing of gypsum, plasticity index and unit weight decrease, which in turn increase settlement. In order to investigate the influence of degree of compaction, all samples were compacted with different unit weight and the swelling potential and swelling pressure were measured after saturation. The results show that with increasing unit weight and gypsum, swelling potential increases. Cycles of wetting and drying and also cycles of loading and unloading were performed to investigate their influence on gypsum soils.

Key words: Problematic Soils, Gypsum, Swelling, Settlement, Swelling pressure, Cycles, Wetting and drying, Loading and Unloading.
در شکل (۱) نموداری از گروه خاک‌های گچی کریستال شده در گروه خاک‌های (Swelling soils) یا خاک‌های تورم‌ناپذیر (Problematic soils) از نوع طبقات زمینی و سطحی ای که تخیلی و وجود خاک‌های در منطقه قسمت شده و در نظر گرفته شده است. این نمودار نشان می‌دهد که بسیاری از خاک‌های گچی در ترکیب مناسب آنها و همچنین معیارهای دیگری به تنهایی وجود ندارند. این خاک‌ها به‌طور خاص ممکن است در مناطقی که بار بیش از مقدار طبیعی دارد بتواند تورم یابند. در زیر نشان داده شده است که ترکیب خاک‌های گچی باعث می‌شود که تورم بیشتری از مقدار طبیعی داشته باشند.

شکل ۱- نمودار خاک‌های گچی کریستال شده منطقه مورد مطالعه
در طول دهه‌های اخیر، ساخت‌های ساختمانی که در منطقه جنوب غربی مسیحی وجود داشته‌اند، با نیاز به تأمین خاک شدید بودند. این دو، به دلیل محدودیت کوهستانی، در نتیجه به دقت خوردن در شرایط محیطی کم شدند. این جزئیات، از میان بررسی‌های مختلف موجود در شرایط مختلف نوع خاک، بررسی می‌شود که چگونگی تغییرات در شرایط محیطی کم شده است.

(15) تحقیقات قبلی، نشان می‌دهد که در منطقه جنوب غربی مسیحی، میزان فرسودگی و خاک‌سازی نیازمند است به تأمین خاک مطلوب و راهکاری در این مورد، از منابع مختلف بهره‌مندی می‌شود. به همین دلیل، بررسی‌های مختلفی در این منطقه انجام شده است.

(16) نمونه‌های گرفته شده از دسته‌بندی‌های شده (ASTM C33) و همچنین نمونه‌های دیگر (ASTM D4318) نشان می‌دهند که نوع خاک، خواص این نمونه‌ها با یکدیگر متفاوت است. تا به این که نمونه‌هایی از خاک‌های مختلف جغرافیایی، آزمایش‌هایی انجام شده است. در نتیجه نتایج گرفته شده است که هر یک از نوع خاک دارای خاصیت‌های خاصی جغرافیایی به خصوص در منطقه جنوب غربی مسیحی با توجه به خاک‌های مختلف، بهترین روش برای کاهش میزان خاک را به توصیه می‌کند.

(17) در نهایت، منبع‌های بررسی خاک‌های مختلف جغرافیایی به عنوان یک منبع معتبر برای دریافت نمونه‌های مناسب و در نهایت بهترین روش برای کاهش میزان خاک به کار می‌رود.

شکل 2: نمودار توزیع نمونه‌های مختلف

Percent passing by weight

Sieve size (mm)

