چکیده
در این پژوهش، رسوبات سازنده آبدراز در خاور حوضه کهگیلویه با هدف تعیین عمق دریانه و چگونگی تغییرات نسبی سطح آب مورد مطالعه قرار گرفتند. بدین منظور بررسی یاد شده در 125 کیلومتری خاور مشهد، سنگ‌نامه عمده سارن، سارن، هامک و سنگ آهنکه‌ای گل سفیدی به ضخامت تقریبی 40 متر انجام گردید. بر اساس مطالعات فرامینفرهای پلاکتیک، سن‌های سازنده تورونیان مارفی شده است. چنین نتیجه‌گیری شده است که سنگ‌های فرامینفرهای بین‌تیک و نسبت فرم‌های پلاکتیک به بین‌تیک نشان می‌دهد. عمق حوضه رسوبی کهگیلویه بیش از بازه زمانی مذکور در مجموع از ابتدا تا انتهای سازنده آبدراز داشته و ولی این افراسیاب‌ها نوسانات عمده به دست نرسید.

Paleobathymetry of Abderaz Formation in Padeha section, according to benthos foraminifera

Abstract
At this research, to do paleobathymetrical studies and identification of sea level changes in east of Kopet-dagh basin, the Abderaz Formation sediments is studied. For this order, Padeha section, in 125Km. east of Mashad city is selected. In this section, Abderaz Fm. Is composed of marl, limy marl and chalky limestone with 460 meters thickness. According to planktonic foraminifers, the age of this formation is Turonian to Santonian. Index genuses and species of benthos foraminifers and planktonic-benthic ratio show that Kopet-dagh basin depth, in ascending direction, from base to top of the section was increased, but this increasing was fluctuant.

مقدمه
برش پایه‌ها در فاصله‌ی 125 کیلومتری جاده‌ی مشهد - سرسخت در 2 کیلومتری شمال روستای پادها بامختهای جغرافیایی 15/8، 44، 05 طول خاوری و "0/3، 45، 05 عرض شمالي قرار دارد. مزار زرین سازنده آبدراز در این برش، با سازنده آبدراز از نوع نابی‌پسیگی هم شیب بوده و مزرعه بالایی آن با سازنده آبدراز ارتباط یپسوند و تدریجی است. سازنده آبدراز در این برش به طور عمده شامل مارون، مارونهای آهنک و سنگ آهنکه‌ای مارونی، خاکستری و خاکستری متمایل به آبی به پایان سه‌گانه آهنک گل سفیدی است.
مطالعات انجام شده در زمینه تعیین عمق دریانه، با شناسایی آلگوی پراکندگی و یا کشف تغییرات اجتماعات و گونه‌های فرابنینگری نشان می‌دهد که تغییرات عمق، ارتباط خوبی بین انواع جنسیتی میکروفیل‌های نیکی با عمق دارد (Van der Zwaan et al., 1999; Jorissen et al., 2007) به طور کلی تغییرات در عامل اصلی مواد غذایی و اکسیژن در پراکندگی گونه‌های مختلف موجودات مؤثر است. در این رابطه مدل‌های متقاوتی ارائه شده است. برای نمونه می‌توان به مدل‌های (Alegret & Thomas, 1972) Sliter & Baker (2001) اشاره نمود. این مطالعات با کمی تغییر از مدل Alegret et al. (2003) اضافه شده است. استفاده شده است (جدول 1).

