
An Automated Model Based Approach to Test
Web Application Using Ontology

Hamideh Hajiabadi, Mohsen Kahani
hajiabadi.hamideh@stu-mail.um.ac.ir, kahani@um.ac.ir

Computer Engineering Department, Ferdowsi University of Mashhad

Abstract— Nowadays the growth of web application
development is great; every day a variety of new web
applications are raised on the Internet for public use. Web
applications have n-tier architecture, so the server side
programs could change without client interference and this
process could be done more times. Consequently the testing is
the important issue in the web application development. This
paper proposed an automated model based testing technique to
test web application from its structural model. Firstly using
reengineering approaches the structural model is constructed to
demonstrate static aspects of the web application. Then using
several ontologies and mapping tools, test cases for filling forms
are automatically generated to model and evaluate dynamic
features of the web application. The technique implemented as
MBTester tool and applied to a few web applications. The results
presented in this paper indicate the dynamic attained by
MBTester is great.

Keywords—boundary coverage criterion, evaluate partitioning, test
case, ontology, mapping

I. INTRODUCTION

Web application developing has become a significant area,
which has a great progress among other fields of software
engineering. Web application has essential characteristics
which have made it different from other ones. Web
applications consist of some modules and interactive
components in which various technologies could be used
independently. It is important to note that in addition to the
growth of web applications, the techniques used in web
application developing have also great growth. So this fact
makes web application testing more difficult.

Some kinds of complexity are involved in web application
testing. One of these is its heterogeneous nature. Web
application consists of several components implemented by
different technologies and programming languages.
Dynamism existence is the other complexity essence in testing
of web applications. Web applications consist of static and
dynamic components. Static components can be automatically
tested; Spider like tools could do it automatically. Users
submit their inputs by using form components through
crawling and the output page sent back in response to a
submitted form is always dynamic. The content of dynamic
pages varies according to user inputs. No tool exists for testing
the dynamic aspects of web applications automatically. The
only sets of tools which are able to test the dynamic aspects of
web applications are some sorts of record and replay tools.
They initially record a testing scenario, and then generate test
script for testing assumed scenario, the recorded test scripts are
used for automatically regression testing. But a negligible
change in GUIs could make many test scripts useless. The

other drawback of this set of tools is their huge cost due to the
manual recording of test scripts. As a result, automation and
proper coverage are the key issues in the testing of web
applications.

In this paper, an automated technique is proposed that
extracts a structural model of web applications based on client
side requests and responses that are automatically generated
by the programs run on the server. The difficult part of testing
processes is producing values to fill forms. Any sort of values
covers some contents of web applications. In that case to cover
all aspects of web application, a lot of values should be
generated sagaciously. These values are obtained using
ontology. The boundary coverage and equivalent partitioning
criteria are used in generating test data. The web application
deals with the information that user enters in a different way.
Some parts of information which are more important than the
other parts are kept in the system database but the other parts
which are less important need not be kept there in general. The
degree of dynamism and coverage in this scenario is higher in
comparison with related works.

Section 2 presents and discusses the works which exist in
the model based web application testing. The techniques used
in the reverse engineering process are explained in section 3.
Section 4 illustrates the analysis model in detail. The testing
skills used in the proposed model are specified in section 5 .In
the conclusion section, a summary of the paper and future
works are presented.

II. RELATED WORK

A model based test generation technique was proposed by
Kung, Liu, and Hsia [1, 2]. The models used in their technique
are Object Relation Diagrams, Object State Diagrams, a Script
Cluster Diagram, and a Page Navigation Diagram. The
technique proposed by them uses source code in the model
generating and testing process. The techniques which use
source code in their processes are not always such general
ones to be applied to the whole sort of the web applications,
whereas our technique does not make any use of source code.

Lee and Offutt [3] proposed an approach in which test cases
are generated based on mutation analysis. Their approach is
based on XML based interactions and only tests the
interactions among modules, whereas our approach tests the
whole system. The automation degree provided by their
technique is not considerable.

Liu et al. [4] observed each component of web application
as an object. He exploited the data flow between these objects
and generated test cases based on them. He called his tool
WebTestModel.

Ricca and Tonella [5] have developed ReWeb and TestWeb
tools. They used source code analysis of processes and

exploited a sort of UML class model to symbolize components
of web applications and their transactions. Modeling phase is
done by ReWeb semi automatically in two steps: modeling
static features and dynamic features. The second step of the
modeling always deals with the forms and the pages hidden
behind the forms. The data used to fill forms is selected
manually by tester. We could informally say that the difficult
part of the modeling is done manually and they only automate
simple parts. TestWeb uses the model extracted in the
modeling phase then using source code coverage criterion, test
cases are generated.