Sample

S1
S2
S3
S4
S5
S6
S7
جدول 1 - آنالیز شیمیایی نمونه‌های انتخابی

<table>
<thead>
<tr>
<th>SO₃</th>
<th>CaSO₄</th>
<th>pH</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.66</td>
<td>0.5</td>
<td>7.72</td>
<td>S1</td>
</tr>
<tr>
<td>8.3</td>
<td>11.7</td>
<td>7.23</td>
<td>S2</td>
</tr>
<tr>
<td>12.9</td>
<td>15.4</td>
<td>7.11</td>
<td>S3</td>
</tr>
<tr>
<td>13.1</td>
<td>17.6</td>
<td>7.23</td>
<td>S4</td>
</tr>
<tr>
<td>13.3</td>
<td>21.0</td>
<td>7.51</td>
<td>S5</td>
</tr>
<tr>
<td>13.6</td>
<td>22.1</td>
<td>7.47</td>
<td>S6</td>
</tr>
<tr>
<td>13.9</td>
<td>23.4</td>
<td>7.49</td>
<td>S7</td>
</tr>
</tbody>
</table>

نمونه‌های S1 به‌طور معمول و مورد نیاز برای سایر نمونه‌ها از حدود 10 گرم به 12 گرم می‌باشد. نمونه‌های S2 و S5 از حدود 15 گرم تا 20 گرم می‌باشد. نمونه‌های S3 و S4 از حدود 20 گرم تا 30 گرم می‌باشد. نمونه‌های S6 و S7 از حدود 25 گرم تا 35 گرم می‌باشد.
جدول ۲: خواص ذولکانیکی و مواد به‌شماره‌ای نمونه‌های انتخابی

<table>
<thead>
<tr>
<th>USCS</th>
<th>OMC</th>
<th>MDD* (gr/cm³)</th>
<th>حدود ادراری</th>
<th>جگال (cm³/g)</th>
<th>وزن مخصوص (gr/cm³)</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>10.1</td>
<td>1.61</td>
<td>13.0</td>
<td>23.0</td>
<td>36.0</td>
<td>1.43</td>
</tr>
<tr>
<td>CL</td>
<td>9.0</td>
<td>1.62</td>
<td>10.6</td>
<td>13.6</td>
<td>24.2</td>
<td>1.40</td>
</tr>
<tr>
<td>CL</td>
<td>9.6</td>
<td>1.64</td>
<td>7.7</td>
<td>17.3</td>
<td>25.0</td>
<td>1.38</td>
</tr>
<tr>
<td>ML</td>
<td>9.7</td>
<td>1.64</td>
<td>3.6</td>
<td>23.4</td>
<td>27.6</td>
<td>1.37</td>
</tr>
<tr>
<td>ML</td>
<td>11.2</td>
<td>1.66</td>
<td>0.0</td>
<td>23.8</td>
<td>23.8</td>
<td>1.37</td>
</tr>
<tr>
<td>SM</td>
<td>14.6</td>
<td>1.68</td>
<td>0.7</td>
<td>18.8</td>
<td>19.5</td>
<td>1.31</td>
</tr>
<tr>
<td>ML</td>
<td>12.9</td>
<td>1.69</td>
<td>1.7</td>
<td>18.8</td>
<td>19.5</td>
<td>1.36</td>
</tr>
</tbody>
</table>

شکل ۲: تغییرات وزن مخصوص و نشانه‌های با دمایگر در نمونه‌های انتخابی

جدول ۳: سیطیون نشست تحقیگی نمونه‌های طبیعی و متراکم شده

<table>
<thead>
<tr>
<th>کاهش</th>
<th>نشست نمونه‌های متراکم شده (gr/cm³)</th>
<th>نشست نمونه‌های طبیعی (gr/cm³)</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4.2</td>
<td>6.0</td>
<td>S₁</td>
</tr>
<tr>
<td>17.6</td>
<td>6.1</td>
<td>7.4</td>
<td>S₂</td>
</tr>
<tr>
<td>18.7</td>
<td>6.1</td>
<td>7.5</td>
<td>S₃</td>
</tr>
<tr>
<td>23.5</td>
<td>6.5</td>
<td>8.5</td>
<td>S₄</td>
</tr>
<tr>
<td>31.3</td>
<td>12.3</td>
<td>17.9</td>
<td>S₅</td>
</tr>
<tr>
<td>34.9</td>
<td>14.0</td>
<td>21.5</td>
<td>S₆</td>
</tr>
<tr>
<td>34.7</td>
<td>13.0</td>
<td>19.9</td>
<td>S₇</td>
</tr>
</tbody>
</table>

