Fatty acid composition of milk from Holstein cows fed Fish oil, Canola oil, or their combination in early lactation
T Sadat Vafa, A A Naserian, A R Heravi Moussavi, R Valizadeh, M Danesh Mesgaran, M A Khorashadizadeh

Effects of different levels of fish oil and canola oil on productive performance of early lactating Holstein dairy cows
T Sadat Vafa, A A Naserian, A R Heravi Moussavi, R Valizadeh, M Danesh Mesgaran, M A Khorashadizadeh

Evaluation of nutritional values of caraway-seed pulp fed to Holstein dairy cattle
M M Moheghi, A.M Tahmasbi, A.A Naserian, A Halim, M Kazemi

The effect of grazing different pasture herbage masses on rumen pH in lactating dairy cows
E Lewis, F Coughlan, M O’Donovan, C Wims

Effect of rumen acid load on in vitro ruminal total bacteria and *fibrobacter succinogenes* populations determined by real-time PCR

Dairy

Effect of different sources of pectin feedstuffs on milk yield and composition of early lactating Holstein cows
M Kordi, A A Naserian, R Valizadeh, A M Tahmasbi

Investigation of milking equipment cleaning procedures in three geographical areas where milk chemical residues were identified in bulk milk
D Gleeson, B O’Brien

Comparative grazing behaviour of Holstein-Friesian and Jersey dairy cows and their F₁ cross in pasture based production systems
R Prendiville, K M Pierce, F Buckley

Comparative somatic cell score and milking characteristics of Holstein-Friesian, Jersey and Jersey×Holstein-Friesian cows at pasture
R Prendiville, K M Pierce, F Buckley

Animal performance and economic implications of Holstein-Friesian, Jersey and Jersey×Holstein-Friesian cows under seasonal pasture based systems
R Prendiville, L Shalloo, K M Pierce, F Buckley

Estimation of the effect of dilution due to milk yield on milk somatic cell count across cow parities
S J More, K O’Sullivan, B O’Brien, D P Berry, P T Kelly

Genetics

Genetic aspects of lambing difficulty in Scottish Blackface Sheep
J Ilska, J Conington, N Lambe

Genetic associations between Johnne’s disease and susceptibility to *Mycobacterium bovis* and *Mycobacterium avium* subsp *avium* in Irish Holstein Friesian dairy cows
M L Bermingham, S J More, M Good, A R Cromie, P Mullowney, I M Higgins, D P Berry

Genetic variation in serological response to *Mycobacterium avium* subspecies paratuberculosis and its association with performance in Irish Holstein-Friesian cows
D P Berry, M Good, A R Cromie, S J More

Transcriptional activities of bovine lactoferrin (LTF) gene promoter haplotypes
B Bahar, F O’Halloran, L Giblin, T Sweeney

The impact of selection on milk production on the lactoferrin content of milk in Irish Holstein-Friesians
S McParland, L Giblin, R F Veerkamp, D P Berry

The influence of genetic selection on the milk fatty acid profile of spring calving dairy cows
S McParland, D P Berry, J Coleman, R F Veerkamp, H Soyeurt
Effect of different levels of fish oil and canola oil on productive performance of early lactating Holstein dairy cows
T Sadat Vafa, A Ali Naserian, R Hervi Moussavi, R Valizadeh, M Danesh Mesgaran, M Ali Khorashadizadeh
Excellence Centre for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Islamic Republic of Iran
Email: vafa_toktam@yahoo.com

Introduction Lactation in the dairy cow is characterized by a dramatic increase in the nutrient demands for milk synthesis that coincides with a prepartum decline in dry matter intake (DMI) which leads to negative energy balance in early lactation. Supplemental fat sources are utilized in rations for dairy cows as a common method to increase the energy density of the diet or to modify milk production, milk fat content and milk fatty acids profile (Juchem et al., 2008); However, its effects depend on the digestibility of the fat sources and effects of supplemented fat on other diet component digestibility. It is well recognized that feeding vegetable oils containing unsaturated fatty acids inhibit ruminal fermentation, decreased dry matter intake (Harvatine and Allen, 2006b) and fibre digestibility especially in high concentrate diets. The current study was designed to evaluate the effect of fish oil and canola oil supplemented diets on DMI, nutrient digestibility and nutrient intake in high producing dairy cows in early lactation.

