EFFECT OF DIE PROFILE ON MECHANICAL PROPERTIES OF PRODUCT IN EXTRUSION OF RODS

A. Farzad

Department of Mechanical Engineering, University of Sistan and Baluchistan
Zahedan, Iran, farzad@yahoo.com

(Received: August 29, 2000 – Accepted in Revised Form: April 9, 2002)

Abstract In any metal forming process, both the strain rate and deformation rate depend on the die profile. The die profile also, is responsible for the non-uniformity of the deformation along the cross-section. These affect the quality and mechanical properties of the product. Therefore, if a die is designed, in which the affecting variables can be controlled spontaneously, it is hoped to obtain a product with a desired quality. In this paper, the effect of the die profile on the mechanical and metallurgical properties of the product is investigated.

Key Words Tool Design, Extrusion, Redundant Shearing Strain

I. INTRODUCTION

Despite a considerable advances achieved in the theoretical analysis of plasticity, the die design has developed on the basis of lengthy and costly trial and error methods. In practice, a high level of forces is used which may not be necessary for the homogeneous deformation of metal. This high level of forces may produce defects in the product and damage the tooling.

Strain is an inherent factor in any metal-forming process, whose amount in different directions defines the final shape of the product. A homogeneous strain is attained in a die less media of a specimen, for example in a simple tension testing. However, any metal-forming process consists of a series of dies, which can produce inhomogeneous strains and defects in the work piece.

In a metal deformation process, the product should be defect free, having certain mechanical properties and metallurgical structure and is produced economically. These requirements can be attained in an ideal die, which introduces a proper stress, strain, strain rate, and temperature at any point of deformation zone. If the stresses are insufficient for fully plastic flow, within the deformation zone, some of the material may not contribute to homogeneous deformation. Non-uniformly distributed stress may also, cause different internal and external types of fracture in the product. For this reason the correct tool design is the key factor in the economical metal-forming processes.

The quality of the product will depend on the strain path. Consider a specimen subjected to strain ε_g over a length X_1 in a given operation (Figure 1-a). An infinite number of strain paths may be traced to join O to A, of which two different strain profiles are shown in Figure 1-b. The rate of deformation on length OB of the curve 1 is high and on length BA, is negligible. Hence, the product may have adequate time for recrystallization before leaving the die and entering into a very different environment. By contrast, curve 2 ends in length CA of a greater rate of deformation and the metal may harden as it comes to point A, without having the time for recrystallization. Consequently, the mechanical properties and metallurgical structure of the product for the paths 1 and 2 will differ widely.
2. FLOW PATTERN

Among the metal-forming processes, extrusion is a suitable means for theoretical study, because the process is simple, the flow effects can be displayed clearly, and the deformation readily reaches the steady state condition. In this work the extrusion was adopted for the experimental study of the flow pattern.

An ideal deformation is one, in which any plane normal to the axis remains plane and normal after the deformation. In real processes, however, the normal planes may distort and cause nonuniformity throughout the final product. A typical flow pattern of a laminated experimental specimen, using a kind of industrial wax as a model material, is shown in Figure 2-a, and a deforming layer within the deformation zone is isolated and depicted in Figure 2-b.

The normal planes are subjected to two distinct, unnecessary physical effects and distort to hyperbolic shapes [1]. Any element of the layer may suffer from a translational displacement and a shearing distortion. The final arrangement of elements, corresponding to a layer, forms the flow pattern.

In the left-half portion of Figure 3-a, a flow pattern of a layer is plotted using the data obtained from a measured specimen. The distribution of particles, considering the translational displacement only, is shown in the right-half portion. The initial plane layer is divided into n identical elements. These elements in ideal deformation should have equal lengths of l_i in the considered position. However, the i-th element may have displacements x_i, relative to the ideal position, and w_i, relative to the (i-1)th element. Although the translational displacement of the elements from the ideal position to their final positions may be associated with deformation, here further deformation of the elements is not involved. It can be noticed that in addition to the incremental displacements not being equal, (w_i constant), the lengths of the elements situated at the mid-portion between the die wall and the centre-line are longer than the rest. It means that these elements in addition to translation suffer extra extension during the deformation. But, it seems that a very thin particle at the vicinity of the die wall does not change, and remains at the original length throughout the deformation.

