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Abstract

Purpose – The purpose of this paper is to present a new method for solving parametric programming
problems; a new scheme of constraints fuzzification. In the proposed approach, constraints are learned
based on deductive learning.

Design/methodology/approach – Adaptive neural-fuzzy inference system (ANFIS) is used for
constraint learning by generating input and output membership functions and suitable fuzzy rules.

Findings – The experimental results show the ability of the proposed approach to model the set of
constraints and solve parametric programming. Some notes in the proposed method are clustering of
similar constraints, constraints generalization and converting crisp set of constraints to a trained
system with fuzzy output. Finally, this idea for modeling of constraint in the support vector machine
(SVM) classifier is used and shows that this approach can obtain a soft margin in the SVM.

Originality/value – Properties of the new scheme such as global view of constraints, constraints
generalization, clustering of similar constraints, creation of real fuzzy constraints, study of constraint
strength and increasing the degree of importance to constraints are different aspects of the proposed
method.
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Paper type Research paper

1. Introduction
In this paper, we present a new method for solving parametric programming problems;
a new scheme is proposed for fuzzification of constraints. In the proposed approach,
constraints are learned based on deductive learning, adaptive neural-fuzzy inference
system (ANFIS) is used for constraint learning by generating input and output
membership functions (MFs) and suitable fuzzy rules. Finally, we use this idea for
modeling of constraint in the support vector machine (SVM) classifier. In the following
sub-sections, we discuss the SVM history and the fuzzy SVM, fuzzy programming (FP)
is also introduced so the reader gets familiar with this concept, and finally a brief
introduction to our approach is brought.

1.1 Support vector machines
Support vector machines (SVMs) (Vapnik, 1995) are very popular and powerful in
learning systems because of the utilization of kernel machine in linearization,
providing good generalization properties, their ability to classify input patterns with
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minimized structural misclassification risk and finding the optimal separating
hyperplane between two classes in the feature space.

Lin and Wang (2002, 2004) proposed fuzzy support vector machine (FSVM) by
considering the noise in the training samples. They used the MF to express the
membership value of a sample to positive or negative class. Importance degree of
training data are modeled in the FSVM by insertion of membership value mi in the
penalty term of cost function in the form of:

1
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i¼1
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 !
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It is noted that slake variable term ji is scaled by mi. The fuzzy membership values are
used to weight the soft penalty term in the cost function of SVM. The weighted soft
penalty term reflects the relative fidelity of the training samples during training.
Important sample with large membership value will have more emphasis in the FSVM
training procedure and more effect over determination of hyperplanes.

Liu and Chen (2007) presented total margin-based adaptive fuzzy support vector
machines (TAF-SVM). TAF-SVM is a type of FSVM, which have been presented in Lin
and Wang (2002, 2004). Authors in Liu and Chen (2007) correct the skew of the optimal
separating hyperplane due to the very imbalanced data sets by using different cost
algorithm. This is performed by dividing the training data into two categories with
different importance and result in dual problem has different boundary for Lagrange
multipliers.

In Lin and Wang (2002), linear and quadratic functions are presented for mi in the
FSVM and two main targets are followed, increasing margin and decreasing
misclassification error. In Chu and Wu (2004), authors present two new methods for
calculation of MF of mi based on geometry distribution of the training samples. Those
samples, which are near to optimal hyperplane, have similar geometry property. The main
idea of FSVM (Lin and Wang, 2002) is that if the input is detected as an outlier or noisy
sample, MF decreases so that the total error term decreases. In Wang et al. (2005), a new
method for calculation of mi of FSVM is presented which follows the same idea that one
input is assigned a low membership of the class if it is detected as an outlier. However, the
method of Wang et al. (2005) treat each input as an input of the opposite class with higher
membership and it makes full use of the data and achieves better generalization ability.
Also, in two different works Jayadeva and Khemchandani (2005) and Wang and Chiang
(2007), authors try to determine MF in multi-category data classification but
aforementioned works discuss over noisy or vague samples and reducing their effects.
Each vague sample in SVM is converted to one fuzzy constraint so we must consider the
FP over crisp and fuzzy numbers with emphasis over constraints. In the following section,
we study FP in details.

1.2 Fuzzy programming
Herrera and Verdegay (1995) presented methods to solve fuzzy integer linear
programming (FILP) problems with different forms of fuzzy constraints, fuzzy
numbers in the objective function and fuzzy numbers defining the set of constraints.
They defined constraints with fuzzy inequalities as presented in equation (1):
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Maximize z ¼
XN

j¼1

cjxj

subject to :
XN

j¼1

aijxj , bi; i ¼ 1; . . . ;M

xj $ 0; j ¼ 1; . . . ;N xj is integer; j ¼ 1; . . . ;N

ð1Þ

where M is the number of constraints and N is the number of variables to be optimized.
They considered fuzzy constraints defined by fuzzy MFs:

mi : R n ! ð0; 1�; i ¼ 1; . . . ;M ð2Þ

and i-th constraint corresponds to a MF is shown in equation (3):

miðxÞ ¼

1; if
XN

j¼1

aijxj # bi

½ðbiþdiÞ2aix�
di

; if bi #
XN

j¼1

aijxj # bi þ di

0; if
XN

j¼1

aijxj $ bi þ di

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where di . 0; i ¼ 1; . . . ;M . Then, the problem is converted to a parametric
programming with the parameter a-cut of the constraint ðmX ðxÞ $ aÞ, where
XðaÞ ¼ {x [ R njmX ðxÞ $ a}; ;x [ R n, mX ðxÞ ¼ inf{miðxÞ; i [ M}. Therefore,
each constraint in equation (1) can be written as:

Maximize z ¼
XN

j¼1

cjxj

Subject to : aixj # bi þ dið12aÞ; i ¼ 1; . . . ;M

xj $ 0; j ¼ 1; . . . ;N xj is integer; j ¼ 1; . . . ;N ; a[ ð0;1�

ð4Þ

Also, Herrera and Verdegay (1995) studied FILP problems with imprecise coefficients in
the objective function that is, with coefficients defined by fuzzy numbers in the form of
equation (5):

Maximize z ¼
XN

j¼1

c
,
jxj

Subject to :
XN

j¼1

aijxj # bi; i ¼ 1; . . . ;M

xj $ 0; j ¼ 1; . . . ;N xj is integer; j ¼ 1; . . . ;N

ð5Þ
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Moreover, they studied a linear programming problem with fuzzy coefficients and fuzzy
right hand-side numbers as:

Maximize z ¼
XN

j¼1

cjxj

Subject to :
XN

j¼1

a
,
ijxj , b

,i
; i [ M xj $ 0;

j ¼ 1; . . . ;N xj is integer; j ¼ 1; . . . ;N

ð6Þ

Rommelfanger (1996) used aggregation operator instead of addition in constraints with
better-obtained results. Jimenez and his team with companionship of Verdegay ( Jimenez
et al., 2003) focused on solving fuzzy nonlinear programming problems in the form of
equation (7):

Minimize f ðxÞ

subject to : giðxÞ , bi; i ¼ 1; . . . ;m

xi [ ½li; ui�; i ¼ 1; . . . ; n; li $ 0

ð7Þ

where x ¼ ðx1; . . . ; xnÞ [ R n is a n-dimensional real-valued parameter vector. They
solve it using evolutionary algorithm because of non-convexity. Moreover, an
evolutionary algorithm was used as search algorithm to find optimum solution for
nonlinear parametric programming problem.

Leon and Vercher (2004) presented a class of fuzzy linear programming problems in
which coefficients in the constraints were modeled as LR-fuzzy numbers. Maity and
Maiti (2007) used fuzzy constraints for finding optimal production with the objective
function of minimum cost in the context of a multi-item dynamic production inventory
control system. In their model, constraints included fuzzy members. Mula et al. (2006)
tried to use fuzzy mathematical programming model for production planning under
uncertainty in an industrial environment. This model considered fuzzy constraints
related to the total cost, the market demand and the available capacity of the
productive resources and fuzzy coefficients for costs due to the backlog of demand and
for the required capacity.

1.3 Our approach
Some resultant notes from previous work are:

. if each defuzzified constraint for each selected parameter is not satisfied, the
answer is not accepted;

. selected range of parameters in obtained parametric programming problem is
questionable; and

. some forgotten constraints affect in the solution.

We attempt to present a new method for solving parametric programming and add
interesting properties to the previous works. Therefore, a learning-based scheme is
selected to learn the constraints, for this purpose intelligent computing tools such as
artificial neural network and fuzzy logic approaches can be used. Recently, there has been
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a growing interest in combining both approaches, and as a result, neuro-fuzzy computing
techniques have been evolved (Jang, 1993). ANFIS model combines the neural network
adaptive capabilities and the fuzzy logic qualitative nature. ANFIS was first presented by
Jang (1993). It has attained its popularity due to a broad range of useful applications in
such diverse areas in recent years as optimization of fishing predictions (Nuno et al., 2005),
vehicular navigation (Noureldin et al., 2007), identify the turbine speed dynamics (Kishor
et al., 2007), radio frequency power amplifier linearization (Lee and Gardner, 2006),
microwave application (Ubeyli and Guler, 2006), image de-noising (Qin and Yang, 2007;
Daoming and Jie, 2006), prediction in cleaning with high-pressure water (Mula et al., 2006),
sensor calibration (Depari et al., 2007), fetal electrocardiogram extraction from ECG signal
captured from mother (Assaleh, 2007), identification of normal and glaucomatous eyes
from the quantitative assessment of summary data reports of the Stratus optical coherence
tomography in Taiwan-Chinese population (Huang et al., 2007) and noise reduction in
images (Çivicioglu, 2007). These applications show that ANFIS is a good universal
approximator, predictor, interpolator and estimator. They demonstrate that any nonlinear
function of many inputs and outputs can be easily constructed with ANFIS.

This study aims to using ANFIS for constraints learning in a convex or non-convex
optimization problem[1]. Learning of constraints leads to substitution of crisp
constraints with a fuzzy system tuned with neural networks (NNs). Converting crisp
constraints to fuzzy rules and MFs with uncertainty property, results in better finding
optimal solution. Many problems exist in constraints satisfaction problems, which are
resolved due to using ANFIS model. In conventional optimization methods, unsatisfying
of any constraint causes searching procedure hit a change in search trace, whereas in the
proposed model, unsatisfying of one constraint increases satisfactory membership,
which is a type of penalty. In our method, all constraints are substituted with fuzzy
inference system (FIS), which is tuned using neural network. In this system, if one
constraint is not satisfied, just MF of corresponding set decreases toward zero. For the
first time, we use ANFIS for expressing constraints in a form similar to the human
thinking. Constraints are converted to rules with uncertainty and are mixed just the
same as occur in a fuzzy system. Also, we apply this scheme in the SVM, a famous tool of
classification task.

The paper is organized as following: the survey of adaptive neuro-fuzzy inference
system is explained in Section 2. Section 3 is devoted to solving constraint parametric
programming using ANFIS algorithm. Section 4 appropriates to SVM constraint
modeling using ANFIS. Experimental results are discussed in Section 5 and in Section
6 conclusions are presented.

2. Adaptive neuro-fuzzy inference system (ANFIS)
Recently, there has been a growing interest in combining neural network and FIS. As a
result, neuro-fuzzy computing techniques have been evolved. Neuro-fuzzy systems are
fuzzy systems, which use NNs theory in order to determine their properties (fuzzy sets
and fuzzy rules) by processing data samples. Neuro-fuzzy integrates to synthesize the
merits of both NNs and fuzzy systems in a complementary way to overcome their
disadvantages (Abraham, 2005; Lin and Lee, 1996).

ANFIS has been proved to have significant results in modeling nonlinear functions
(Jang, 1993). In an ANFIS, the MFs are extracted from a data set that describes the
system behavior. The ANFIS learns features in the data set and adjusts the system
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parameters according to given error criterion. In the ANFIS architecture, NN learning
algorithms are used to determine the parameters of FIS. Below, we have summarized
the advantages of the ANFIS technique:

. Real-time processing of instantaneous system input and output data. This
property helps using this technique for many operational researches problems.

. Offline adaptation instead of online system-error minimization, thus easier to
manage and no iterative algorithms are involved.

. System performance is not limited by the order of the function since it is not
represented in polynomial format.

. Fast learning time.

. System performance tuning is flexible as the number of MFs and training epochs
can be altered easily.

. The simple if-then rules declaration and the ANFIS structure are easy to
understand and implement.

2.1 Adaptive neuro-fuzzy inference system (ANFIS) architecture
A typical architecture of ANFIS is shown in Figure 1 for modeling of function f(x, y), in
which a circle indicates a fixed node, and a square indicates an adaptive node. For
simplicity, we consider two inputs x, y and one output z in the FIS. The ANFIS used in
this paper implements a first-order Sugeno fuzzy model. Among many FIS, the Sugeno
fuzzy model is the most widely used due to its high interpretability and computational
efficiency, and built-in optimal and adaptive techniques. For example, for a first-order
Sugeno fuzzy model, a common rule set with two fuzzy if-then rules can be expressed
as equations (8) and (9):

Rule 1 : If x is A1 and y is B1; then z1 ¼ p1x þ q1y þ r1 ð8Þ

Rule 2 : If x is A2 and y is B2; then z2 ¼ p2x þ q2y þ r2 ð9Þ

where Ai;Bi ði ¼ 1; 2Þ are fuzzy sets in the antecedent, and pi; qi; ri ði ¼ 1; 2Þ are the
design parameters that are determined during the training process. As in Figure 1, the
ANFIS consists of five Layers.

Figure 1.
ANFIS architecture
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Layer 1, every node i in this Layer is an adaptive node with a node function like
equation (10):

O1
i ¼ mAi

ðxÞ; i ¼ 1; 2 O1
i ¼ mBi

ð yÞ; i ¼ 3; 4 ð10Þ

where x, y are the input of node i, and mAi
ðxÞ and mBi

ð yÞ can adopt any fuzzy MF. In this
paper, Gaussian MFs, which are defined by equation (11) are used:

gaussianðx; c;sÞ ¼ e2ð1=2Þððx2cÞ=sÞ2 ð11Þ

where c is center of Gaussian MF and s is standard deviation of this cluster.
Layer 2, every node in the second Layer represents the ring strength of a rule by

multiplying the incoming signals and forwarding the product as equation (12):

O2
i ¼ vi ¼ mAi

ðxÞmBi
ð yÞ; i ¼ 1 ð12Þ

Layer 3, the i-th node in this Layer calculates the ratio of the i-th rule’s ring strength to
the sum of all rules’ rings strengths:

O3
i ¼ 4i ¼

vi

v1 þ v2
; i ¼ 1; 2 ð13Þ

where 4i is referred to as the normalized ring strengths.
Layer 4, the node function in this Layer is represented by equation (14):

O4
i ¼ 4izi ¼ 4ið pix þ qiy þ riÞ; i ¼ 1; 2 ð14Þ

where 4i is the output of Layer 3, and {pi; qi; ri} is the parameter set. Parameters in
this Layer are referred to as the consequent parameters.

Layer 5, the single node in this Layer computes the overall output as the summation
of all incoming signals like equation (15):

O5
1 ¼

X2

i21

4izi ¼
v1z1 þ v2z2

v1 þ v2
ð15Þ

It is seen from the ANFIS architecture that when the values of the premise parameters
are fixed, the overall output can be expressed as a linear combination of the consequent
parameters:

z ¼ ð41xÞp1 þ ð41yÞq1 þ ð41Þr1 þ ð42xÞp2 þ ð42yÞq2 þ ð42Þr2 ð16Þ

The hybrid learning algorithm (Jang, 1993; Jang et al., 1997) combining the least square
method and the back propagation (BP) algorithm can be used to solve this problem. This
algorithm converges much faster since it reduces the dimension of the search space of
the BP algorithm. During the learning process, the premise parameters in Layer 1 and
the consequent parameters in Layer 4 are tuned until the desired response of the FIS is
achieved. The hybrid learning algorithm has a two-step process. First, while holding the
premise parameters fixed, the functional signals are propagated forward to Layer 4,
where the consequent parameters are identified by the least square method. Second, the
consequent parameters are held fixed while the error signals, the derivative of the error
measure with respect to each node output, are propagated from the output end to the
input end, and the premise parameters are updated by the standard BP algorithm.
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3. The proposed method
Let us consider the following parametric programming problem:

Minimize f ðx; uÞ

Subject to : hiðx; uÞ # 0; i ¼ 1; . . . ;m u [ ½a;b�
ð17Þ

a, b are constants and x [ R n.
Here, f ðx; uÞ and hiðx; uÞ; i ¼ 1; . . . ;m are functions with respect to the first

argument and u [ ½a;b�. Constraints hiðx; uÞ may be non-differentiable, discontinuous
and nonlinear.

In conventional method for solving parametric programming problems or FP
problems, which is converted to a parametric programming problem, if each constraint
is not satisfied x must be deleted from answer set. But in the proposed method, value of
unsatisfactorily of each constraints decrease membership of certainty for set of
constraints or increase penalty value to final cost function as shown in Figure 2. The
value of penalty and its relation can be defined with user or by separate procedure. Also
increasing importance to each constraint is performed to simple form.

In the proposed approach, first set of ðx; uÞ [ Rn are generated and hiðx; uÞ
ði ¼ 1; . . . ;mÞ are observed which is performed using Monte-Carlo simulation[2]. In this
procedure, we try to generate all possible states for constraint. For example, for constraint
2x þ 4y , 3, (0, 0) satisfies it and, (0, 1) generate a penalty value. Obtained values for each
constraint hiðx; uÞ; i ¼ 1; . . . ;m are points in m-dimensional space. Penalty values may
be defined in linear or nonlinear form whereas hiðx; uÞ; i ¼ 1; . . . ;m depend on user
decision. Fitting procedure is done in the second step, which is performed using ANFIS. In
the following sub-sections, a complete explanation is presented.

3.1 Constraint learning by ANFIS
In this work, the ANFIS is used to learn constrains for solving a parametric
programming problem. We define a feature vector as input to ANFIS which each
feature includes penalty value of related constraint. Therefore, the length of the feature
vector is m. The feature vector for kth sample is as shown in equation (18):

~Fk ¼ {ĥ1ðx; uÞ; ĥ2ðx; uÞ; . . . ; ĥmðx; uÞ}k; k ¼ 1; . . . ;N ð18Þ

where:

ĥiðx; uÞ ¼
hiðx; uÞ hiðx; uÞ . 0

0 otherwise

(
ð19Þ

Figure 2.
Membership of certainty
for set of constraints
(left figure) and penalty
value of satisfaction in
linear form (right figure)
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and ~Fk’s are feature vectors for N training/generated samples. ĥiðx; uÞ is penalty value
and in this paper is selected in the form of equation (19). It can be defined to nonlinear
form. Monte-Carlo simulation is used for generating N samples of feature vectors. Also
for kth sample, desired output in linear form is defined in equation (20). Of course, in
the general case, desired output is given by user:

~dk ¼

Pm
i¼1aijĥiðx; uÞj

i
max {ai ĥiðx; uÞ}

; k ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ð20Þ

Here, ai is the weight of each constraint. Denominator of equation (20) is a
normalization factor and its numerator is linear combiner of constraints so the desired
output is a linear function of constraints, albeit constraints can be nonlinear functions
of x and u. Of course, ai determine the slop of interpolated hyperplane. If a constraint
hiðx; uÞ is not satisfied, ~dk increases proportional to jhiðx; uÞj, as a penalty value. This
penalty affects the output with selected slop of ai. If each constraint is satisfied, then
the related penalty is zero. A FIS is generated with ~Fk and ~dk, and tuned using neural
network which is mentioned in Section 2 and more details in Jang (1993) and Jang et al.
(1997). The obtained system has properties of ANFIS system and is like equation (21):

gðx; uÞ ¼ N ð~Fk; ~dkÞ ð21Þ

gðx; uÞ is continuously differentiable and linear whereas constraints do not have these
properties. N ð~Fk; ~dkÞ is the constructed FIS. Now problem (17) is converted to a
conventional optimization model (22):

x
minimize pðx; uÞ ¼ f ðx; uÞ þ hgðx; uÞ u [ ½a;b� ð22Þ

where h is a positive number. We can solve this problem with different methods, like
optimization or neural network-based methods (Effati and Jafarzadeh, 2006), or
intelligence-based approach (Sadoghi Yazdi and Effati, 2007).

3.2 Properties of new scheme
In this sub-section, some properties of the proposed approach are explained.

3.2.1 Global view of constraints. As we mentioned, a trained system is created instead
of constraints using a suitable algorithm like ANFIS. From view point of application in
the operation research (OR), noisy sample and missing data are inseparable in the OR
problems. Some algorithms are used for finding optimum stochastic parameters from
missing data or loss samples also, we encounter in the OR applications in data collection,
and entering with missing samples. In the SVM, each training sample is one constraint in
the classification task; so lack of each constraint is caused imperfective solution or
incorrect solution. But in the new scheme missing constraints are estimated and learning
procedure can compensate those if architecture of system is suitable and training
algorithm is robust. For this purpose, we selected ANFIS with proved architecture and
hybrid learning procedure.

3.2.2 Constraints generality. ANFIS construct a strength interpolator and weak
extrapolator if enough learning samples are entered. So, this property can give
generality to obtained system. With utilization of ANFIS or each other similar module
in the proposed scheme, generality obtain easily.
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3.2.3 Clustering of similar constraints. One problem in programming problems is
increasing of constraints and so increasing in computational complexity. Clustering of
constraints is standard solution for this purpose, which in the ANFIS, clustering is
main procedure for reducing number of rules, computation and functions.

3.2.4 Creation of real fuzzy constraints. In the Sub-section 3.1, we see output of system
is a membership value. Satisfaction of each constraint increase output ~dk (equation (19)).
On the other hand, if one constraint is not satisfied output decrease proportional to value of
unsatisfying of constraint. In real world, we expect if a constraint is not satisfied we pay
little penalty for it. We can easily see this property in the proposed method a real fuzzy
constraint.

3.2.5 Study of constraint strength. After training of constraints, we can study effect
of each constraint. Increasing penalty for each unsatisfied constraint is seen in the
output of system. Slope of output variation (slope of penalty value) shows importance
of it, which we study it in the next section with examples.

3.2.6 Increasing importance to constraints. Importance degree of constraints is other
note in OR. Expert user can give knowledge about magnitude of constraints and
interact with the system for receiving optimum results. He/she can emphasis over some
constraints with inserting of weights to those in the proposed scheme to easy from.

4. SVM constraint modeling using ANFIS
As we refer in the introduction, SVM is suitable classifier, which is based on
optimization technique. Soft margin is the one main problem in the SVM. Using the
proposed approach we can enter importance of each training samples and a soft margin
is obtained also missing sample/loss data are modeled as well. One main problem in the
SVM is number of training samples, for large or huge number of samples, training of
SVM is not performed correctly but we solve it using proposed method.

The mathematical formulation of SVM classifier, the concept of soft margin and the
way to overcome the problem of large number of samples are discussed in the
following three sub-sections.

4.1 Support vector machine formulation
Let S ¼ {ðxi; diÞ}

n
i¼1 be a set of n training samples, where xi [ R m is an m-dimensional

sample in the input space, and di [ { 2 1; 1} is the class label of xi. SVM finds the
optimal separating hyper plane with the minimal classification errors. Let w0 and b0

denote the optimum values of the weight vector and bias, respectively. The hyper plane
can be represented as:

wT
0 x þ b0 ¼ 0 ð23Þ

where w ¼ ½w1;w2; . . . ;wm�
T and x ¼ ½x1; x2; . . . ; xm�

T . w is the normal vector of the
hyper plane, and b is the bias that is a scalar. The optimal hyper plane can be obtained
by solving the following optimization problem (Ling and Wang, 2002):

Minimize
1

2
kwk

2
þ c
Xn

i¼1

ji

Subject to : diðw
Txi þ bÞ $ 1 2 ji;

ji $ 0; i ¼ 1; . . . ; n;

ð24Þ
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where ji is slake variable for obtaining soft margin. But c determine effect of slake
variable and margin increases by decreasing value of c.

4.2 Soft margin in the SVM
Adding weights to each sample or increase the degree of any sample needs to define
nonlinear constraint, which is presented in equation (25):

J ðw; b; ji;bi; gi; ui; ûiÞ ¼
1

2
kwk

2
þ c
Xn

i¼1

ji þ bigi ji 2 1 2 diðw
Txi þ bÞ þ u2

i

� �
2 giðûi 2 jiÞ

ð25Þ

where bi, ji, gi are Lagrange multipliers, ûi; ui are values for achieving equal constraints.
But gi( · ) is user defined function for obtaining desired effect over constraints. But user
knows about the degree of importance of each constraint, he/she can assign weights to
constraints but cannot define a nonlinear function. The proposed approach in Sub-section
3.1 help us with defining the emphasis values over constraints. ai in equation (20) is used
for defining the degree of importance of each constraints.

4.3 Increasing training samples in the SVM
In equation (25), number of constraints is equal to number of training samples (n) that
with increasing n, solving problems is difficult. But in the proposed approach all
constraints are entered in ANFIS and we know ANFIS clusters data and generates
Gaussian MF over each cluster. So, this problem is solved using the proposed method
and miss data and noisy samples can be solved in the SVM with this idea.

5. Experimental results
Three examples are considered first, then SVM is studied as an application work.

Example 1. Consider the following convex parametric problem[3]:

Minimize zðuÞ ¼ ðu2 2 u2 3Þx1 þ ðu 2 þ 2u2 6Þx2

Subject to : x1 # 4 þ u2 3x1 þ 2x2 # 18 2 2u 2

x1; x2 $ 0 u [ ½0; 3�

ð26Þ

First, constraints are converted to ANFIS model. For this purpose, we have:

ĥ1ðx; uÞ ¼
4 þ u2 2 x1 if 4 þ u2 2 x1 . 0

0 elsewhere

(
ð27Þ

ĥ2ðx; uÞ ¼
18 2 2u2 2 3x1 2 2x2 18 2 2u2 2 3x1 2 2x2 . 0

0 elsewhere

(
ð28Þ

ĥ3ðx; uÞ ¼
x1 x1 . 0

0 elsewhere

(
ð29Þ
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ĥ4ðx; uÞ ¼
x2 x2 . 0

0 elsewhere

(
ð30Þ

Then:

~Fk ¼ {ĥ1ðx; uÞ; ĥ2ðx; uÞ; ĥ3ðx; uÞ; ĥ4ðx; uÞ}k; k ¼ 1; . . . ; 1; 000

is constructed using Monte-Carlo simulation, x1, x2 and u are computed according to:

x1 ¼ b1ðn1 2 0:5Þ; x2 ¼ b2ðn2 2 0:5Þ; u ¼ b3ðn3 2 0:5Þ ð31Þ

where b1, b2, b3 determine the range of variables, and n1, n2, n3 are random numbers.
Random variables are between (0, 1), so are between ð20:5b1; 0:5b1Þ, ð20:5b2; 0:5b2Þ,
ð20:5b3; 0:5b3Þ, respectively.

In this example, b1, b2, b3 are selected equal to 20. Then, ~dk is obtained according to
equation (19), with ai equal to one, and ANFIS model of N ð~Fk; ~dkÞ is generated.

Obtained input MFs are shown in Figure 3 for second constraint ĥ2ðx; uÞ. This figure
shows this constraint has values near 260 to 0 and around 2180 which are clustered
to form of mf1, . . . , mf4. Output MF is obtained as a linear function of input
constraints, as described in Section 2 and Jayadeva and Khemchandani (2005) and
Lee and Gardner (2006) to following form:

zk ¼ 20:0041
X4

i¼1

ĥiðx; uÞ; k ¼ 1; . . . ; 4 ð32Þ

Generated rules are:

(1) If ĥ1ðx; uÞ is Mf1ðĥ1ðx; uÞÞ and ĥ2ðx; uÞ is Mf1ðĥ2ðx; uÞÞ and ĥ3ðx; uÞ is

Mf1ðĥ3ðx; uÞÞ and ĥ4ðx; uÞ is Mf1ðĥ4ðx; uÞÞ. Then, output is z1.

Figure 3.
Obtained input MFs for
second constraint ĥ2ðx; uÞ
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(2) If ĥ1ðx; uÞ is Mf2ðĥ1ðx; uÞÞ and ĥ2ðx; uÞ is Mf2ðĥ2ðx; uÞÞ and ĥ3ðx; uÞ
is Mf2ðĥ3ðx; uÞÞ and ĥ4ðx; uÞ is Mf2ðĥ4ðx; uÞÞ. Then, output is z2.

(3) If ĥ1ðx; uÞ is Mf3ðĥ1ðx; uÞÞ and ĥ2ðx; uÞ is Mf3ðĥ2ðx; uÞÞ and ĥ3ðx; uÞ is

Mf3ðĥ3ðx; uÞÞ and ĥ4ðx; uÞ is Mf3ðĥ4ðx; uÞÞ. Then, output is z3.

(4) If ĥ1ðx; uÞ is Mf4ðĥ1ðx; uÞÞ and ĥ2ðx; uÞ is Mf4ðĥ2ðx; uÞÞ and ĥ3ðx; uÞ is

Mf4ðĥ3ðx; uÞÞ and ĥ4ðx; uÞ is Mf4ðĥ4ðx; uÞÞ. Then, output is z4.

Constraints fire rules as shown in Figure 4. This figure shows two states of rule operation
for boundary conditions. Figure 4(a) shows for constraints ðĥ1ðx; uÞ; i ¼ 1; . . . ; 4Þ with

Figure 4.
Rule operation when

constrains are selected
boundary values

In1 = 0 In2 = 0 In3 = 0 In4 = 0 Out1 = 0

In1 = –5.61 In2 = –215 In3 = –10 In4 = –9.97

1

2

3

4

1

2

3

4

–5.6134 –215.26410 0 –9.999 0 –9.9696 0

–5.6134 –215.26410 0 –9.999 0 –9.9696 0

–0.1 1.1

–0.1 1.1

Out1 = 1

(a)

(b)

Notes: in1, in2, in3, in4 are four constraints (in1)ĥ1(x; q), (in2)ĥ2(x; q), (in3)ĥ3(x; q);
(a) constrains are satisfied and penalty term (Out1) is zeros; (b) all constraints are not satisfied
(worst case) and penalty term is maximum)
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values zero (unsatisfying) which degree of membership of output is zero and for full
satisfaction of constraints membership is one (Figure 4(b)).

The importance degree of each constraint can be clearly seen from Figure 5. If
constraint ĥ2ðx; uÞ is not satisfied, big penalty value is generated and search algorithm
moves towards satisfaction of this constraint. But other constraints have minor
emphasis ð{ĥ1ðx; uÞ; ĥ3ðx; uÞ; ĥ4ðx; uÞ}Þ. This can be seen in Figure 6, which output or
same penalty value is shown for these constraints. An interesting note in these figures
is the linearity of output per inputs, in spite of nonlinearity of constraints per (x, u).

Another ability of system is weighting capability over constraints with user. If user
wants to increase the importance of one constraint, this is easily implemented in the
proposed approach. For example, in above example, we can increase the effect of the first
constraint with a new weights selection, for example, a1 ¼ 0:9; a2 ¼ 0:01; a3 ¼ 0:05;
a4 ¼ 0:04. Part of the results is shown in Figure 7. This figure shows that the first
constraint is not met which causes considerable penalty value relative to second
constraint with normal effect.

Above problem is solved for quantized u with resolution 0.1, i.e. u [ {0; 0:1;
0:2; . . . ; 2:9; 3:0} include 31 solution points. The optimal solution is shown in Figure 8.

Example 2. Consider the following convex parametric programming problem:

Minimize zðx1; x2Þ ¼ 2x2
1 2 3x2

2

Subject to : x1 þ x2 # 6 2 u

2 x1 þ 2x2 # 6 þ u x1; x2 $ 0 u [ ½0; 4�

ð33Þ

The obtained solution using the proposed method is shown in Figure 9. Importance or
efficacy of constraints can be seen in Figure 10. Constraints x1; x2 $ 0 are same effect
that have not illustrated in this figure. The efficacy of the first and the second
constraints are shown in this figure. These figure shows that these constraints have
approximately the same effect. In our method for modeling constraints, the effect of
each constraint can be studied.

Figure 5.
Output per pair of
constraints for Example 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

O
ut

1

–200
–150

–100
–50

0
In2

0 –1
–2 –3 – 4 –5

In1

Notes: Out1 is output, In1 is ĥ1(x, q); In2 is ĥ2(x, q)
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For more emphasis on linearity of relation between membership of penalty value and
constraints, we study following example which have nonlinear constraints.

Example 3. Consider the following constraints in one parametric programming
problem.

Constraints:

x2
1 # 4 þ u 2 3x2

1 þ 2x2 # 18 2 2u2 x1; x2 $ 0 u [ ½0; 3� ð34Þ

The output of ANFIS after constraints learning using Monte-Carlo simulation
(membership of penalty value) is shown in Figure 11. We can easily see that a linear
relation there exists between the membership penalty value of constrains which is
pre-typified but nonlinearity of membership of penalty value and x1; x2 is perceptible
and is shown in Figure 12. Therefore, one of suitability of the proposed approach in
constraint learning is that the effect of nonlinear constraints appears in the form of linear

Figure 6.
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Figure 7.
Studying the effect of
weights in constraints
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Figure 9.
Optimal solution for

Example 2
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penalty and better convergence is achieved. Also with change of equation (19), user can
obtain nonlinear effect of penalties.

Example 4. Consider the constraints modeling in the SVM.
Figure 13(a) shows two classes of data, which are going to be separated by an SVM.

Using equation (24), if c tends toward infinity, classification task is performed as shown in
Figure 13(b) and the two classes are well separated.

However, decreasing c can only increase margin as can be seen in Figure 14(a). But
putting more emphasis on the pointed sample using the proposed method leads to the
classification, which is shown in Figure 14(b); clearly the slope of optimum hyperplane has
changed.

Figure 12.
Membership of penalty
value for x1, x2
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6. Conclusions and future work
In this paper, we studied a new model for dealing with the lack of precision in a vague
nature in the formulation of parametric programming problems. The foundation of this
model was based on constraint learning using ANFIS. N-constraints were converted to
n-dimensional feature vector and feasible region was applied to form of k-training
samples to ANFIS. Simulation results show that each parametric programming
problems with properties of non-differentiability, discontinuity and nonlinearity can be
trained using ANFIS. Understanding of constraints after generation of ANFIS model
was one of sensible features. Some of other features of the proposed approach were
global view of constraints, constraints generality, clustering of similar constraints,
creation of real fuzzy constraints, study of constraint strength, increasing importance

Figure 13.
Classification task

using SVM
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Notes: (a) Input space; (b) margin
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to constraints. Defining of constraint effect with the proposed idea was an important
rule. We changed effect of constraints and visualized results using ANFIS facilities in
the MATLAB software.

Also we proposed for applying this method over SVM, which is a robust method in
the artificial systems and presented some of its properties. But this idea over SVM
needs to great operations, which we follow it in the future work. Learning of fuzzy
constraints, effect of support vectors and changing this effect, the study of noisy
samples over the proposed method in the field of SVM are other future research
orientations.

Notes

1. Convex optimization is a sub-field of mathematical optimization. Given a real vector space X
together with a convex, real-valued function f : X ! R defined on a convex subset X of X,
the problem is to find the point x * in X for which the number f(x) is smallest, i.e. the point x *

such that f ðx*Þ # f ðxÞ for all x* [ X . The convexity of X and f make the powerful tools of
convex analysis applicable: the Hahn-Banach theorem and the theory of sub-gradients lead
to a particularly satisfying and complete theory of necessary and sufficient conditions for
optimality, a duality theory comparable in perfection to that for linear programming, and
effective computational methods.

2. Monte-Carlo methods are a class of computational algorithms that rely on repeated random
sampling to compute their results. Monte-Carlo methods are often used when simulating
physical and mathematical systems. Because of their reliance on repeated computation and
random or pseudo-random numbers, Monte-Carlo methods are most suited to calculation by
a computer. Monte-Carlo methods tend to be used when it is infeasible or impossible to
compute an exact result with a deterministic algorithm. Monte-Carlo simulation methods are
especially useful in studying systems with a large number of coupled degrees of freedom.
More broadly, Monte-Carlo methods are useful for modeling phenomena with significant
uncertainty in inputs. These methods are also widely used in mathematics. The term
Monte-Carlo method was coined in the 1940s by physicists working on nuclear weapon
projects in the Los Alamos National Laboratory.

3. Convex parametric programming is discussed in Boyd and Vandenburghe (2004).

References

Abraham, A. (2005), “Adaptation of fuzzy inference system using neural learning, fuzzy system
engineering: theory and practice”, Studies in Fuzziness and Soft Computing, Vol. 3,
pp. 53-83.

Assaleh, K. (2007), “Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference
systems”, IEEE Trans. Biomedical Engineering, Vol. 54 No. 1, pp. 59-68.

Boyd, S. and Vandenburghe, L. (2004), Convex Optimization, 1st ed., Cambridge University Press,
New York, NY.

Chu, L. and Wu, C. (2004), “A fuzzy support vector machine based on geometric model”,
Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou,
People’s Republic of China, pp. 1843-6.
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