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In this paper, a shell fitting space (SFS) is presented to map non-linearly separable data to linearly sep-
arable ones. A linear or quadratic transformation maps data into a new space for better classification, if
the transformation method is properly guessed. This new SFS space can be of high or low dimensionality,
and the number of dimensions is generally low and it is equal to the number of classes. The SFS method is
based on fitting a hyper-plane or shell to the learning data or enclosing them into a hyper-surface. In the
proposed method, the hyper-planes, curves, or cortex become the axis of the new space. In the new space
a linear support vector machine (SVM) multi-class classifier is applied to classify the learn data.

� 2010 Published by Elsevier Ltd.
1. Introduction

Classification is an important research area with a wide
range of applications. Nonlinear discriminant functions (NDF)
are useful in training a system to recognize specific patterns
and now many applications are based on this method. Neural
network and support vector machine are preeminent mathemat-
ical tools of NDF. Support vector machines (Vapnik, 1995) are
very popular and powerful in learning systems because of the
utilization of kernel machine in linearization, providing good
generalization properties, their ability to classify input patterns
with minimized structural misclassification risk and finding
acceptable separating hyper-plane between two classes in the
feature space.

The result of applying kernels allows the algorithm to fit the
maximum-margin hyper-plane in the transformed feature space.
The transformation may be non-linear and the transformed
space may be high dimensional; thus though the classifier is a
hyper-plane in the high-dimensional feature space it may be
non-linear in the original input space. If the used kernel is a
Gaussian radial basis function, the corresponding feature space
is a Hilbert space of infinite dimension. Maximum margin clas-
sifiers are well regularized, so the infinite dimension does not
spoil the results.

Of course kernel methods (KMs) (Abe, 2005; Huang, Kecman,
& Kopriva, 2006; Scholkopf & Smola, 2002; Shawe-Taylor & Cris-
tianini, 2004) map input space into a high dimensional feature
(HDF) space that may be helpful in linearization. As we know
some kernels were proposed for this purpose, namely polynomi-
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als, Gaussians, and splines (Friedman, 1991), but these kernels
do not guaranty linearization in HDF. This problem motivates
us for presentation of new space in which patterns can be clas-
sified by linear classifier, we name it shell fitting space (SFS) be-
cause we use the concept of shell fitting for the creation of the
new space.

Support vector machines (SVM) and its variants (Abe, 2005; Lin
& Wang, 2002; Sadoghi Yazdi, Effati, & Saberi, 2007; Wang, 2005;
Wu, Jie-Chi, & Lee, 2007) is a particular instance of KMs. But it
has some weaknesses as follows.

Slow training (compared to neural network) due to
computationally intensive solution to QP problem especially for
large amounts of training data) needs special algorithms.

� The kernel to be used is not deterministic and it changes for
each data set and finally a large feature space is produced (with
many dimensions).
� Slow classification for the trained SVM.
� Generates complex solutions (normally > 60% of training points

are used as support vectors), especially for large amounts of
training data.
� Difficult to incorporate prior knowledge.

Our proposed approach is not to expand the original space into
a new space with many dimensions in comparison with kernel
methods. In SFS the mapping is done to an m-dimensional space;
where m is the number of classes.

The rest of this paper is as follows. Section 2 is devoted to the
development of our method, Section 3 explains how the new
method works on example datasets, Section 4 is devoted to the
application of the method on real datasets. In Section 5 we test
our method with a simple linear classifier on SFS data and compare
its accuracy results with multi-class SVM results on input space
data. Conclusions are made in Section 6.
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2. Shell Fitting Space formulation

Definitions: fxij 2 ½x11; x21; . . . ; xK11; x12; . . . ; xK22; . . . ; x1j; x2j;

. . . ; xkjj; . . .�; j ¼ 1; . . . ;mg is the ith sample with n dimensions of
class j.

Cj is the fitted curve, hyperplane, or surrounded cortex or (shell)
to the set {(Xij,yj), i = 1, . . . ,kj} of data, where yj is the jth label of the
training data and kj shows the number of samples with label j. In
general our mapping is done from a space with m patterns (classes)
of data in n-dimensional space to m-dimensional space by the fol-
lowing notation:

u : X ¼ fx1; x2; . . . ; xng 2 Rn ! uðXÞ 2 Rm

where / is a function that depends on distance of data to each pat-
tern’s fitted curve, hyperplane or surrounded cortex or (shell).