Andrew, Offutt and Alexander [6] proposed FSMWeb that
represents web applications using hierarchal Finite state
machines. At the bottommost level each node of the FSM is a
page. At the middle levels the nodes are the FSMs of the ones
in their bottom level. A test case is a sequence of states with
some parameters needed for each state. The test cases of the
bottomed level are joined to create top level test cases.

 Wang, Yuan, Miao and Tan [7] developed a test generation
method based on source code analysis. It means that source
code of application is analyzed to extract interfaces which are
composed of: input parameters, domain information and user
navigation map. Because of source code analyzing, it was
limited to specified programming language and does not work
with new technologies.

III. REVERSE ENGINEERING WEB APPLICATIONS

Web applications are always developed without following
the software life cycle processes, the requirements are not
recorded, and the models are not designed. The developer
early enters the implementation phase. Then we do not expect
developer to present a proper model for testing purpose.
Subsequently such a model should be produced from artifact.
Reverse engineering processes are in fact a way to present the
abstract demonstrations of the implemented work. These
demonstrations provide useful information in a diverse level of
granularity. The pages are the coarse grained part of the
structure of web applications. Each page includes different
components which are split to activate and inactivate
components. The pages are divided into server pages and
client pages. The server pages are set up on the server and the
pages sent back to a client requests are client pages which are
categorized in two groups as static pages and dynamic pages.
Static pages are those that their contents are fixed and stored in
a persistent way and the dynamic pages are built on the fly and
their contents are dependent upon the inputs entered by users.
[9] Exploiting the structure of web applications could be done
in two ways:
 White box testing technique or source code analyzing:

The tools implemented by this way are restricted to some
programming languages and web technologies. Because
of large growth of web technologies it should be
developed and maintained all the time. If it had not been
maintained, after a few times its interoperability would be
lost and will not work with new coming technologies.

 Black box testing or client side analyzing: this technique
is done on the client side; the structure of the web site
obtained by making requests and examining responses. It
is important to note that dynamic and static pages couldn’t
be distinguished by this way. But we can informally say

when a form is submitted, the target page is dynamic and
its content is dependent on data which are entered in the
form. We use this technique in our approach.

Our approach is a kind of gray box testing tool, so we could
make use of the system database and employ the data kept in it
to fill forms. One of the ontologies used in this project is the
system ontology, which is learnt from the system database.
Another ontology which is employed is built as follows: More
than a hundred forms are downloaded from different web sites.
Afterward, their fields are categorized and synonym words are
eliminated using the WordNet1 ontology. The result is about
70 words remained, which are utilized for constructing the
ontology. We refer to this ontology as general ontology.
General ontology is equipped with defining accurate
constraints. We use general ontology and its constraints to
produce data which are not kept in system database.

The resulting model is even computable in the presence of
high extreme dynamism. It is also obtained with a high degree
of automation in the dynamic behavior of web applications. If
the inputs used in this generation could cover all relevant
behaviors of the web application, the model generation is
completed. This is an intrinsic limitation of all dynamic
analyses. The tool we propose to support the recovery of
structural model from client side analyzing is exhaustively
described in the following section.

IV. ANALYSIS MODEL

Web applications are composed of some pages and the
navigation links between these pages. A page includes
information which is exhibited to user and some links to
another pages. The model proposed here is a kind of
navigation model that demonstrates the navigation and
interaction pattern of web application. Links to the other web
sites are assumed as external links. External links are ignored
in the modeling process. [5]

A web page contains some information and any number of
HTML elements like forms. Each form includes some input
elements which are filled by users. The data provided by user
through navigating are gathered and submitted to the server.
The target of the submit link is always a dynamic page. The
dynamic pages are different in respect to the input values, and
they may differ from one value to another. Suppose a form
that gathers user interests, and shows additional information
about his interest. For example, if user interest is sport, it
shows a page containing additional information about sport.
Consequently, for exploiting all paths of web application, it
should produce all of the values that input variables could get.
Web exploiting process is divided into two phases, as follows:
 Phase 1: Static analysis of web application. In this phase

static structure of web application is constructed containing
static pages, static links, etc.

 Phase 2: Dynamic analysis, in the way just explained. Since
dynamic pages are hidden over the forms, in this phase input

1 WordNet is a large lexical database of English, developed under
the direction of George A. Miller.
http://wordnet.princeton.edu/

values of the forms are produced and submitted to yield
dynamic pages. Informally, in this phase we proceed to
Automatically Filling Forms.

A. Static Analysis
It initially starts from a pre-given URL; the states reachable

from the starting page are examined sequentially. For each
page the set of possible actions are attained and kept in the
database. Current page is scanned by another component to
analyze it statically, if an error is discovered; it is logged for
later process. If a cycle is detected, the exploration from the
current page is ignored. The actions which are saved are
consecutively investigated and inspected in a manner
explained later. After executing each action, if no error
encounters, a page is properly returned from the web server. If
for some reason, like a breaking page or something, an error
occurs, that error needs to be reported and kept in a persistent
way. Otherwise the algorithm is recursively reapplied to the
returned page.

After analyzing a page and selecting an object, the selected
action is executed. In the proposed approach we make use of
an open source HtmlUnit2 library for simulating a browser and
executing objects. The manners are employed in respect of
objects are explained bellows:
 If the action is a link, the onClick event handler (if any)

is invoked and if it returns true, the browser moves to the
HREF of the link.

 If the action is a form, the inputs to fill form are selected
in a manner to be explained in the next section. If it has
an onSubmit event handler, the relevant handler is
invoked and if it returns true the browser is relocated to
the form’s action parameter.

 If the action is an active form element, its related event
handler is invoked. It is important to note that this process
is performed in the next phase, form filling.

[10]

B. Automatically Form Filling
Difficult in the dynamic web application automated testing

process is dealing with forms. Some aspects of dynamic web
applications are hidden behind forms. Consider a form which
gathers user interests and show additional page with auxiliary
information about his/her interests. This page is dynamic and
its content varies by user interests. In order to explore all the
pages which are hidden behind the forms, a variety of input
values to cover all the states should be sensibly produced.
Consider an educational system that students enter in with
userId and password. Without auxiliary information no tool
can explore successor states of such a form except small states
which are built by submitting incorrect userId and password.
Therefore additional information that kept in persistent
location should be used by the tool in order to crawl through
forms.

A variety of data that a user enters in the forms is important
and should be kept in persistent places such as databases.
Some other parts of the data are not as important, and hence
are temporarily saved and used for processing. This persistent

2 HtmlUnit is a "GUI-Less browser for Java programs".
http://htmlunit.sourceforge.net/

data consist of the mentioned auxiliary information required
for crawling web applications. This auxiliary information
could be selected by human tester who can access to database,
of course it is done manually, but the question is how to fill the
forms automatically with the persistent data? Moreover, how
to map one input variable on a form to one filed on the system
database? The next section addresses these problems.

C. Using Ontology
In this project, we exploit three ontologies, which are

introduced as follows:
 General ontology: Most of web sites collect similar

information from users like personal information, bank
accounting information, educational information, and so
on. We believe that nearly 80 percent of the collected
information is categorized as general. So we bother to
collect this information from a variety of web sites. In that
case, we download nearly one hundred forms from various
web applications which are available in the internet. Then,
textbox elements included in the form are detached and
the names of their corresponding variables are stored in
the specific file. Then, we try to eliminate synonymous
words. After eliminating synonyms, the file contains
words that none of them have similar meanings.
Afterward, general ontology is constructed from the
remaining words. Its concepts are restricted with some
accurate constraints.

 Lexicon dictionary like WordNet: This ontology is
utilized to help in understanding synonyms and antonyms.
WordNet is a large lexical database of the English words.

 System ontology: This ontology is learnt from the system
database. We use the rules which are explained in [9] for
transforming database into ontology. The data stored in
the database are converted to the individuals in this
ontology.

We make use of the three mentioned tools to fill forms
automatically. Consider one text box element which should be
filled: To assign a value to a corresponding variable of the text
box, the tool firstly tries to map the variable to one of the
concepts available in the system ontology. If it is done, several
test cases are examined from its individuals included in system
ontology. Otherwise, it tries to map the element to one of the
concepts presented on the general ontology. Afterward, the
constraints existing for mapped concept in general ontology
are used and some values are generated. It is important to note
that generation is done based on boundary coverage policy.

For better explanation, suppose the age concept on the
general ontology. It has two constraints of min and max,
which respectively represent minimal and maximal value that
age could get. Then, Boundary coverage criterion is used to
produce some values for assigning to the age variable.

In the proposed tool boundary coverage and equivalent
partitioning criterion is used for generating test cases.
Considering an interval [min,max]. After applying the above
criterion, test cases will be min, min+1, mid, max, max+1. In
short, for automatic form filling, the database is exploited for
the data existing on it. On the other hand, the general otology
is used for the missed data, and hence using its constraints and
some data coverage criteria, a value is generated.