<table>
<thead>
<tr>
<th>Environment</th>
<th>Foraminifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNER</td>
<td></td>
</tr>
<tr>
<td>Multiolids</td>
<td>Planorbulina</td>
</tr>
<tr>
<td>Palmula</td>
<td>Bolivina</td>
</tr>
<tr>
<td>Placopelina</td>
<td>Pararotalia</td>
</tr>
<tr>
<td>OUTER</td>
<td></td>
</tr>
<tr>
<td>Nodosariids</td>
<td>Pseudonodosaria</td>
</tr>
<tr>
<td>Gyrodina</td>
<td>Pseudunigerina</td>
</tr>
<tr>
<td>bolivina</td>
<td>Pyraminida</td>
</tr>
<tr>
<td>Gavelinella</td>
<td>Globulina</td>
</tr>
<tr>
<td>UPPER</td>
<td></td>
</tr>
<tr>
<td>Gyrolinoides</td>
<td>Dorothia</td>
</tr>
<tr>
<td>Gaudryina</td>
<td>Ammodiscus</td>
</tr>
<tr>
<td>Praebulinna</td>
<td>Spiroplectamina</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
</tr>
<tr>
<td>Praebulinna</td>
<td>Bathysiphon</td>
</tr>
<tr>
<td>Gaudryina</td>
<td>Ammodiscus</td>
</tr>
<tr>
<td>Allomorpha</td>
<td>Chlosstomella</td>
</tr>
<tr>
<td>LOWER</td>
<td></td>
</tr>
<tr>
<td>Glomospira</td>
<td>Praebulinna</td>
</tr>
<tr>
<td>Gaudryina</td>
<td>Allomorpha</td>
</tr>
<tr>
<td>Osangularia</td>
<td>Gaudryina</td>
</tr>
</tbody>
</table>

برای این پژوهش، تعداد 117 نمونه آزمایشی در دو ایستگاه دریا برداشت گردید. نمونه‌ها با روش شستشوی توپوت آب اکسیژن آرام‌سازی شده و در نمونه‌های مناسب نیز مقاطع میکروسکوپی لازم به گردید. جهت شناسایی و مقاتسه (Lamolda et al., 2007) و (Hornibrook et al., 1989) استفاده شده است.

بحث و ترجمه گزارش

مطالعه در دو ایستگاه شناخت و یا یافته‌ها گزارش است. این واحدهای میکروفیل‌های جنگلی شناخته شدند و با نام‌های دیگر مورد بررسی قرار گرفتند:

Dentalina aculeate, Dentalina basiplanata, Heterohelix globulosa, Marssonella turris, Marginulina inconstantia, Nodosaria affinis, Robulus alexanderi, Saracenaria saratogana, Whiteinella archeocretacea.

79
مجمعه مقالات سومین همایش انجمن دیرینه شناسی ایران

با توجه به جدول ۱ و قواعد انواع فرامینرها ذکر شده، محیط دریایی باز و شلف بیروینی برای این بخش معرفی می‌شود.

۱- بخش سنج سگ آمک گل سفید شماره ۱۸۸۷ منطقه که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از سنج سگ آمکهای مارونی نازک لایه داری اثراتی از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

۲- بخش سنج سگ آمک گل سفید شماره ۱۸۸۸ متر ضخامت که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از سنج سگ آمکهای مارونی نازک لایه داری اثراتی از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

۳- بخش سنج سگ آمک گل سفید شماره ۲۷۷۷۶۵ متر ضخامت که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

۴- بخش سنج سگ آمک گل سفید شماره ۲۷۷۷۶۲ متر ضخامت که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

۵- بخش سنج سگ آمک گل سفید شماره ۲۷۷۷۶۳ متر ضخامت که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

۶- بخش سنج سگ آمک گل سفید شماره ۲۷۷۷۶۴ متر ضخامت که شامل سنج سگ آمکهای ضخیم لایه بیومیکرینی سفید جهرک مایل به زرد، نخودای با میانی انعکس‌های از دو کدنوا، پیتونولا و Calispherula است. فراوانی انواع گونه‌های Pithonella و

Dentalina aculeate, Globotruncana lapparenti, Globotruncana lineolata, Heterohelix reussii, Lenticulina munsteri, Nodosaria affinis.

مقایسه این گروه‌ها با جدول ۱ محیط شلف بیروینی را معرفی می‌کند.

Ammodiscus cretacea, Dentalina gracilis, Dicarinella primitive, Frondicularia goldfussii, Gaudryina pyramidalata, Globotruncana lapparenti, Heterohelix moremani, Marssonella oxyca, Nodosaria aculeate.

این مجموعه محیط شلف بیروینی با وابسته‌ای به‌این‌ها با به‌شناسی می‌کند.

Ammodiscus cretacea, Bolivinoides decoratus, Heterohelix globulina, Gaudryina pyramidalata, Globotruncana lapparenti, Gyroidinoides nitida, Marionella oxyca, Neoflabellina rugosa, Stiessina exculpta.

این مجموعه محیط شلف داخلی تا ابتدا را معرفی می‌کند. به‌نظر می‌رسد محیط شلف رسوپ‌هایی گزاری از این‌ها این واحد کم عمق‌تر از انتهای آن بوده است. حتی انتوا پیتونولا آکلوئیتی شکسته شده در این‌ها وایکنگن است. میزان این واحد با شکسته‌ای این واحد است. فراوانی
Neoflabellina و Bolivinoides Gaudryina و Gyroidinoides Ammodiscus
جنسهای و کاهش فراوانی جنسهای

نداشتن از افرادی عمق در اندازه‌ای بیش از سایر دارد. به‌طور خاص سنج سگان آهک گل سریال‌هایِ گل‌کوبنی‌های شماره ۱۱ و ۱۲ متری‌مدخ‌مکه که یک دو تا نوبت از سنج آهکی‌های متوسط لایه و بازنده‌های متوسط لایه است و با در این‌ها می‌باید سنج جنسه‌ای سگان آهکی‌های کاهش جنسه‌ای

فاسیله‌ای است. در این‌جا می‌توان به زیرگراینداهای Pithonella و Calcisphaerula است. و در این‌جا می‌توان به زیرگراینداهای Pithonella و Calcisphaerula است. و در این‌جا می‌توان به زیرگراینداهای Pithonella و Calcisphaerula است.

Dentalina gracilis, Globotruncanca lapparenti, Heterohelix globulosa, Lenticulina munsteri, Marssonella oxycona, Neoflabellina sutralis, Neoflabellina rugosa, Rosita fornicate, Stensioina exculpta.

ابن این مجموعه فسیلی درونها را تا هر دستگاهی می‌تواند به شکل داخلی معنی‌داری داشته باشد. تَغییرات عمق در این قسمت به گونه‌ای است که بخش میانی عمق‌تر از بخش‌های اولیه و انتهای است. به‌طور خاص سنج سگان آهک گل سریال‌هایِ گل‌کوبنی‌های شماره ۱۱ و ۱۲ متری‌مدخ‌مکه که یک دو تا نوبت از سنج آهکی‌های متوسط لایه و بازنده‌های متوسط لایه است و با در این‌ها می‌توان به زیرگراینداهای Pithonella و Calcisphaerula است.

Ammobacolites coprolithiformis, Ammodiscus cretaceae, Dentalina gracilis, Dorothis conula, Frondicularia warsi, Gaudryina laevigata, Gaudryina pyramidata, Globotruncanca arca, Globotruncanca bulloides, Globotruncanca lapparenti, Gyroidinoides nitida, Neoflabellina rugosa, Nodosaria aculeate, Nodosaria affinis, Stensioina exculpta.

ابن این مجموعه فسیلی می‌تواند به سطح داخلی تا خارجی و حتی کمی عمق‌تر نیز به‌علاوه بالایی را معنی‌داری داشته باشد. تَغییرات عمق در این قسمت به گونه‌ای است که بخش میانی عمق‌تر از بخش‌های اولیه و انتهای است.
Globoiruncana Lapparenti Globoiruncana imbricate Dicarinella asymetrica اجتماع فیلیهای معروف سن نورونی نا ساتونیون برای ساندن آبی در در بخش پاده‌های مجمعی فیلی خاکی. میوه رسوبی دریایی بزرگ و غیر می‌کند. عمیقی رویه رسوبی در طی این زمان دست خوش تغییرات متناوب بوده است، اما در مجموع از این زمان تا انتهای سالنده کمی افزایش عمیق داشته است. با توجه به فراوانی و پراکندگی جنگلی مثل Heterohelix بر طبق نظر Wonders و (1980) Hart برآورد بوده است. عمیقی رویه بین 50 تا 300 متر متغیر بوده است.

References