This transformation can be seen in Fig. 1, where X is a feature in
the input space and D = {d1,d2, . . . ,dm} is the feature space element
and ci is the class i.

2.1. Dealing with hyperplane

When a hyperplane is fitted to a set of data the distance of the
point Xi from that plane is calculated with the following formula:

Suppose that the fitted hyperplane is y in (1)

y ¼ w1x1i þw2x2i þ � � � þwnxni ð1Þ

So the distance from y is obtained as (2)

dðXi;CÞ ¼
w1x1i þw2x2i þ � � � þwnxniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 þw2

2 þ . . .þw2
n

q ð2Þ

For instance in y = w1x1 + w2x2 we have the shape shown in Fig. 2a.
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Fig. 2. (a) Distance from a hyperplane an

Fig. 1. RBF-like transformation space.
2.2. Dealing with a hypersphere

When a hypersphere is fitted to a set of data it can be formu-
lated as:

ðx1 � a1Þ2 þ ðx2 � a2Þ2 þ � � � þ ðxn � anÞ2 ¼ r2 ð3Þ

the distance between Xi and C is calculated by (4)

dðXi;CÞ ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1i þ x2
2i þ � � � þ x2

ni

q����
����

� �
ð4Þ

where r is as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � a1Þ2 þ ðx2 � a2Þ2 þ � � � þ ðxn � anÞ2

q
ð5Þ

For example, consider two points (x1,y1) and (x2,y2) in Fig. 2. The
distances d1 and d2 are calculated as shown in Fig. 2b.

2.3. Dealing with a polynomial in two-dimensional space

When a polynomial is fitted to a set of data, points obtained by
minimizing Eq. (6) are examined to see which one corresponds to
the actual global minimum. To do so, Eq. (6) is evaluated for each of
these points and the one that gives a lower value is selected

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x1Þ2 þ ðy� y1Þ

2
q

ð6Þ

where y is as follows:

y ¼ w0 þw1x1 þw2x2 þ � � � þwnxn ð7Þ

For example suppose:

y ¼ w0 þw1x1 þw2x2 þ � � � þw6x6

then we have:

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x1Þ2 þ ðw0 þw1xþw2x2 þ � � � þw6x6 � y1Þ

2
q

ð8Þ

The points that minimize r are calculated by setting the derivatives
of r equal to zero.

Generally, by setting the derivatives of r equal to zero we have
simple formulas as (9)

@r=@x ¼ x� x0 þ ðwnxn þ . . .þw1xþw0 � y1Þ
� ðnwnxn�1 þ ðn� 1Þwn�1xn�2 þ � � � þw1Þ ¼ 0 ð9Þ

Then for each answer xi we find r(xi) from (8) and at the end the
minimum distance is:

Min frðxiÞjxi 2 fanswersgg
2
1

2
11 )y-()x-( yxrd +−=

2
2

2
22 )y-()x-( yxrd +−=

d (b) distance from a hypersphere.
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2.4. Dealing with a line in n-dimensional space

Generally an equation for a line in n-dimensional space can be
written as follows:

Lðx; y; . . . ; zÞ :

w ¼ a1xþ b1

y ¼ a2xþ b2

. . .

z ¼ anxþ bn

8>>><
>>>:

ð10Þ

So the distance between a point (x0,y0, . . . ,z0) and (x,y, . . . ,z) on L can
be calculated with the formula below:

dðw; x; . . . ; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw�w0Þ2 þ ðx� x0Þ2 þ � � � þ ðz� z0Þ2

q
ð11Þ

Considering Eq. (10), the distance can be expressed as:

dðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1xþ b1 �w0Þ2 þ ðx� x0Þ2 þ � � � þ ðanxþ bn � z0Þ2

q
ð12Þ

Once again, we like to minimize (12). Therefore, its derivatives are
set to zero and the x values for which d(x) is minimized are
calculated

@d=@x ¼ ða1xþ b1 �w0Þa1 þ ðx� x0Þ þ � � � þ ðanxþ bn � z0Þan ¼ 0

ð13Þ

Then for each solution xi, d(xi) is evaluated to find the actual global
minimum distance, that is:

Min fdðxiÞjxi 2 fanswersgg
2.5. Dealing with a curve in n-dimensional space

If the number of features is more than two, we can use neural
network-based methods like adaptive neural-fuzzy inference sys-
tem (ANFIS) for this purpose. Detailed explanation can be followed
from Wu et al. (2007) and a brief description is given in the
Appendix.

Steps of transformation using ANFIS are:

(a) Learn ANFIS the classes of data.
(b) Evaluate new data by the system.
(c) Calculate the distance with a subtraction operation; evalua-

tion result is subtracted from the main value of data as dis-
tance. You can see the outputs in Section 3.

2.6. Dealing with a voluminous classes in n-dimensional space

2.6.1. SVDD one-class classification
Three general approaches are proposed to resolve the one-class

classification problem (Tax, 2001). The most straightforward meth-
od to obtain a one-class classifier is to estimate the density of the
training data and to set a threshold on this density. Several distri-
butions can be assumed, such as a Gaussian or a Poisson distribu-
tion. The most popular density models are the Gaussian model, the
mixture of Gaussians, and the Parzen density (Bishop, 1995; Par-
zen, 1962). In the second method a closed boundary around the
target set is optimized. K-centers, nearest neighbor method and
support vector data description (SVDD) are examples of the bound-
ary methods (Tax & Duin, 2004; Ypma et al., 1998). Reconstruction
methods are another one-class classification method which have
not been primarily constructed for one-class classification, but
rather to model the data. By using prior knowledge about the data
and making assumptions about the generating process, a model is
chosen and fitted to the data. Some types of reconstruction meth-
ods are: the k-means clustering, learning vector quantization, self-
organizing maps, PCA, a mixture of PCAs, diabolo networks, and
auto-encoder networks.

To obtain data description for a group of N target objects in in-
put space, we try to find a sphere with minimum volume which
encloses all or most of these target objects. The problem of finding
the minimum hyper-sphere represented by a center ‘‘a” and radius
‘‘R” can be formulated into:

FðR; aÞ ¼ R2 þ C
X

i

ni ð14Þ

s:t: kxi � ak2
6 R2 þ ni; 8i; ni P 0 ð15Þ

The parameter C gives the tradeoff between the volume of the
description and the errors. The free parameters, a, R and ni, have
to be optimized, taking the constraints (15) into account. Con-
straints (15) can be incorporated into formula (14) by introducing
Lagrange multipliers and constructing the Lagrangian:

LðR; a;ai; ci; niÞ ¼ R2 þ C
X

i

ni

�
X

i

aifR2 þ ni � ðkxik2 � 2a:xi þ kak2Þg �
X

i

cini

ð16Þ

with the Lagrange multipliers ai P 0 and ci P 0. Setting partial
derivatives to 0 gives these constraints:

@L
@R
¼ 0 :

X
i

ai ¼ 1 ð17Þ

@L
@a
¼ 0 : a ¼

P
iaixiP

iai
¼
X

i

aixi ð18Þ

@L
@ni
¼ 0 : C � ai � ci ¼ 0 ð19Þ

From the last equation ai = C � ci and because ai P 0, ci P 0, La-
grange multipliers ci can be removed when we demand that

0 < ai < C ð20Þ

Resubstituting (17)–(19) into (16) results in:

L ¼
X

i

aiðxi � xiÞ �
X

i;j

aiajðxi � xjÞ ð21Þ

By definition, R2 is the distance from the center of the sphere ‘‘a” to
(any of the support vectors on) the boundary. Support vectors
which fall outside the description (ai = C) are excluded. Therefore:

R2 ¼ ðxk � xkÞ � 2
X

i

aiðxi � xkÞ �
X

i;j

aiajðxi � xjÞ ð22Þ

Because we are able to give an expression for the center of the
hypersphere ‘‘a”, we can test if a new object ‘‘z” is accepted by
the description. For that, the distance from the object ‘‘z” to the cen-
ter of the hypersphere ‘‘a” has to be calculated. A test object z is ac-
cepted when this distance is smaller than or equal to the radius:

kz� ak2 ¼ ðz � zÞ � 2
X

i

aiðz � xiÞ �
X

i;j

aiajðxi � xjÞ 6 R2 ð23Þ
2.6.2. Using SVDD for our distance based method
Here we used one SVDD for each class of a dataset (for example

