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Abstract: This article develops a new time integration family for second-order dynamic equa-
tions. A combination of the trapezoidal rule and higher-order Newton backward extrapolation
functions are utilized in the formulation. Five members of the suggested family are extensively
studied in this article. Most members of the presented time integration family are new. The sta-
bility and accuracy of the proposed time integration schemes are investigated by solving some
benchmark problems. Numerical results are checked and compared with well-known strate-
gies. The findings of the article show the efficiency, accuracy and robustness of the suggested
techniques.
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1 INTRODUCTION

Numerical step-by-step time integration algorithms
are widely used for structural dynamic analysis. These
methods divide the time domain into many small
steps. Afterwards, the variables at the end of each step
are obtained using extrapolation functions for accel-
erations and velocities, which satisfy the equilibrium
dynamic equations. The extrapolation functions may
be written in terms of the previous known variables.
Such methods are called explicit tactics. Performing
a dynamic analysis by these schemes is very sim-
ple. However, the numerical instability is the most
crucial difficulty in this group’s application. In a time-
consuming strategy, a very small time step should be
utilized for analysing the non-linear problems [1]. To
overcome this kind of difficulties, several researches
have been developed so far [2–5].

On the other hand, there are the implicit procedures.
The unknown variables at the end of the each time
step inserted in the extrapolation functions belong to
these methods. Consequently, the implicit processes
result in more accurate solutions than the explicit
ones. The most famous implicit algorithm is the
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Newmark method [6]. Because of the simplicity and
the second-order accuracy, the Newmark technique is
widely used for practical problems [7]. However, the
restrictive stability conditions may reduce the abili-
ties of this method for non-linear analysis. Therefore,
many researchers have tried to improve the Newmark
scheme. Some of them have introduced extra param-
eters to enforce the numerical damping and reduce
the destructive effects of the high-frequency modes
[8–12]. Some other researchers have utilized higher-
order methods to achieve a good accuracy in the long
time analysis. It should be noted, using the higher-
order interpolation functions preserve the system
energy and momentum too [13].The coefficients of the
higher-order polynomials can be obtained by utiliz-
ing the previous accelerations [14]. Using the Galerkin
method and satisfying a weak form of the dynamic
equilibrium equations, or using the points colloca-
tions scheme, are the other techniques to find the
unknown coefficients [15–20]. In a newly published
article, Soleymani et al. [21] employed the cubic spline
reproducing kernel function to construct higher-order
interpolation functions for linear analysis.

Bearing this in mind, the exact solution of the first-
order differential equation is available. This is the
solution of the single-degree system too, which can
be easily introduced in terms of the exponential func-
tion. It is evident that extending this solution to a
system with multiple degrees of freedom is not simple.
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In fact, it requires computing the exponential matrix.
The Padé approximate function has been used for this
purpose by researchers such as Möller [22] and Fung
[13, 23–26]. Recently, Wang and Au [27] utilized the
Padé approximation and the Gauss integration meth-
ods and proposed a very accurate time integration
scheme.

To perform time integration, higher-order tactics are
also developed, which require multi-step algorithms.
The earliest work was carried out by Dahlquist [28],
who employed the information of the previous steps
to propose a multi-step process for analysis of the first-
order differential equations. It is reminded, the simple
way to calculate an integration is the trapezoidal rule,
in which the variation of a function is assumed to
be piecewise linear. Dahlquist utilized linear combi-
nations of this rule for some sequential steps. Austin
took advantage of the Newmark tactic for some sub-
domains [29]. He then used the Romberg sequence
to improve the responses. However, this method is
unstable and very small values for the time steps are
required [25]. The multi-step algorithms usually have
some additional parameters. The additional relations,
which are rooted on analysts’ experiences or mathe-
matical bases, are required to find these parameters.
In contrast to this, a multi-step tactic was presented
by Bathe, which does not require supplementary con-
ditions [7]. This algorithm has two sub-steps. The
trapezoidal rule and the three-point Euler backward
interpolations were utilized in its first and second
stages, respectively.

Tarnow and Simo [30] employed two points, after
and before the time step, respectively. They performed
the Newmark technique for three stages of the lengths
α�t , (1 − 2α)�t and α�t , and obtained a fourth-
order accuracy method. Another multi-step scheme
was proposed by Fung [25]. For a free oscillation sys-
tem, the Newmark process relates the displacements,
velocities, and accelerations at the end of the time step
to the known variables by using a coefficient matrix.
Fung utilized a linear combination of the coefficient
matrices, which are calculated for the sub-stages. By
comparing the accuracy of the obtained interpolation
with the Taylor series, he found the weighted parame-
ters. Moreover, the extreme value of the spectral radius
of the coefficient matrix was considered, too.

The idea of utilizing a multi-step algorithm and
the mixed interpolation functions is the basis of the
present investigation. In this study, a new family
for the time integration is introduced. In the first
sub-step of this family, the trapezoidal rule is uti-
lized. The other stages of the suggested technique
take advantage of the higher-order Newton interpo-
lations for derivatives. The combination of the pro-
posed family and the dynamic relaxation method
(DRM) present a very simple and applicable proce-
dure. The efficiency of the new method is verified
by its application to a wide range of the mechanical

systems and structural dynamic problems, with linear
and non-linear behaviours. Due to volume limitation,
only a few benchmark problems are presented in this
article. The results show that the proposed formu-
lation improves the accuracy and the robustness of
the analysis considerably, as compared with the other
well-known strategies.

2 THE TWO-STAGE ALGORITHM

The governing relationships of a structural dynamic
system are a set of the second-order differential equa-
tions. A general tactic for solving this problem is the
numerical time integration. This process utilizes a very
small fraction of the total time domain, as the length
of the integration step. Afterwards, the dynamic equi-
librium equations are usually satisfied at the specific
points of the time domain. A sample of the dynamic
equations is written at the end of the nth time step in
the equation below

MẌ
n+1 + Cn+1Ẋ

n+1 + Sn+1X n+1 = Pn+1 (1)

In this equation, M, C, and S are mass, damping,
and the stiffness matrices, respectively, and P is the
structural load vector. The displacements, velocities
and accelerations are shown by X , Ẋ , and Ẍ , respec-
tively. These variables are unknown at the end of
the time step. In the implicit techniques, the veloc-
ities and accelerations are usually extrapolated by
two functions in the terms of the previous known
parameters and the unknown displacements X n+1.
The second-order accuracy time integration methods
use the displacements, velocities, and accelerations
at time tn as the known variables. On the other
hand, the higher-order methods require more known
conditions.

Recently, Bathe proposed a second-order process,
which has two stages [7]. It is denoted by BM2 in the
present article. Using the trapezoidal rule in the first
stage, the unknown variables are evaluated at time
tn + �t/2. In other words, the time step is divided into
two equal segments and the trapezoidal rule is used
in the first one. When the first stage is completed, the
variables at time tn+1/2 are known. Afterwards, by using
the available data at two points, tn and tn+1/2, the Euler
backward interpolation can be formed to extrapolate
the nodal variables at time tn + �t . The mathemat-
ical formulas of the aforementioned procedure are
presented in the following forms

Stage 1 :

⎧⎪⎪⎨
⎪⎪⎩

Ẋ
n+1/2 = 4

�t

(
X n+1/2 − X n) − Ẋ

n

Ẍ
n+1/2 = 4

�t

(
Ẋ

n+1/2 − Ẋ
n
)

− Ẍ
n
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Stage 2 :

⎧⎪⎪⎨
⎪⎪⎩

Ẋ
n+1 = 3

�t
X n+1 − 4

�t
X n+1/2 + 1

�t
X n

Ẍ
n+1 = 3

�t
Ẋ

n+1 − 4
�t

Ẋ
n+1/2 + 1

�t
Ẋ

n

(2)

Bathe stated that the BM2 technique can conserve
the energy and momentum through the dynamic anal-
ysis [7].The idea of utilizing a multi-step algorithm and
the mixed interpolation functions are the bases of this
investigation. A new time integration family is intro-
duced in this study. The details of the formulation for
the proposed family are presented in the next section.

3 THE PROPOSED FAMILY

It is worth emphasizing that the three-point Euler
backward interpolation is a special case of the Newton
backward divided difference formula. This property is
employed to develop a new time integration family.
To establish the formulation, the time step is divided
into m equal segments, as shown in Fig. 1. One can
assume that the nodal values of a function, such as Z ,
are known. Based on this, the m+1 sample points can
be utilized to write the m-order Newton interpolation
function as follows

Z(t) = [zn] + [zn, zn+1/m](t − tn) + · · · + [zn, zn+1/m,

. . . , zn+1](t − tn)(t − tn+1/m) · · · (t − tn+1−1/m)

(3)

where the coefficients [zn, zn+1/m, . . . , zn+i/m] are func-
tions of the sample values and the length of the
segments. One can calculate the first derivative of Z
and substitute tn + (i/m)�t instead of t to find Ż n+(i/m)

as below

Ż n+(i/m) = m
i!�t

i∑
j=0

Ni jZ n+(j/m), i = 2, 3, . . . , m (4)

where Nij are the coefficients of the Newton interpo-
lation for the first derivative. The parameters of the

Fig. 1 The sub-domains of the time step

Table 1 The coefficients of the Newton interpolation
for the first derivative

i Ni0 Ni1 Ni2 Ni3 Ni4 Ni5 Ni6

1 −1 1 – – – – –
2 1 −4 3 – – – –
3 −2 9 −18 11 – – –
4 6 −32 72 −96 50 – –
5 −24 150 −400 600 −600 274 –
6 120 −864 2700 −4800 5400 −4320 1764

first- to sixth-order functions are obtained and
inserted in Table 1.

Relation (4) is used to interpolate the velocity and
acceleration. In other words, if the displacement vec-
tor is substituted in equation (4), instead of Z , the
velocity vector at time t = tn + (i/m)�t is obtained.
The acceleration is similarly extrapolated in terms of
the velocities, when the Ẋ vector is substituted for
scalar parameter Z . This study shows that using the
first-order Newton interpolation for the first sub-stage
causes a considerable numerical damping. On the
other hand, utilizing the trapezoidal rule presents bet-
ter solutions. Therefore, the extrapolation functions in
the first stage are written in the following form

⎧⎪⎪⎨
⎪⎪⎩

Ẋ
n+(1/m) = 2m

�t

(
X n+(1/m) − X n) − Ẋ

n

Ẍ
n+(1/m) = 2m

�t

(
Ẋ

n+(1/m) − Ẋ
n
)

− Ẍ
n

(5)

The extrapolation functions in the other stages are
written in the form of equation (4). The results are as
below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ
n+(i/m) = αiiX

n+(i/m) +
i−1∑
j=0

αijX
n+(j/m)

Ẍ
n+(i/m) = α2

iiX
n+(i/m)

+
i−1∑
j=0

αij

(
Ẋ

n+(j/m) + αiiX
n+(j/m)

)

αij = m
i!�t

Nij , i = 2, 3, . . . , m, j = 0, 1, . . . , i

(6)

The system variables at time t = tn + i �t/m, i =
1, 2, . . . , m, should satisfy the dynamic equilibrium
equations. Consequently, the velocities and acceler-
ations of equations (5) or (6) are substituted into
equation (1), and the governing equation is written
in terms of the unknown displacements as follows

SeqX n+(i/m) = Peq

Seq = Sn+(i/m) + α2
iiM + αiiCn+(i/m)

Peq = Pn+(i/m) − M f n+(i/m)

1 − Cn+(i/m) f n+(i/m)

2
(7)
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where f 1 and f 2 are two functions of the previous
variables, and they are written for the first stage as
below⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f n+(1/m)

1 = −α2
10X n − 2α10Ẋ

n − Ẍ
n

f n+(1/m)

2 = −α10X n − Ẋ
n

α10 = 2m
�t

(8)

The parameters f 1 and f 2 in the other stages are
obtained by utilizing the following relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f n+(i/m)

1 =
i−1∑
j=0

αij

(
Ẋ

n+(j/m) + αiiX
n+(j/m)

)

f n+(i/m)

2 =
i−1∑
j=0

αijX
n+(j/m)

i = 2, 3, . . . , m

(9)

Equivalent static system of equation (7) requires the
load vector at the ith point of the sub-region. This vec-
tor can be linearly interpolated between the values of
the load vector at two ends of the time step as below

Pn+(i/m) =
(

1 − i
m

)
Pn + i

m
Pn+1 (10)

It is clear that using equation (10) can insert some
errors in the responses. If the values of the load vector
at the middle points are available, employing the exact
values improves the results. Up to here, all the required
relations for solving the dynamic system are available.
These equations are forming a new algorithm. In other
words, the aforementioned relations are programmed
and a family of the numerical time integrations is
obtained. When the value of the parameter m is 2, the
BM2 process is resulted. All the family members with
more than two sub-stages are new. The stability and
accuracy of three-, four-, five- and six-stage methods
of the proposed multi-step time integration family are
studied in the next sections.

4 VERIFYING THE STABILITY

The stability of the suggested time integration fam-
ily is studied in this section. This goal can usually be
reached by verifying an un-damped and free oscil-
lation of a single-degree-of-freedom (SDOF) system.
The results of studying an SDOF structure could be
extended for most of the structures [31]. According
to the literatures, this is not a sufficient condition
for a general non-linear dynamic problem. A dynamic
equilibrium equation of an un-damped SDOF is con-
sidered as below

ẍ + ω2x = 0 (11)

where ω is the natural angular frequency of vibration.
From an analytical point of view, the numerical time
integration scheme is an iterative process, which cal-
culates the displacement, velocity, and acceleration
at time tn + �t in terms of previous data. One avail-
able method to study the stability of such procedure is
verifying the spectral radius of the system coefficient
matrix. The mentioned matrix relates the unknown
variables to the previous known ones in the following
form⎧⎨

⎩
x
ẋ
ẍ

⎫⎬
⎭

n+1

= A

⎧⎨
⎩

x
ẋ
ẍ

⎫⎬
⎭

n

≈ Y n+1 = AY n (12)

Combining the extrapolations of equations (5) and
(6) with the equilibrium equation (11), matrix A is
obtained. The necessary condition for the stability of
the iterative relation (12) is written as below

ρ(A) = max |λi| � 1 (13)

The parameter ρ is called the spectral radius of A.
It is obvious, the solution becomes Y n+r = ArY n, after
performing the r steps. Recall that the eigenvalues of
Ar are λr

i . Consequently, An is bounded when λi and
λn

i are bounded too. In other words, restricting the
spectral radius prevents the solution from unsteady
growth. The value ρ = 1 for the un-damped SDOF
system means that the amplitude is not changed as
the time is elapsed. On the other hand, the solution
approaches to zero when the spectral radius is less
than one. It should be noted, matrix A depends on
the values of the system’s natural period, T = 2π/ω,
and time step. It is customary to present the spec-
tral radius in terms of �t/T ratio. In this article, the
spectral radius for the proposed family is calculated
numerically. Figure 2 shows the curves of ρ versus the
�t/T ratio, for different values of m. The curve of the
spectral radius for the linear acceleration method of
Newmark is also presented in Fig. 2.