The axial displacement of the layer elements does not contribute to the deformation and the final shape of the product. Consequently, the energy dissipated in the movement is entirely redundant.
The second distorted effect is assumed to cause the rectangular elements to become parallelograms (Figure 3-b). The distortion is Δx, along the axis, and it takes place in an element height Δy. Accordingly, a shear strain, equal to $\Delta x / \Delta y$, can be evaluated for any individual element and may be considered to be $\cot \beta$. This figure reveals that the distortion of the elements is not the same. Shearing strain is higher at mid-portion between the die wall and the axis, while it is lower near the axis. The distribution of the shearing strain at the cross-section can map out the inhomogeneity in the specimen. This is shown in Figure 4. Although shearing strains do not affect the final shape of the product, they contribute to the total straining, whose nonuniform distribution results in an inhomogeneous deformation. Moreover, the product consumes energy to perform shearing strains. Accordingly the shearing energy is also redundant.

If the principal strains are denoted by ε_x, ε_y, and
Figure 5. Die geometry in deformation zone.

ε_{in} in an ideal homogeneous deformation, the strain in any element can be calculated as:

$$\varepsilon_H = \sqrt{\frac{2}{3}} \left[\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2 \right]$$

(1)

In the existence of the redundant strains, the final strain becomes [2].

$$\varepsilon_f = \varepsilon_H + \frac{1}{2} \left(\varepsilon_l^2 + \varepsilon_t^2 + \varepsilon_c^2 \right)^{\frac{1}{2}}$$

(2)

where, ε_l is the longitudinal strain, ε_t is the tangential strain, and ε_c is the circumferential strain.

The amount of homogeneous strain can be calculated from the geometry of the deformation zone, whereas the amount of the redundant strain depends on many factors, including the material properties, geometry of the die, frictional conditions, temperature, etc.

3. EXISTING TOOL DESIGN METHODS

A considerable amount of investigations in metal forming, thus far is devoted in the area of:

- Determination of energy consumption, and the methods of its reduction,
- Reduction of product defects, and
- Increase in the tooling life.

However, not many published works can be found on the effect of die profile on the mechanical properties of the product. The advantage of curved dies over flat-faced tools is reported in some investigations [3, 4]. But, before using a specified profile, its influence on the inhomogeneity of the strains should be recognized. The major factors producing the inhomogeneity are not completely identified, but it is a proven fact that the geometry of the deformation zone has a dominating role in initiation and growth of inhomogeneity [5, 6, 7].

Most of the investigators utilize a certain series of dies, with randomly selected profiles, to evaluate the overall energy consumption, and study the quality of product, in the hope of finding an optimum die profile. Among the common geometrical shapes, the cosine, elliptic, hyperbolic concave curves as well as conical dies are utilized frequently [8, 9, 10, 11].

The governing role of the die pass on the inhomogeneity of deformation may lie in the fact that the strain rate, contact area, stress distribution in work-piece, possibility of recrystallization and some other influencing factors all depend on the die geometry. Among the listed parameters, it is proven that the strain rate has influence conclusively. In extrusion, the mean longitudinal shearing strain is proportional to the strain rate [1].

4. C.R.S. DIES

The concept for provision of curved die profiles based on the "Constancy of the Ratios of the successive homogeneous Strains" (C.R.S.), proposed by Blazynski [12], is defined as:

$$\frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_1 - \varepsilon_0} = \frac{\varepsilon_3 - \varepsilon_2}{\varepsilon_2 - \varepsilon_1} = \cdots = \frac{\varepsilon_n - \varepsilon_{n-1}}{\varepsilon_{n-1} - \varepsilon_{n-2}} = s$$

(3)

where s is an arbitrarily selected numerical constant. In this concept, it is assumed that the die length X_T is divided into N small distances of x (Figure 5) and homogeneous strains in individual sections are denoted by $\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots$ and ε_n. In general, ε_n is considered to be the finite strain between section zero (0) of the pass, i.e., where the transverse section in which plastic deformation begins, and any section (n) along the pass. Th
substituting into Equation 3 from Equation 4 we have:

$$\frac{Z_n}{Z_{n-1}} = Z_1^{s^{(n-1)}}$$ \hspace{1cm} (5)

The solution of this equation will provide the dimensions of the work-piece in any desired section, and will thus define the required geometry of the pass.

The constant s can take any positive number. If $s = 1$, a uniform rate will be expected, if $s > 1$ or $s < 1$ accelerated or decelerated rates will be obtained, respectively. The choice of the mode of the rate will depend on the severity of the operation.

If the initial and final radii (R_o and R_d) of work-piece are known, considering the homogeneous deformation in the extrusion of rod, we can find [2]:

$$R_n = R_0 C^{1+s+s^2+...+s^{n-1}}$$ \hspace{1cm} (6)

where, C is the amount of deformation in the first divided section.

The selection of s will leave the choice of N (the total number of divisions) and C to the judgment of the designer. On the basis of experience, Blazynski [12] suggested $C=0.992$, $s=0.8$ for decelerated, $s=1$ for the uniform, and $s=1.2$ for the accelerated rates of deformation in wire drawing, irrespective of N. N, s, and C are interdependent. Figure 6-a shows the dependence of s on C with different number of divisions and the variation of s with C for different extrusion ratios is given in Figure 6-b. Again, it can be seen from these figures that the optimum value of C is about 0.99 and that of s lies in the range of 0.8 to 1.3.

It is clear from Equation 6 that the die length is not a restrictive parameter in the design and can be selected with considering other aspects. However, if the selected number of divisions exceeds a certain limit, it is seen from Figure 6-a that the higher degrees of accelerated deformation rates will not be possible.

For design purposes, if the diameters D_o and D_d are known, a rational selection of s and N can lead
to the calculation of the factor C from Equation 6. Typical die profiles for $N = 15$, $s = 0.8$, 1, and 1.2, with $R/R_t = 20/9$ are shown in Figure 7-a. In this figure, the conical die profile is abbreviated to CON., the accelerated profile to A.C.R.S, the decelerated one to D.C.R.S, and the uniform profile to U.C.R.S. The strain paths of these dies are illustrated in Figure 7-b. By changing the constant s, different strain paths can be obtained.

As can be noticed from Figure 7-b, strain paths are dissimilar for different dies. Consequently, the quality and the mechanical properties of the product will vary widely. In the D.C.R.S die the strain rate is considerably high at the beginning and is negligible at the end. This trend allows the material to recrystallize within the deformation zone. By contrast, in A.C.R.S die the strain rate is negligible at first and is noticeable towards the end. This may result in the strain hardening of the material within the die. In U.C.R.S die a uniform strain rate is obtained.

Experiments on C.R.S. dies were conducted using a kind of industrial wax as model material. The observations agree very well with expect results. In the conical dies the extrusion ratio, d_i length, and contact area is not independent of each other. For this reason, it was impossible to study the effect of any of these variables in the absence of the others.

Unlike the conical dies, the parameters are more controllable in tools with the C.R.S. concept. The die geometry dictates the mode of variation of strain and strain rate. It also determines the contact length and should control the material flow, dominating the frictional effect. These governing elements are all under control in the C.R.S. dies.

The distortion of layers normal to the die axis is illustrated in Figure 8, and the distribution c
redundant shearing strains ε_i on the cross-section of rod is shown in Figure 9. This distribution will determine the homogeneity of the product in radial direction. Accordingly, it is expected that the product extruded from each of these dies should have a harder surface and a softer core, which is more significant for A.C.R.S. tools. On the other hand, uniformity of the product will be guaranteed using the U.C.R.S. dies. This theory is also applicable for processes other than extrusion, including drawing, rolling and piercing.

5. FURTHER EXPERIMENTS

Many researchers studied the mechanical properties of materials extruded through conical dies, see for example references [13, 14]. Their findings can be readily interpreted by the above discussion.

Further experiments were conducted using aluminum specimens. The specimens were divided in two groups, one of which were extruded cold and the other were warmed up to 350 °C and extruded through the same dies. Measurements of hardness were made on the deforming part of the specimens, on the cross-sections cut in equal distances along the die length, after cooling the work-pieces. The results are shown in Figures 10 and 11. As can be seen, the strain hardening and recrystallization effects are clearly evident, in accordance with the discussion made for the strain path.

Hardness testing also was made along the radius
of the work-piece, on the final products extruded through different dies, shown in Figure 12, which is in close agreement with the work of Osakada and Niimi [13].

6. CONCLUSIONS

Using a rational die design method, such as C.R.S. analysis, it is possible to find any desired tool profile in which the metalworking variables are controllable. It may lead the process to minimize the power consumption, reduce the product defects, increase the tooling life and obtain products with specified mechanical properties. Conversely, when the die profile is obtained, this study enables the prediction of mechanical properties, and metallurgical structure of the product.

7. GENERAL NOTATION

- \(C \) amount of deformation in the first section
- \(D_e \) die exit diameter
- \(D_o \) die entrance diameter
- \(E_R \) extrusion ratio
- \(L_0 \) expected thickness of a layer after extrusion, according to homogeneous deformation
- \(N \) total number of divisions of die length
- \(n \) number of considered section of the die
- \(s \) rate of deformation
- \(w_i \) relative displacement of two successive elements of a distorted layer
- \(X_1 \) total length of die
- \(\varepsilon \) strain
- \(\varepsilon_c \) circumferential shearing strain
- \(\varepsilon_{ht} \) homogeneous strain
- \(\varepsilon_l \) longitudinal shearing strain
- \(\varepsilon_r \) total strain
- \(\varepsilon_t \) tangential strain
- \(\varepsilon_r \) redundant shearing strain

8. REFERENCES