2 SVDD for 2 classes). Then to check if a data belongs to a class, its
distance from cortex of each SVDD classes is calculated and this
distance is used as a main criterion to classify the data. In other
words, a data belongs to a class, if its distance to a voluminous
class’ cortex is less than the other classes’ in kernel space. The dis-
tance is calculated by (24). As stated above, like hypersphere-but in
kernel space, the transformation is done
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d ¼ ðz � zÞ � 2
X

i

aiðz � xiÞ �
X

i;j

aiajðxi � xjÞ � R2 ð24Þ
Fig. 4. Fitting a line to each of data classes.
3. Experimental results

First the proposed circle fitting space transformation method
is now demonstrated using simple data as an illustrating exam-
ple, and at the end, our method will be tested using some well
known datasets. In the following discussion, we assume that
the label for each train data is known, in advance. Here our
method has been implemented and tested on MATLAB (Math-
Work Inc.).

3.1. Operation on synthetic data

We describe our approach by some examples. At first we intro-
duce our synthetic data as shown in Fig. 3a–i.

In Fig. 3a there are two classes of linear shape which are linearly
separable. But in other figures (b–i) are not linearly separable and
these figures are divided into three categories: (1) sphere-based
Fig. 3. (a) Two linear classes; (b) circle classes; (c) half-circle classes; (d) half-circle class
(h) two classes for ANFIS and (i) two classes for ANFIS in 3-D space.
figures (b–f), (2) sinuous function (Fig. 3g): more complex classes
which are not easily separable. (3) Fig. 3h and i: are used in learn-
ing ANFIS.
es; (e) half-circle classes; (f) half-circle classes interfere each other; (g) sin-function;



Fig. 5. Transformation space of Fig. 4.
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Consider two data classes in Fig. 3a that are linear classes.
Firstly a line is fitted to each class of data with least square error

fitting method. The result is seen in Fig. 4.
And then to map them to a new space we use a formula like the

following to compute the distance of each data (x0,y0) to the lines.
Here d(X0, l1) stands for the distance of point X0 = (x0,y0) from line d1

dðX0; l1Þ ¼
ja1x0 þ b1y0 þ c1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 þ b2

1

q

dðX0; l2Þ ¼
ja2x0 þ b2y0 þ c2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
2 þ b2

2

q

We use these distances to map data to a new 2-dimensional space
like Fig. 5 which is linearly separable.
Fig. 6. (a) Fitted spheres and

Fig. 7. Fitting a half-circle t
As the second example, consider Fig. 3b. These classes are
examples of hypersphere but in a 2D-space. Curve fitting is done
first and the distance between each circular curve and dataset ele-
ments is calculated. The results are depicted in Fig. 6a and b. Hor-
izontal axis shows the distance between each dataset element and
the internal circle and the other axis is the distance between each
dataset element and the external circle.

3.2. Transformation of circle classes

Our proposed method is applied to a data series in 2-dimen-
sional space (two classes with two features) and the results are
shown in Figs. 7–11.

We have tested our method on four kinds of half-circle (Fig. 3c–f).
The two half-circles may even interfere each other (Fig. 3f). The
results of curve fitting and calculating distance between each dataset
element and each fitted data are depicted in Figs. 7–10.

3.3. Transformation of more complex classes

Data distribution may seem so complex, but this method tries
to separate these two classes of data (Fig. 11).

3.4. Transformation using ANFIS

Other experimental results are those which use ANFIS to fit a
curve (Figs. 12 and 13). Here we have used two classes in 2- and
3-dimensional space.

The two ANFIS were used to fit curves to the data set. As shown
in Fig. 12, the result is linearly separable.
(b) Output of mapping.

o each of data classes.



Fig. 8. Fitting a half-circle to each of data classes.

Fig. 10. Fitting a half-circle to each of data classes.

Fig. 9. Fitting a half-circle to each of data classes.
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3.5. Transformation using SVDD

As stated before, SVDD is a one-class classification used in clas-
sification of voluminous data. At this point, a dataset is shown in
Fig. 14a and the result of our proposed method is depicted in
Fig. 14b.

4. Experiments on Datasets

In this section our proposed method is used to classify some
datasets. These datasets are from UCI Machine Learning Reposi-
tory. Datasets used here are breast-cancer-wisconsin dataset, Iris
dataset, Ionosphere dataset, Transfusion dataset and heart dataset
with 11, 5, 35, 15, 4, and 14 attributes with 2, 3, 2, 3, 2, and 2
classes of data in sequence.
4.1. Circle fitting on datasets

As we said in previous sections, circle fitting is used in classifi-
cation of like-circle data. We show here that our method is good to
classify breast-cancer-wisconsin and Iris datasets and to some ex-
tent to classify ionosphere dataset using circle fitting. Our method
calculated the distance of each data in the dataset to circles fitted



Fig. 11. Fitting a curve to each of data classes.

Fig. 13. Curves have been fitted to data sets of two classes and the result of
transformation has been shown in right figure.

Fig. 12. Fitting a curve to a data set using ANFIS and transform them to a new
linearly separable space.
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on data and the classes are identified. We can see the result in
Figs. 15–17.

We can see from Figs. 15 and 17 that data may have interfer-
ence in their distribution or may not be well fitted to a
hypersphere.

4.2. Using SVDD on dataset

Here we used one SVDD for each class of iris dataset (3 SVDD for
3 classes). Then we calculated distances from cortex of each SVDD
class. The result of classification is depicted in Fig. 18.
For other datasets (breast-cancer-wisconsin dataset, Ionosphere
dataset, Wine dataset, Transfusion dataset and heart dataset), the
same process is followed and the result shows, Figs. 19–22, that
SVDD is good to be used as a tool for our distance based
classification.

5. Accuracy of our method in comparison with multi-class SVM

To show the performance of our method, we first transformed
the data of each dataset to the proposed shell fitting space and
we then used a simple linear classification (Adaline) to classify
the transformed data. In this stage, 50% of the data in each dataset
was used for the training purpose. Kernel-based SVM classifier was
used on the original data to compare the accuracy of our classifica-
tion results. Amongst the available kernels the one with the best
performance for each dataset was used in the training stage. Both
systems were tested for each test data of each dataset. The compar-
ison results of the mean values of 30 runs of both methods follow.
It is worth mentioning that in each run of each dataset the data are
randomly divided into training class and test class.

Adaline classifier uses a W, weight vector, to separate classes
with a hyper-plane where W is obtained from (25):

W ¼ DXðXX 0Þ�1 ð25Þ

In (25) D is the vector of the desired label for each training data of
the class of training data and X is the vector of training samples. We
used rbf, linear, polynomial, . . . ,kernels for SVM classifier and se-
lected the best results for the comparison purpose.

Accuracy (AC) is calculated for a dataset using the following
definition:

AC ¼ ðnumber of true classificationsÞ
=ðnumber of true and false classificationsÞ

Or,

AC ¼ number of true positivesþ true negatives
number of true positives þ true negativesþ false positives þ false negatives

ð26Þ

The comparison results are shown in Table 1. As you can see, in our
method only the hyper-sphere fitting to Wine dataset and heart
dataset has led to a lower accuracy. This shows that, if the fitting
shape is not selected well, the result might not be desirable.

6. Conclusions

In this paper we introduced a new transformation space which
is easier than the other space transformations to classify input



Fig. 20. Result of SVDDD on Ionosphere dataset.

Fig. 19. Result of SVDDD on breast-cancer-wisconsin dataset.

Fig. 17. Result of circle fitting on ionosphere dataset.

Fig. 16. Result of circle fitting on Iris dataset.

Fig. 18. Result of SVDD on Iris dataset.

Fig. 14. (a) Input dataset and (b) result of classification using distance based method.

Fig. 15. Result of circle fitting on breast-cancer-wisconsin dataset.
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Fig. 21. Result of SVDDD on Wine dataset.

Fig. 22. Result of SVDDD on Ionosphere dataset.

Table 1
Comparison of our method accuracy with multi-class SVM (mean accuracy in 30
runs).

Mean accuracy
in 30 runs

Our method (circle
fitting) (%)

Our method (using
SVDD) (%)

Multi-class
SVM (%)

Cancer 96.76 97.25 96.38
Heart 53.86 100 77.38
Wine 30.80 100 76.55
Iris 93.44 96.46 95.20
Ionosphere 72.27 99.72 85.89
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data. The main idea was to use distance of data to a line, curve, or
hyperplane fitted to each class’ data or shells enclosing the classes.
Fig. 23. ANFIS a
The results show that this space transformation works well for col-
lections of data.

Appendix. Adaptive neuro-fuzzy inference system (ANFIS)
architecture (Jang, 1993)

A typical architecture of ANFIS is shown in Fig. 23 for modeling
of function, in which a circle indicates a fixed node, and a square
indicates an adaptive node. For simplicity, we consider two inputs
x, y and one output z in the fuzzy inference system (FIS). The ANFIS
used in this paper implements a first-order Sugeno fuzzy model.
Among the many fuzzy inference systems, the Sugeno fuzzy model
is the most widely used due to its high interpretability and compu-
tational efficiency, and built-in optimal and adaptive techniques.
For example for a first-order Sugeno fuzzy model, a common rule
set with two fuzzy if-then rules can be expressed as (27) and (28)

Rule 1 : If x is A1 and y is B1; then z1 ¼ p1xþ q1yþ r1 ð27Þ
Rule 2 : If x is A2 and y is B2; then z2 ¼ p2xþ q2yþ r2 ð28Þ

where Ai, Bi (i = 1,2) are fuzzy sets in the antecedent, and pi, qi, ri

(i = 1,2) are the design parameters that are determined during the
training process. As in Fig. 23, the ANFIS consists of five layers.

Layer 1, every node i in this layer is an adaptive node with a
node function like (29)

O1
i ¼ lAi

ðxÞ; i ¼ 1;2

O1
i ¼ lBi

ðyÞ; i ¼ 3;4
ð29Þ

where x, y are the input of node i, lAi
ðxÞ and lBi

ðyÞ and can adopt
any fuzzy membership function (MF). In this paper, Gaussian MFs
which are defined by (30) are used

gaussianðx; c;rÞ ¼ e�
1
2

x�c
rð Þ2 ð30Þ

where c is center of Gaussian membership function and r is stan-
dard deviation of this cluster.

Layer 2, every node in the second layer represents the ring
strength of a rule by multiplying the incoming signals and forward-
ing the product as (31)

O2
i ¼ wi ¼ lAi

ðxÞlBi
ðyÞ; i ¼ 1 ð31Þ

Layer 3, the ith node in this layer calculates the ratio of the ith rule’s
ring strength to the sum of all rules’ rings strengths:

O3
i ¼ -i ¼

xi

x1 þx2
; i ¼ 1;2 ð32Þ

where -i is referred to as the normalized ring strengths.
rchitecture.
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Layer 4, the node function in this layer is represented by (33).

O4
i ¼ ~xiZi ¼ ~xiðpixþ qiyþ riÞ; i ¼ 1;2 ð33Þ

where -i is the output of layer 3, {pi,qi, ri} and is the parameter set.
Parameters in this layer are referred to as the consequent
parameters.

Layer 5, the single node in this layer computes the overall out-
put as the summation of all incoming signals like (34)

O5
1 ¼

X2

i�1

-izi ¼
x1z1 þx2z2

x1 þx2
ð34Þ

It is seen from the ANFIS architecture that when the values of the
premise parameters are fixed, the overall output can be expressed
as a linear combination of the consequent parameters:

z ¼ ð ~x1xÞp1 þ ð ~x1yÞq1 þ ð ~x1Þr1 þ ð ~x2xÞp2ð ~x2yÞq2 þ ð ~x2Þr2 ð35Þ

The hybrid learning algorithm (Jang, 1993) and (Jang, Sun, & Mizu-
tani, 1997) combining the least square method and the back prop-
agation (BP) algorithm can be used to solve this problem. This
algorithm converges much faster since it reduces the dimension
of the search space of the BP algorithm. During the learning process,
the premise parameters in layer 1 and the consequent parameters
in layer 4 are tuned until the desired response of the FIS is achieved.
The hybrid learning algorithm has a two-step process. First, while
holding the premise parameters fixed, the functional signals are
propagated forward to layer 4, where the consequent parameters
are identified by the least square method. Second, the consequent
parameters are held fixed while the error signals, the derivative of
the error measure with respect to each node output, are propagated
from the output end to the input end, and the premise parameters
are updated by the standard BP algorithm.
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