As it is shown in Fig. 2, the spectral radius of New-
mark process, between �t = 0 and 0.5513T , remains

Fig. 2 The curves of spectral radius
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Fig. 3 The curves of spectral radius

1. Out of this region, it suddenly increases. The
mentioned behaviour has been also reported by some
other authors [32]. It is worth emphasizing that the
variation of the spectral radius between 0 and 0.5�t/T
is very important. This part of the curves is shown in
Fig. 3 in more detail.

Figure 3 shows that the five- and six-step mem-
bers of the presented family are not always stable.
Even for a small value of the �t/T ratio, the value
of the spectral radius for these algorithms is greater
than one. However, for the applicable domains, ρ is
a little more than one. It should be noted, in most
cases of the multi-degree-of-freedom systems, there
are numerical dampings and some instability domains
are usually eliminated. Altogether, from the stability
point of view, the five- and six-order schemes behave
near the linear acceleration strategy of Newmark. On
the other hand, the family members with the orders
3 and 4 are stable. In fact, for a large value of �t/T ,
the value of the spectral radius of these members is
very close to one. The numerical outcomes also indi-
cate the good capability and the accuracy of these
schemes.

The spectral radius is also used to study the dissi-
pation in the numerical time integration algorithm. A
suitable tactic should conserve the energy of the low-
frequency responses. Consequently, the curve of the
spectral radius should be very near to the line ρ = 1,
for the small �t/T ratios. From this point of view, the
three- and four-step members of the proposed fam-
ily behave much better than the BM2 approach. On
the other hand, the high frequencies may cause insta-
bility. Therefore, the high-frequency modes should be
damped. It means that the spectral radius would be
less than one for the large values of the �t/T ratio.
Researchers have suggested that the extreme value of
the spectral radius should be kept in the domain of
0.5–0.8 when the value of the time step is tending to
infinity [25]. The new multi-step time integration tech-
niques, and also BM2 tactic, have the same behaviour
for very high modes. In fact, the curves of the spectral
radii are approaching zero for all the aforementioned
procedures.

5 DYNAMIC ANALYSIS USING THE DYNAMIC
RELAXATION METHOD

Dynamic analysis requires solving a static system
of equations in each step. The Newton–Raphson or
Gauss–Seidel iteration methods can solve these equa-
tions [15, 33]. Rezaiee-Pajand and Alamatian utilized
the dynamic relaxation technique to solve non-linear
dynamic problems [34]. It is reminded that the DRM
is an algorithm for solving a system of linear or non-
linear static equations. The DRM solver adds the
inertia and damping forces to the static system. Start-
ing from initial values for the unknowns, the central
finite difference method is used to find the steady state
of the pseudo-dynamic system. In this section, a mod-
ified DR algorithm for solving the dynamic problems
is utilized, which is slightly different from reference
[34]. At first, two orthogonal time axes are assumed.
The dynamic relaxation time axis is denoted by τ ,
and the axis t shows the real time. The fictitious mass
and damping matrices are MF and CF, respectively. It
is evident that the system has the real damping and
masses too. Therefore, the responses of the structure
are functions of both real and artificial times. The equi-
librium equation of such a system at the time (tn+1, τk)

is written in the following form

Mn+1,k
F X n+1,k

,τ τ + Cn+1,k
F X n+1,k

,τ

+ MX n+1,k
,t t + Cn+1,kX n+1,k

,t + Sn+1,kX n+1,k = Pn+1,k

(14)

For simplicity, the velocity and acceleration are
shown by the subscripted displacement vector. Using
a numerical time integration strategy, the system of
differential equation (14) is solved in the real-time
space. At time tn+1, the system is released from X n

location. For the time on which the dynamic equilib-
rium equations are not satisfied, the system is vibrated
in the spurious time space. When the system reaches
the steady state, the correct solution of X n+1 is found.
It should be reminded that the DRM uses the cen-
tral finite difference process to obtain the equilibrium
state. The mentioned algorithm is performed in the
following stages.

1. Define αm j , j = 0, 1, . . . , i.
2. Take k = 0 and X n+1,k = X n.
3. Calculate the real velocities X n+1,k

,t and accelerations
X n+1,k

,t t using equations (5) or (6).
4. Update the real stiffness Sn+1,k , damping Cn+1,k and

loads Pn+1,k .
5. Calculate the residual dynamic forces from the

formula below

Rn+1,k = Pn+1,k − MX n+1,k
,t t − Cn+1,kX n+1,k

,t

− Sn+1,kX n+1,k
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6. Compute the fictitious mass matrix Mn+1,k
F and

damping factor ck
f .

7. Calculate spurious velocities

X n+1,k+1/2
,τ = 2 − ck

f �τk

2 + ck
f �τk

X n+1,k−1/2
,τ

+ 2

2 + ck
f �τk

M−1
F Rn+1,k

8. Obtain a new displacement using X n+1,k+1 =
X n+1,k + �τk X n+1,k+1/2

,τ .
9. Check the value of ‖Rn+1,k+1‖. If it is greater than the

acceptable error εR, repeat the iteration from state-
ment (3). Otherwise, the DR process has converged
and a new sub-stage or the next step is started.

The values of the fictitious matrices, damping and
masses, should be chosen such that the artificial
dynamic system converges to the solution X n+1, as
soon as possible. Consequently, the critical damping
should be applied. In the aforementioned algorithm,
parameter cf is the critical damping factor. It should
be noted, the damping matrix of DRM is written in
terms of the fictitious mass matrix, CF = cf MF [35].
The Rayleigh tactic is a common method for finding
the critical damping factor, which can be written as
below [34]

cf = 2

√
X T{α2

iiMX + αiiCX + SX }
X TMFX

� 2/�τk (15)

To easily invert the matrix MF, a diagonal matrix is
chosen as follows [36]

mfii = ψ

4

∑
j

(|si j| + α2
ii|mi j| + αii|ci j|

)
(16)

where ψ is a parameter greater than 1, and usu-
ally is assumed to be equal to 1.1, according to
Papadrakakis’s suggestion [37]. For simplifying the
algorithm, the non-diagonal terms of the real matri-
ces are ignored, and 2 is used for the parameter ψ . It
is worth emphasizing, there is no requirement to mul-
tiply S in X . Because the resulting vector is the vector
of the internal forces, it is calculated at the elements
assembling level. In addition, there are no column or
row operations over the matrices in the DRM relations.
Consequently, the non-zero elements of the upper tri-
angular matrices are stored in the vectors to reduce the
total number of operations and required memories.

6 NUMERICAL EXAMPLES

The stability and accuracy of the proposed time inte-
gration schemes are discussed by solving some prob-
lems. The results are checked and compared with the

well-known strategies. The constant and linear accel-
eration algorithms of Newmark [6] and the Wilson-θ
process [8] are three well-known procedures. These
time integration procedures are named by Newmark
constant acceleration method (NCA), Newmark linear
acceleration method (NLA), and Wilson theta method
(WTM), respectively. The extensive numerical studies
show that accurate results are obtained using three-
and four-step members of the proposed family.

6.1 The van der Pol equation

The van der Pol equation is solved as the first exam-
ple. This study exposes the phase difference error for
the suggested schemes. The results are compared with
NLA, WTM, and BM2 tactics. The van der Pol equation
is written as below

ẍ − μ(1 − x2)ẋ + x = 0, x0 = 2, ẋ0 = 0, μ = 0.1

The exact solution for this system has the following
form

x =
(

x0 − μ2

8

)
cos(ωt) + 3

4
μ sin(ωt) + 3

16

× μ2 cos(3ωt) − 1
4
μ sin(3ωt) − 1

16
μ2 cos(5ωt)

ω = 1 − μ2

16

The three- to six-step tactics of the new family are
used as a tool for the time integration. It should be
reminded that the two-step family member is the
same as the BM2 scheme. In this investigation, the dif-
ferences between the exact displacements and those
found by numerical integration describe the errors.
The errors are also normalized with respect to the max-
imum value of displacement. It is clear that the values
of the errors are also fluctuated.Whereas the total time,
t = 600 s, is much larger than the period of the system,
the curves of the errors present a cramped figure. For
this problem, the envelope curves of the positive nor-
malized errors are plotted in Fig. 4. In this case, all the

Fig. 4 The envelope curves of the normalized displace-
ment errors
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time integration processes use the time step equal to
�t = 0.1 s.

According to Fig. 4, the Wilson-θ approach gives
the worst results. The Newmark [6] and Bathe [7]
algorithms present the same error in this example.
Furthermore, the errors reduce when the order of
integration increases. In this example, the NLA errors
are approximately five times of the four-step strategy
errors. However, the analysis time used by the four-
step approach is almost four times the NLA one. This
indicates the efficiency of the presented formulation.
As it was mentioned previously, the time steps are
the same for all procedures. Consequently, the higher-
order techniques use the smaller sub-step. It is suitable
to study the effect of sub-step size on the accuracy of
the results. To find this effect, the problem is solved by
different values of the time step, so that the continu-
ances of the sub-stages are equal in all aforementioned
algorithms. In other words, the time step for the m-
step scheme is chosen as 0.1 m. Figure 5 shows the
displacements curves between 595 and 600 s.

As shown in Fig. 5, the best result is obtained by
using the Newmark linear acceleration scheme. The
findings demonstrate that the analyst cannot achieve
a better accuracy by increasing the sub-steps when
the value of the time step increases with the same rate.
However, the Newmark method is only stable for the
specific time step values, but some of the higher-order
algorithms are unconditionally stable. Figure 5 also
shows the displacement errors in all schemes, which
result from the period errors. It is seen that the New-
mark method gives the best result for equal sub-steps;
the WTM presents the worst solutions in both equal
and unequal sub-regions. In other tactics, the outcome
accuracy is increased when the number of sub-steps
increases.

6.2 2D non-linear oscillator

The dynamic system of Fig. 6 is a combination of a
concentrated mass, m = 4 kg, and a spring. The con-
centrated mass can rotate around the axis x3 on the

Fig. 5 The displacement curves

Fig. 6 The 2D non-linear oscillator

horizontal table without any friction. The stiffness and
the initial length of the spring are k = 10 N/m and
L = 10 m, respectively.

The dynamic equilibrium equations of this system
can be written as below

[
m 0
0 m

]
Ẍ +

[
ka 0
0 ka

]
X =

{
0
0

}

a =
√

x2
1 + x2

2 − L√
x2

1 + x2
2

The motion of the mass is started by applying the
initial velocity ẋ0

2 = 10 m/s. Figure 7 shows the locus
of the mass between 0 and 64 s, which is found by
using the Newmark-β method and the time step equal
to 0.1 s.

It is noted that the period of the system is approxi-
mately 6.4 s. Consequently, some non-linear dynamic
analyses are performed using 0.6 s as the time step. A
selected part of the solutions for the proposed time
integration family and also for the BM2 and NLA
schemes are presented in Fig. 8. The near-exact dis-
placements are obtained by utilizing the NLA process
and �t = 0.001 s. The figure shows the good accu-
racy solutions for the fourth and the higher-order
algorithms.

Fig. 7 The locus of the ball between 0 and 64 s
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Fig. 8 The curves of the x2 component of the displace-
ments

Fig. 9 The envelope curves of errors in x2

In order to investigate the effect of smaller sub-
steps on the accuracy of the higher-order schemes,
some other analyses are performed by utilizing �t =
0.1 m, between 0 and 650 s. The results are compared
to the solutions of BM2 and NLA techniques, when
using �t = 0.01 and 0.002 s, respectively. Using a very
smaller time step for NLA changes the solutions about
a maximum of per cent 0.1. In other words, this solu-
tion is near exact. It is interesting to find the errors of
the displacements. Figure 9 shows the envelope curves
of the normalized errors in x2 with respect to the max-
imum displacement. The result of this study is the
same as the outcome of the previous section. In other
words, among the mentioned schemes, the Newmark
procedure is the best when the algorithms are stable
and the lengths of the sub-steps for all techniques are
equal. Outcomes of the six-step process are near the
NLA ones. The five-step tactic is also better than the
four-step method, since time is lesser than 400 s. After
that, the four-step strategy answer has fewer errors. It
is evident that the mentioned behaviour of the five-
step procedure is due to weak numerical instability.
In this example, the results of BM2 and the three-step
methods have no quantitative difference.

6.3 The shear building

Figure 10 shows a five-story shear building, which is
adopted from Wang [27]. The masses of all stories

Fig. 10 The shear building

are the same, and equal to 2.616 × 106 kg. The stiff-
ness of stories, k2–k5, is 981 × 106 N/m. The value of
k1 is 20 per cent more than the others. The damp-
ing matrix of the structure consists of the classical
and additional parts. The classical damping matrix
is obtained using Cc = 0.3M + 0.002S. The additional
term is 20Cc(1, 1), which is added to the first degree
of freedom to consider a damper device at the first
story. Five lateral forces affect the structure as shown
in Fig. 10. The equation of these loads is given
below

P = 2.616 × 106{1 1 1 1 1}T sin(π t)

This shear-type building is analysed by utilizing sev-
eral time integration methods, with �t = 0.01 s. The
displacements and velocities at the top story of struc-
ture are arranged in Table 2. The very accurate results
of the Gauss precise integration method (GPIM) pro-
cess of Wang and Au [27] are also inserted in this table.
Table 2 shows that the proposed family can present
high accuracy solutions, whereas the simplicity of the
suggested algorithms is preserved. Furthermore, one
can increase the order of the method to improve the
results. It should be reminded, the GPIM tactic uses the
Padé approximation of the order (2, 2) for exponential
matrix in the exact solution. The (2, 2)-order of this
approximation is a rational function of two second-
order polynomials. Its denominator is written in terms
of the coefficient matrix for the equivalent first-order
differential equations. Therefore, using this approxi-
mation requires calculating the inverse of a matrix. In
order to avoid inverting process, Wang and Au utilized
a ten-stage recurrence algorithm. All the aforemen-
tioned calculations should be performed at the five
Gauss points for each step to obtain the solutions,
which requires considerable time.
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Table 2 The results of the shear building analysis at the roof

Time

Scheme Res. 0.2 0.4 0.6 0.8 1 Max error (%)

Exact x5 0.004 036 0.026 384 0.053 295 0.054 803 0.019 810
ẋ5 0.059 093 0.149 040 0.093 347 −0.089 965 −0.238 530

GPIM x5 0.004 036 0.026 384 0.053 295 0.054 803 0.019 810 0.000
ẋ5 0.059 092 0.149 040 0.093 347 −0.089 965 −0.238 530 0.000

m = 6 x5 0.004 035 0.026 382 0.053 290 0.054 798 0.019 809 0.009
ẋ5 0.059 087 0.149 028 0.093 341 −0.089 953 −0.238 510 0.013

m = 5 x5 0.004 036 0.026 381 0.053 290 0.054 799 0.019 809 0.010
ẋ5 0.059 086 0.149 029 0.093 342 −0.089 949 −0.238 510 0.017

m = 4 x5 0.004 036 0.026 381 0.053 289 0.054 799 0.019 811 0.012
ẋ5 0.059 084 0.149 031 0.093 345 −0.089 941 −0.238 510 0.026

m = 3 x5 0.004 036 0.026 380 0.053 288 0.054 800 0.019 814 0.021
ẋ5 0.059 080 0.149 035 0.093 353 −0.089 921 −0.238 510 0.048

BM2 x5 0.004 037 0.026 377 0.053 285 0.054 803 0.019 822 0.061
ẋ5 0.059 069 0.149 046 0.093 370 −0.089 872 −0.238 509 0.103

NCA x5 0.004 039 0.026 372 0.053 279 0.054 808 0.019 836 0.131
ẋ5 0.059 051 0.149 064 0.093 402 −0.089 786 −0.238 509 0.198

WTM x5 0.004 033 0.026 356 0.053 278 0.054 839 0.019 878 0.345
ẋ5 0.059 008 0.149 108 0.093 482 −0.089 566 −0.238 533 0.443

6.4 The 2-DOF system

Soleymani et al. [21] solved a problem with two
degrees of freedoms, which is described as below[

m 0
0 3m

]
Ẍ +

[
3k −2k

−2k 6k

]
X =

{
0

f (t)

}

f (t) =
{

1000 (1 − 10 t) 0 � t � 0.1

0 t > 0.1

where the values of the stiffness coefficient k, and
mass m are 1000 N/m and 0.5 kg, respectively. Utilizing
the modal decomposition technique, Soleymani et al.
found the exact solution. The natural frequencies and
the mode matrix for the mentioned system are written
in the following form{

ω1 = 49.834 rad/s
ω2 = 87.700 rad/s

� =
[

0.7783 1.1820
0.6825 −0.4482

]

Assuming �t = 0.02 s, the aforementioned system
is solved by using several time integration meth-
ods. The solutions curves, between 0.8 and 1 s, are
shown in Fig. 11. This figure shows that using the
schemes with orders 4, 5, and 6, instead of NLA and
BM2 processes, can much improve the solution. The
Wilson-θ algorithm with θ = 1.42 presents inaccurate
results in this example. It is noted that Soleymani
et al. obtained an accurate response by utilizing �t =
0.05 s. However, they used the fourth-order accuracy
functions and 11 collocations points. In other words,
these researchers solved a system of 44 asymmetric
equations in each step. Utilizing a new family of the
time integration, only four symmetric systems, having

Fig. 11 The curves for the variation of x2

two equations, are solved in the four-step proposed
scheme.

6.5 The skew plate

In this section, a rhomboid plate bending with an
acute angle of 30◦, as shown in Fig. 12, is consid-
ered. The deflections of all peripheral nodes are fixed.
Because of singularity in the bending moment at the
acute angle, this structure is a very hard example and
some finite element formulations cannot present the
true solution. Accordingly, a suitable element, which

Fig. 12 The skew plate
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Fig. 13 The curves of the central displacements

was proposed by Onate et al. [38], is used to model
the structure. The length, thickness and Poisson ratio
for this structure are 10 m, 2 m, and 0.3, respectively.
The modulus of elasticity and the value of the mass
per volume of the plate are correspondingly chosen as
2 × 104 MPa and 10 KN s2/m.

This plate is loaded by a uniformly distributed force,
q = q0 sin(2πt/0.019). The linear dynamic behaviour
of the structure is studied between 0 and 2 s. The NLA
scheme with a very small time step, �t = 5 × 10−6 s,
is utilized to find the near-exact solution. The pro-
posed time integration processes are performed by
using a time step of 0.0001 s. Figure 13 shows the enve-
lope curves of the normalized error with respect to the
extreme deflection.

