International Conference on
Nano Science and Technology

ICONSAT
2010

February 17-20, 2010
Indian Institute of Technology Bombay
Mumbai, India

Sponsored by
NANO MISSION
Department of Science Technology
Government of India

Organized by
Indian Institute of Technology Bombay
Bhabha Atomic Research Centre
and
Tata Institute of Fundamental Research,
Mumbai, India
Ab Initio Calculations of Electronic Structure and Optical Spectra of (13-0) Carbon Nanotube

Tayebeh Movfaroo 1,2,3, Seyed Mohammad Hosseini1, Ahmad Kompany1 and Nasser Shahtahmasebi 2

1Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Iran
2Department of Physics (Nano Research Centre), Ferdowsi University of Mashhad, Iran
3Department of Physics, Shahrood University of Technology, Shahrood, Iran
Email: Tayebeh.Movfaroo@stu-mail.um.ac.ir, Tayebeh.Movfaroo@yahoo.com

Graphite structures, such as carbon nanoscrolls, fullerenes, carbon nanotubes, conjugated oligomers and polymers, represent hot research topics in current chemistry, physics and materials science. SWNTs present novel electronic, optical, and mechanical properties that can potentially be exploited in a wide range of applications such as energy storage and nanoelectronics [1]. The electronic structure and dielectric properties of the tubes are two key areas to study. We present a first principle calculation of the electronic structure, energy vs. function, optical constants and dielectric function of single walled zigzag (13-0) carbon nanotube by using density functional theory method (DFT) [2]. For the expansion into the wave function, the full-potential linearized augmented plane-wave (FLAPW) method is used as implemented in the Wien2k code [3]. Also we have treated the exchange and correlation effects by the generalized gradient approximated (GGA) potential presented by Perdew and Wang [4,5]. It is found that zigzag (13-0) nanotube is semiconductor with the value of 0.6 eV band gap at Γ point. The optical spectra of (13-0) carbon nanotubes have been calculated for both electric field orientations, parallel and perpendicular to the tube axis. The dielectric function was found highly anisotropic being much larger when the electric field is aligned along the tube axis than when it is aligned perpendicular to the tube axis. The calculated static dielectric constant for polarization parallel to the tube axis is 11 while for the polarization perpendicular to the tube axis it is obtained 4. Optical properties are calculated within the random phase approximation (RPA).

Key words: DFT, Carbon nanotube, Optical spectra, Dielectric function.

References: