Abstract

Let G be a finite group and $E_2(G)$ denote the probability that $[x, y, y] = 1$ for randomly chosen elements x, y of G. We will obtain lower and upper bounds for $E_2(G)$ in the case where the sets $E_G(x) = \{y \in G : [y, x, x] = 1\}$ are subgroups of G for all $x \in G$. Also the given examples illustrate that all the bounds are sharp.

AMS subject Classification 2010: Primary:20P05; Secondary: 20F45

Keyword and phrases: Probability, 2-Engel condition

1 Introduction

For a given natural number n, the n-Engel degree of G, denoted by $E_n(G)$, is the probability that two randomly chosen elements x, y of G satisfy the n-Engel condition $[y, n x] = 1$, that is

$$E_n(G) = \frac{|\{(x, y) \in G \times G : [y, n x] = 1\}|}{|G|^2}.$$

The case $E_1(G)$, the commutativity degree of G is extensively studied in the literature. We intend to study $E_2(G)$ and give some lower and upper bound in terms of $E_2(G)$. Note that the situation is too complicated for computing $E_n(G)$, when $n > 2$.

88
2 Preliminary results

We begin with some elementary lemmas.

Lemma 2.1 Let \(G \) be a group and \(x \in G \). Then the followings statements are equivalent:

(i) \(E_G(x) \leq G \);
(ii) \([E_G(x), x, E_G(x), x] = 1 \);
(iii) \([[E_G(x), x], [E_G(x), x]] = 1 \) that is \(E_G(x), x \) is abelian.

According to the above lemma we shall restrict ourselves to groups in variety \(V \) of all finite groups admitting the law \([[x, y], [x, z]] = 1 \). This variety is studied by Macdonald [5] and Farrokhi and Moghaddam [2].

Lemma 2.2 Let \(G \) be a finite group in variety \(V \) and \(x \in G \). Then

(i) \(E_G(x) \leq G \);
(ii) \(|E_G(x)| = |C_G(x)||G_G(x) \cap x^G| \);
(iii) \(|C_G(x)x^G : C_G(x)| = [G : E_G(x)] \);
(iv) \(|C_G(x)x^G| = [G : C_G(x) \cap x^G] \) divides \(|G| \).

Lemma 2.3 Let \(G \) be a finite group in variety \(V \) with an element \(x \) such that \(C_G(x)x^G = G \). Then

(i) \(G = [x, G] \rtimes C_G(x) \);
(ii) If \(x \in L(G) \), then \(x \in Z(G) \).

3 Main theorems

Our main theorems give sharp lower and upper bounds for 2-Engel degree of a finite group.

Theorem 3.1 Let \(G \) be a finite non 2-Engel group belonging to variety \(V \) and \(p = \min \pi(G) \). Then

\[
E_2(G) \leq \frac{1}{p} + \left(1 - \frac{1}{p} \right) \frac{|L_2(G)|}{|G|}
\]

and if \(L_2(G) \leq G \), then

\[
E_2(G) \leq \frac{2p - 1}{p^2}.
\]

Moreover, both of the upper bounds are sharp at any prime \(p \).
Theorem 3.2 Let G be a finite non-2-Engel group belonging to variety V and $p = \min \pi(G)$. Then

$$E_2(G) \geq E_1(G) - (p - 1)\frac{|Z(G)|}{|G|} + (p - 1)\frac{k_G(L(G))}{|G|}$$

and if either G is a p-group, or G' is a cyclic 2-group or a generalized quaternion 2-group, then

$$E_2(G) \geq pE_1(G) - (p - 1)\frac{|Z(G)|}{|G|}.$$

Moreover, both of the lower bounds are sharp at any prime p.

References