TESTING
Verification and validation are two common objectives of

process testing. Testing process is divided into dynamic
mechanism and static one. The techniques used in the static
mechanism are different from those of dynamic one. Given an
HTML page, the static testing inspects the source of the page
and discovers possible faults. In the dynamic testing a vector
of input values are examined and executed on the system
under test (SUT) and the obtained results are compared with
expected results. If diversity is detected, it is reported.

A test case for a Web application includes sequence of URL
and the input values needed for each page which contains
forms. The sequence of URL is the path selected from the
structural model. The sequences of URL are selected by
applying some graph traversing algorithms to the structural
model. Input values needed for each URL are chosen by
applying the boundary coverage and equivalent partitioning
policy. Thus the path selection is independent of input values
and it could be automatically done. For that reason, the
difficulty existence in the testing processes is made by dealing
with the pages contains forms. Execution consists of
requesting the Web server for the URLs in the sequence and
storing the output pages.

The proposed approach uses the structural model to define
URL sequence by using some model traversal algorithm based
on some model coverage analysis. Then, three ontologies are
used to create input values for defined URLs. Boundary
coverage and equivalent partitioning policy is used for test
case generations. The format of test scripts which are
generated by the tool is like the script’s format that could be
executed by Selenium 3 . Selenium is an open source
record/replay tool which is used in the tool for executing tests.

It is important to note that test script also contains oracles
and Selenium could give us the number of test steps that are
failed or succeeded.

Conclusion and Future Works
We have presented and quantified a new approach for

testing web applications. This new approach differs from
existing approaches in generating test cases.

Firstly a structural model of a web application is obtained.
Then test cases which verify the restrictions are created using
several ontologies. At the final steps Selenium is used for
executing test scripts and assigning verdicts. The analysis and
testing techniques proposed in this paper were successfully
applied to several real world Web applications.

The MBTester technique still has a number of open
questions and issues. Current work is largely focusing on
automation and evaluation. The tool is in a preliminary stage
and works are undergoing to remedy its shortcomings.

REFERENCES

 [1] D. Kung, C. H. Liu, and P. Hsia. “A model-based
approach for testing Web applications”. In Proc. Of
Twelfth International Conference on Software

3 Selenium is a suite of tools to automate web app testing across
many platforms. http://seleniumhq.org/

Engineering and Knowledge Engineering, Chicago, IL,
July 2000.

[2] D. Kung, C. H. Liu, and P. Hsia. “An object-oriented
Web test model for testing Web applications”. In Proc.
of IEEE 24th Annual International Computer Software
and Applications Conference (COMP-SAC2000),
pages 537{542, Taipei, Taiwan, October 2000.

[3] S. C. Lee, J. Offutt. “Generating test cases for XML-
based Web component interactions using mutation
analysis”. In Proceedings of the 12th International
Symposium on Software Reliability Engineering,
pages 200{209, Hong Kong China, November 2001.
IEEE Computer Society Press.

[4] C. Liu, D. Kung, P. Hsia, and C. Hsu. “Structural
testing of web applications”. In Proceedings of the
11th IEEE International Symposium on Software
Reliability Engineering,pages 84--96, Oct. 2000.

[5] F. Ricca and P. Tonella. “Analysis and testing of Web
applications”. In 23rd International Conference on
Software Engineering (ICSE `01), pages 25{34,
Toronto, CA, May 2001.

[6] A. Andrews, J. Offutt, R. T. Alexander. “Testing Web
Applications by Modeling with FSMs”, Software and
Systems Modeling, German, July 2005, pages: 326-
345

[7] M. Wang, J. Yuan, H. Miao, G. Tan: “A Static
Analysis Approach for Automatic Generating Test
Cases for Web Applications”, 2008 International
Conference on Computer Science and Software
Engineering, (CSSE.2008), Wuhan, China

 [8] K. Etminani, M. Kahani, “Transforming Relational
Databases to the Corresponding Ontologies”,
'Networked Digital Technologies' (NDT 2009),
Ostrava, the Czech Republic, July 2009

[9] U. De Carlini. "WARE: a tool for the reverse
engineering of Web applications", Proceedings of the
Sixth European Conference on Software Maintenance
and Reengineering CSMR-02, 2002

[10] B. Michael, F. Juliana, G. Patrice. VeriWeb:
Automatically Testing Dynamic Web Sites, In:
IWWWC. (May 2002)