Material and methods Eight multiparous early lactation Holstein cows (42±12 DIM, 40±6 kg daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% canola oil (CO), 2% fish oil (FO), or 1% canola oil + 1% fish oil (COFO), according to a double 4 × 4 Latin square design with four treatments, four periods, and two cows per treatment as the main plot, and the four sampling periods as the subplot. Each period lasted 21 d, which included a 14-d diet adjustment period followed by a sampling period. Oils were added at a level of about 2% of dietary DM, resulting in a dietary ether extract content of 4.7%. TMR mixture and faeces were sampled on first 5days of each sampling period and were stored at -20°C. At the end of each period feed and faeces samples were mixed to get the final sample and were stored at -20 °C up to the end of experiment. Finally all the feed and faeces samples were dried in a forced-air oven at 60°C, and stored in sealed plastic containers at room temperature until analyzed. In preparation for analyses, dried feed and faeces were ground first through a 2-mm screen and were analyzed for fat, ADF (Robertson and Van Soest, 1981), NDF (Van Soest et al., 1991), and CP (AOAC, 1990; method no. 988.05), acid-insoluble ash(AIA) (Van Keulen and Young, 1977). AIA content of feed and faeces was used as a natural marker in ruminant to determine apparent digestibility of some nutrient, using following formula:

\[
\text{Apparent digestibility} = \frac{100 - \left(\frac{\text{feed AIA} \times \text{feed nutrient}}{\text{faeces AIA} \times \text{faeces nutrient}}\right)}{\text{faeces AIA}}
\]

Data were analyzed as a replicated 4×4 Latin square using generalized linear model (PROC GLM, SAS Inst, Inc., Cary, NC).

Results The effects of supplementing diets with fish oil and canola oil on nutrient intake and digestibility are presented in Table1. DMI and organic matter (OM) intake decreased in FO diet and fat intake increased in all oil supplemented diets (P<0.05). OM and NDF digestibility decreased in FO diets (P<0.05).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>FO</th>
<th>FOCO</th>
<th>CO</th>
<th>SEM</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake, Kg/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>24.92a</td>
<td>22.21b</td>
<td>24.61a</td>
<td>24.86a</td>
<td>0.61</td>
<td>0.04</td>
</tr>
<tr>
<td>OM</td>
<td>23.19a</td>
<td>19.89b</td>
<td>21.07a</td>
<td>21.91a</td>
<td>0.57</td>
<td>0.05</td>
</tr>
<tr>
<td>NDF</td>
<td>7.98</td>
<td>7.06</td>
<td>7.45</td>
<td>7.96</td>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>ADF</td>
<td>4.76</td>
<td>4.05</td>
<td>4.30</td>
<td>4.43</td>
<td>0.24</td>
<td>0.33</td>
</tr>
<tr>
<td>Fat</td>
<td>0.79</td>
<td>0.98b</td>
<td>1.18b</td>
<td>1.12b</td>
<td>0.01</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Concentration | Control | FO | FOCO | CO | SEM | p |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OM</td>
<td>65.58a</td>
<td>60.62b</td>
<td>62.98a</td>
<td>62.33a</td>
<td>1.05</td>
<td>0.04</td>
</tr>
<tr>
<td>NDF</td>
<td>61.81b</td>
<td>51.55a</td>
<td>52.22a</td>
<td>53.89a</td>
<td>2.52</td>
<td>0.04</td>
</tr>
<tr>
<td>ADF</td>
<td>43.65</td>
<td>42.11</td>
<td>42.42</td>
<td>43.72</td>
<td>1.05</td>
<td>0.19</td>
</tr>
<tr>
<td>Fat</td>
<td>65.43</td>
<td>77.76</td>
<td>69.57</td>
<td>74.9</td>
<td>3.83</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Conclusion Results of the current experiment reveals that supplementing diet with fish oil had significant effects on intake and digestibility of some nutrient, but combing fish oil with plant oil will reduce their adverse effects. Strong negative effects of linseed oil on ruminal fibre digestibility with high proportion of concentrate in diet (67% in DM basis) were reported previously (Ueda et al., 2003).

References