Figure 13 shows that the values of the errors in
the BM2 and NLA solutions are similar in this exam-
ple. The sixth-order of the proposed family presents
the best solution. However, performing more accu-
rate studies show that this scheme is unstable, when

the value of the time step is 0.000 15 s. The curve
belonging to the fifth-order suggested technique in
Fig. 13 indicates instability. It should be noted, the
NLA method is also unstable when the value of the
time step is 0.0002 s. The third- and the fourth-order
algorithms are stable and produce accurate solutions.
In the second part of this example, some other analy-
ses are performed using larger time step, �t = 0.002 s.
The normalized result with respect to the extreme
deflection is shown in Fig. 14. This figure includes
the outcome of using the NLA process, with �t =
0.000 01 s, which is very close to the exact solution.
According to Fig. 14, the BM2 procedure has a con-
siderable period and amplitude errors. On the other
hand, increasing the order of the new scheme to 4 can
decrease the mentioned errors significantly.

The smallness of the sub-step length and order of the
technique have affected the responses. These effects
have been studied in the previous sections and are
evaluated for the skew plate as well. Therefore, some
analyses are carried out using different values for the
time step as shown in Fig. 15. The length of the sub-
region is the same for all procedures. The solutions
are compared with the results of NLA, with a time
step of 3 × 10−6 s. It should be noted that the stiff-
ness is very high and the linear behaviour is considered
for the skew plate. Accordingly, very small time steps
should be utilized to guarantee the stability of the five-
and six-step methods and also NLA. Under these con-
straints, the values of errors are very small. As shown
in Fig. 15, the errors are normalized with respect to
the maximum error of the BM2 process to obtain
comparable curves. The results verify the validity of

Fig. 14 The curves of the central displacements
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Fig. 15 The curves of the central displacements using
different time step

the previous studies. In other words, the NLA scheme
presents the best solutions. This study also shows that
the accuracy usually decreases when the multiple pro-
cesses with different orders are mixed in some of the
sequential steps. However, utilizing the mixed orders
may fulfill the stability requirements. The proposed
mixed algorithms are effective when the time step is
equal in all methods. It is worth mentioning that the
analysis duration is seldom reported for the new meth-
ods. Usually, obtaining more accurate results requires
more computational efforts. It should be reminded
that one system of equations should be solved in each
sub-step of the proposed family. Because considerable
amount of calculation is devoted for solving equations,
the higher-order tactics need more time. Furthermore,
when the sub-step lengths are equal in all procedures,
the required times are approximately the same.

7 CONCLUSIONS

A new family of a multi-step time integration scheme
is presented. At first, the time step is divided into m
equal segments. Afterwards, the system solutions at
the end of the first segment are evaluated using the
trapezoidal rule. The ith-order Newton interpolation
for function derivative is used to calculate the struc-
tural responses at the ith internal point. It should be
noted that a member of this family, which utilizes two
sub-steps, is the same as the Bathe technique [7]. The
three- to six-step members of the new algorithms are
formulated and studied in this article. The stability of
this family is verified using the spectral radius. The
two, three, and four-step schemes are stable. However,
those having five and six sub-steps are not always sta-
ble. In fact, the spectral radii of these conditionally
stable procedures are very close to one, and they have a
good performance when the time step is small enough.
From the stability point of view, the five- and six-step
methods behave similar to the Newmark scheme. The
most important point is that the period errors for the
proposed family decrease by using the strategies with
more sub-steps. The numerical studies show that the

responses of the two-stage Bathe method have usually
the same accuracy as that of the Newmark one. On the
other hand, the processes that utilize more sub-steps
present the more accurate results.

In a very special case, when the lengths of the sub-
steps for all aforementioned algorithms are the same,
and the stability conditions for all procedures are ful-
filled, the outcomes of the Newmark strategy usually
have the best accuracy. It is to be regretted that this
old tool has the stability deficiency! In comparison
to the others, the two-step tactic has the most val-
ues of errors. However, the errors of all members of
the newly suggested family decrease when the num-
bers of the sub-steps increase. It should be noticed,
the required time for performing the integration pro-
cedures depends on the number of equations, which
are solved in each sub-step. Consequently, when the
lengths of sub-steps are the same for all tactics, the
analysis durations are approximately the same. For
instance, the analysis time used by the four-step
approach is almost four times the NLA approach when
the time step is the same for both the schemes. How-
ever, the NLA errors in Example 6.1 are five times of the
four-step strategy errors. This indicates the efficiency
of the presented formulation. Lastly, the Wilson-θ
approach gives the worst results in both equal and
unequal length of sub-steps.

© Authors 2010
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APPENDIX

Notation

cf fictitious damping coefficient
C, CF real and fictitious damping matrices
M, MF real and fictitious mass matrices
Nij coefficients of the Newton interpolation
P force vector
R residual force vector
S stiffness matrix
t , τ real and artificial time
T natural period of system
X , Ẋ , Ẍ displacement, velocity, and acceleration

vectors

�t , �τ real and artificial time step value
λi eigenvalue
ρ spectral radius
ω natural angular frequency
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