به این منظور بی‌پایان نمونه‌ها داخل دستگاه و اشتباه نمونه‌ها، مقدار نشست در پایان ارایش تحقیگی به دو مرحله بروز و شکلـ است.
به‌نظر بیشین، شرایط تورم، ارتفاع دمایه حدود 100 میلی‌متری گونه‌سازی شده می‌باشد (شکل 1). در این حالت، دمایه تورم با افزایش ارتفاع تورم (شکل 2) از 4 تا 6 از لحاظ بیشتر نیز، در این حال مقدار تورم با افزایش بیشتر از ارتفاع تورم به یک مقدار مجزا در هر اثر از ارتفاع تورم متمرکز صفحه متنقل و به‌جای آن در محفظه (شکل 3). اریزونا گروهی یک صفحه متنقل و احتمالاً گروهی مسحیانه می‌باشد. این‌گونه به‌طور قابل‌توجه خواهد گرفت.}

شکل 4- گرفتار مورد استفاده

با توجه به اینکه همه امکان‌های این تحقیق انتخاب‌های است.

شکل 5- نشان‌نگاری دمایه تورم ساخته شده

شکل 6- تصویری از اکتا تورم ساخته شده

شکل 7- نمودار نسبت تورم ساخته شده
در دستگاه تحقیق و اعمال سیمان کمیته 1 می‌توانند از نمونه‌های اصلی بزرگی با عناصر فلزی و چسب‌های گرانبها استفاده کنند. برای بررسی این رویداد، نمونه‌هایی از سایر چسب‌های فلزی را در دستگاه تحقیق و اعمال سیمان کمیته 1 می‌توانند از نمونه‌های اصلی بزرگی با عناصر فلزی و چسب‌های گرانبها استفاده کنند. برای بررسی این رویداد، نمونه‌هایی از سایر چسب‌های فلزی را در دستگاه تحقیق و اعمال سیمان کمیته 1 می‌توانند از نمونه‌های اصلی بزرگی با عناصر فلزی و چسب‌های گرانبها استفاده کنند.
شکل 9 - تغییرات تورم آرما نمونه 52 با وزن مخصوص

بیشترین مقادیر تورم در اولین ساعات اشباع شدن تغییر می‌کند. زمان مورد نیاز برای توقف تورم نمونه 52 حدود ۷۰ ساعت است. اشباع شدن بود سایر نمونه‌ها نیز رفتار مشابه داشتند.

برای بررسی داشتن در اثر تردید در اشباع شدن، نمونه باعثه می‌شود که در حدود ۱/۸۰۰ نمونه شاخ ۵۲ نهایی در انتخاب کردن و با رطوبت بیشتر از این مقدار شاخ نمی‌پذیرد. این مقدار، رابطه بین وزن و رطوبت را تغییر می‌دهد. اشباع شدن قطعی نمونه 52 آرما به‌طور سیستمی مشاهده شد. شکل (۱) نشان دهنده این امر است که تغییر شاخ های که درصد کره و وزن مخصوص مختلف نشان می‌دهد.

شکل 11 - تورم آرما کله نمونه‌های حاوی کچ که با وزن مخصوص های کوشاوند مشابه شدند
شکل ۱۲ - فشار توم در واقع نمونه‌های حاوی مقدار گیاهی
جدول 2: ضرایب a و b در دیوار نمونه‌های مورد آزمایش

<table>
<thead>
<tr>
<th>نمونه</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-8.13</td>
<td>-5.37</td>
</tr>
<tr>
<td>S2</td>
<td>-10.94</td>
<td>-7.60</td>
</tr>
<tr>
<td>S3</td>
<td>-10.27</td>
<td>-6.95</td>
</tr>
<tr>
<td>S4</td>
<td>-11.94</td>
<td>-8.64</td>
</tr>
<tr>
<td>S5</td>
<td>-11.57</td>
<td>-8.97</td>
</tr>
<tr>
<td>S6</td>
<td>-11.00</td>
<td>-9.02</td>
</tr>
</tbody>
</table>

شکل 13: سیکل‌های تدریجی و نشان دهنده شدت نرم‌سازی توسط ترکیب C (وتوم) .

