INFLUENCE OF VIBRATIONAL MODE ON THE ELECTRONIC PROPERTIES OF DNA MOLECULE IN LADDER MODEL

N. Shahtahmasebi1, S.A. Ketabi2, S. Dabagh3, and A. Rashed Mohassel4

1Physics dept. Faculty of sciences, Ferdowsi University of Mashhad, Mashhad, Iran, 2School of Physics, Damghan University of Basic Sciences, Damghan, Iran, 3,4School of Physics, Payamenoor University of Basic Sciences, Mashhad, Iran, \\
E-mail: Shadab_dabagh@yahoo.com

Within the class of biopolymers, DNA is expected to play an outstanding role in molecular electronics. We studied the electron transport properties in single DNA molecules considering a metal/DNA/metal system using model Hamiltonian method based on the tight-binding Hamiltonian for the ladder model of DNA [1]. Now Current-voltage relation, density of state and conductance study with vibration (a diagram) and without vibration (b diagrams) and compare with together [2, 3].

(Figure1) (Figure2) (Figure3)

Figure1: with vibration the energy gap and conductance are considerably decreasing.
Figure2: with vibration the energy gap is decreasing and density of state is increasing.
Figure3: with vibration the energy gap and current-voltage characteristic are decreasing.

Our results suggest a good agreement with the electronic structure of the DNA in the ladder model, additional presented a technique that allows the computation of electron transport in DNA, including local and nonlocal coupling to vibrations. And with vibration we can increase semiconducting behavior in our system.

References: