STRONG IRREGULARITY OF BOUNDED BILINEAR MAPPINGS

H. R. E. VISHKI

ABSTRACT. In this paper first we give a lower bound for the topological centres of a bounded bilinear map, and then we characterize the topological centres of certain bilinear mappings, say Banach module actions.

1. PRELIMINARIES

Suppose that $f : X \times Y \to Z$ is a bounded bilinear mapping on the normed spaces X, Y and Z and let X^* and X^{**} be the first and second dual of X, respectively. The adjoint of f is the bounded bilinear mapping $f^* : Z^* \times X \to Y^*$ defined by

$$
\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle \quad (x \in X, y \in Y, z^* \in Z^*).
$$

Continuing this method, the higher rank adjoints of f can be verified by setting $f^{**} = (f^*)^*$ and so on.

The mapping f^* will be considered as the bounded bilinear mapping from $Y \times X$ into Z defined by $f^*(y, x) = f(x, y)$.

The first and second topological centers of f are defined as follows, respectively:

$$
Z(f) : = \{ z^{**} \in X^{**}; y^{**} \to f^{***}(x^{**}, y^{**}) : Y^{**} \to Z^{**} \text{ is } \omega^* \text{ – continuous} \}
$$

$$
Z'(f) : = \{ y^{**} \in Y^{**}; z^{**} \to f^{****}(z^{**}, y^{**}) : X^{**} \to Z^{**} \text{ is } \omega^* \text{ – continuous} \}.
$$

When f is the product π of a Banach algebra A, we usually show its topological centers by $Z(A^{**})$ and $Z'(A^{**})$. It can be shown that π^{***} and π^{****} are really the first and second Arens products of A^{**} which will be denoted by \Box and \odot, respectively.

The mapping f is called (Arens) regular when $f^{***} = f^{****}$. The Banach algebra A is said to be Arens regular if its product mapping is regular.

The bilinear mapping f is said to be strongly left (resp. right) irregular if $Z(f) = X$ (resp. $Z'(f) = Y$). The subject of Arens regularity of bilinear mappings are investigated in [1, 2, 4, 5, 6, 8].

Key words and phrases. Arens product, bounded bilinear map, Banach module action, topological centre, second dual.
2. Main results

A bounded bilinear mapping \(f : \mathcal{X} \times \mathcal{A} \to \mathcal{X} \) is said to be approximately unital if there exist a bounded net \(\{ e_\alpha \} \) in \(\mathcal{A} \) such that \(\lim_{\alpha} g(x, e_\alpha) = x \), for all \(x \in \mathcal{X} \). We commence with the following result which describes the topological centres of such a mapping.

Theorem 2.1. For every approximately unital bounded bilinear mapping \(f : \mathcal{X} \times \mathcal{A} \to \mathcal{X} \) on normed spaces \(\mathcal{A} \) and \(\mathcal{X} \), \(Z(f) = \mathcal{X}^* \) and \(Z(f^*) = \mathcal{A}_X \); in which, \(\mathcal{A}_X := \{ x^{**} \in \mathcal{X}^{**} : J_{\mathcal{X}}(x^{**}) = (J_X)^*(x^{**}) \} \).

As an immediate consequence we have:

Corollary 2.2. Let \(g : \mathcal{X} \times \mathcal{A} \to \mathcal{X} \) be an approximately unital bounded bilinear mapping on normed spaces \(\mathcal{A} \) and \(\mathcal{X} \), then \(g^* \) is regular if and only if \(\mathcal{X} \) is reflexive.

The next result studies the strong irregularity of \(\pi_1^{**} \) and \(\pi_2^* \), in which \(\pi_1 \) and \(\pi_2 \) are Banach module actions.

Theorem 2.3. Let \((\pi_1, \mathcal{X}) \) and \((\pi_2, \mathcal{X}) \) be approximately unital left and right Banach \(\mathcal{A} \)-modules, respectively. Then

\[
Z(\pi_1^{**}) = \mathcal{X}^* = Z(\pi_2^*), \quad \text{and} \quad Z(\pi_1^*) = \mathcal{A}_X = Z(\pi_2^*);
\]

in particular, \(\pi_1^{**} \) and \(\pi_2^* \) are left strongly irregular.

As an straightforward application of the latter theorem we have the next one which is a generalization of a result of [6].

Corollary 2.4. (See [6, Corollary 2.4]). For the multiplication \(\pi \) of a Banach algebra \(\mathcal{A} \) having a right (respectively, left) bounded approximate identity, \(\pi^* \) (respectively, \(\pi^{**} \)) is left strongly regular; that is, \(Z(\pi^*) = \mathcal{A}^* \) (respectively, \(Z(\pi^{**}) = \mathcal{A}^{**} \)).

As another application of Theorem 2.3 we deduce the next result of [8], (which in turn is a generalization of [5, Proposition 4.5])

Corollary 2.5. ([8, Proposition 3.6]). Let \((\pi_1, \mathcal{X}) \) and \((\pi_2, \mathcal{X}) \) be approximately unital left and right Banach \(\mathcal{A} \)-modules, respectively. Then the following assertions are equivalent:

(i) \(\pi_1^{**} \) is regular;

(ii) \(\pi_2^* \) is regular;

(iii) \(\mathcal{X} \) is reflexive.

References

Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: vishki@ferdowsi.um.ac.ir