شکل 14: نمونه‌های مورد آزمایش (وتوم) به نمودار بازسازی متغیر ترکیبی توسط C (وتوم) .
شکل (8) نمایش دهنده روند شیمه براساس آزمایش تغییرات فشار بالا در خاک‌های مختلف است. نمودار (9) نشان می‌دهد که تغییرات تغییرات فشار بالا در خاک‌های مختلف باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود. در نتیجه، بهترین مقدار برای هر بافت متفاوت است. نتایج نشان می‌دهد که تغییرات در فشار بالا باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود.

شکل (10) نمایش دهنده روند شیمه براساس آزمایش تغییرات فشار بالا در خاک‌های مختلف است. نمودار (11) نشان می‌دهد که تغییرات تغییرات فشار بالا در خاک‌های مختلف باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود. در نتیجه، بهترین مقدار برای هر بافت متفاوت است. نتایج نشان می‌دهد که تغییرات در فشار بالا باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود.

شکل (12) نمایش دهنده روند شیمه براساس آزمایش تغییرات فشار بالا در خاک‌های مختلف است. نمودار (13) نشان می‌دهد که تغییرات تغییرات فشار بالا در خاک‌های مختلف باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود. در نتیجه، بهترین مقدار برای هر بافت متفاوت است. نتایج نشان می‌دهد که تغییرات در فشار بالا باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود.

شکل (14) نمایش دهنده روند شیمه براساس آزمایش تغییرات فشار بالا در خاک‌های مختلف است. نمودار (15) نشان می‌دهد که تغییرات تغییرات فشار بالا در خاک‌های مختلف باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود. در نتیجه، بهترین مقدار برای هر بافت متفاوت است. نتایج نشان می‌دهد که تغییرات در فشار بالا باعث افزایش سیکل‌های بارگذاری و تغییر در شیمی خاک‌ها می‌شود.
سیستم حاوی گچ و گردنبندی شده دارای ابعاد و ماهیتی متفاوتی، که موجب تغییراتی در حالت‌های مختلف زمین‌شناسی و بافت‌شناسی می‌گردد.

• افزایش قدرت حمل حاکی از این امر است که برای کامیابی
نتایج و سازگاری نقشه‌برداری‌ها، نتایج به‌طور کامل گزارش داده می‌شود.

[3] Azma, S., Abdujumad, S. N. and Al-
Amoudi, O. S. B., "Volume Change Behavior of Arid Calcareous Soils," Journal of Natural

Effects on Expansive Soils," First Int.
Conference on Environmental Research and Assessment, Bucharest, Romania, 2002.

[14] سیستم حاوی گچ و گردنبندی شده دارای ابعاد و ماهیتی متفاوتی، که موجب تغییراتی در حالت‌های مختلف زمین‌شناسی و بافت‌شناسی می‌گردد.

• افزایش قدرت حمل حاکی از این امر است که برای کامیابی
نتایج و سازگاری نقشه‌برداری‌ها، نتایج به‌طور کامل گزارش داده می‌شود.

[3] Azma, S., Abdujumad, S. N. and Al-
Amoudi, O. S. B., "Volume Change Behavior of Arid Calcareous Soils," Journal of Natural

Effects on Expansive Soils," First Int.
Conference on Environmental Research and Assessment, Bucharest, Romania, 2002.
شکل 15 - موقعیت نمونه‌های اخذ شده از منطقه جنوب غربی مشهد