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Abstract- Computational complexity is a major challenge in 
evolutionary algorithms due to their need for repeated fitness 

function evaluations. In the context of multiobjective 
evolutionary algorithms, there are a few attentions to the 
computational complexity of this kind of algorithms. Here, we 
aim to reduce number of fitness function evaluations in 

multiobjective cellular genetic algorithms by the use of fitness 
granulation via an adaptive fuzzy similarity analysis. In the 
proposed algorithm, an individual's fitness is only computed if 
it has insufficient similarity to a queue of fuzzy granules whose 
fitness has already been computed. If an individual is 
sufficiently similar to a known fuzzy granule, then that 
granule's fitness is used instead as a crude estimate. Otherwise, 
that individual is added to the queue as a new fuzzy granule. 
The queue size as well as each granule's radius of influence is 
adaptive and will grow/shrink depending on the population 
fitness and the number of dissimilar granules. The proposed 
method is applied to a set of 6 test problems. In comparison 

with two well-known multiobjective evolutionary algorithms, 
NSGA-II, and MoCell, computational results show that the 
proposed method is competitive with these algorithms. 

I. INTRODUCTION 

Many real world problems are multiobjective problems. 
As the optimized goals in multiobjective problems are 
generally conflicting and competing, these problems become 
more complex than single objective problems. Unlike single 
objective problems, multiobjective problems do not restrict 
to find a unique single solution therefore for solving this 
kind of problems we should find a set of solutions called 
non-dominated solution (also called Pareto-optimal 

solutions). When these solutions are plotted in the objective 
space they are called Pareto front. The main goal of 
multiobjective optimization is obtaining the Pareto front of a 
given multiobjective optimization problem (MOP). As 
search spaces in MOPs are very large, and time complexity 
for solving these problems by deterministic techniques is 
high, stochastic methods have been proposed for this kind of 
problems. Among them, evolutionary algorithms (EAs) have 
been investigated by many researchers, and some of the 
most well-known algorithms for solving MOPs belong to 
this class (e.g. NSGA-II [1], PAES [2], SPEA2 [4], and 
MoCell [3]). 

Although all of these algorithms can tackle most real 
world applications, but they have some limitations. Fitness 
function evaluation is often the most prohibitive and limiting 
segment of artificial evolutionary algorithms, for an explicit 
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fitness function may either be nonexistent or its computation 
is prohibitively costly. In both cases, it may be necessary to 
forgo an exact evaluation and use an approximated fitness 
that is computationally efficient. In some problems such as 
design of mechanical structures, each exact fitness 
evaluation requires the time consuming stage of fmite 
element analysis which, depending on the size of the 
problem, may require anywhere from several seconds to 
several days. To alleviate this problem, various methods 
have been proposed to date. A popular subclass of fitness 
function approximation methods known as fitness 
inheritance is introduced in [5] and [6] where fitness is 
simply inherited. Theoretical analyses of convergence time 
and population sizing when fitness is inherited is reported in 
[7]. An approach similar to fitness inheritance has also been 
suggested where the fitness of a child individual is the 
weighted sum of its parents [8]. Unfortunately, the 
performance of parents is not always indicative of the child, 
and this simple strategy can fail in sufficiently complex and 
multi-objective problems [9]. 

The problem of fitness estimate also appears in 
sufficiently complex applications where it may be desirable 
to decompose a problem into several smaller/simpler 
problems that are more easily solvable such as in 
cooperative co-evolutionary schemes. But the rising problem 
is estimating fitness of these smaller problems from 
evaluation of the original problem at large. Individuals in 
these sub-populations encode only part of the problem and 
their fitness value always depends on others. To solve this 
problem, methods such as fitness assignment for estimating 
fitness values [10] and fitness estimation by 
association/friendship [11] have been developed. 

Other common approaches are based on learning and 
interpolation from known fitness values of a small 
population. Specifically, one widely used method in design 
engineering include the response surface methodology that 
uses low-order polynomials and the least square estimations 
[12], and the Kriging model that is also called the Design 
and Analysis of Computer Experiments (DACE) model [15]. 
In Kriging model, a global polynomial approximation is 
combined with a local gaussian process and the maximum 
likelihood method is used for parameter estimation. 

Here, we use the method proposed in [13], for fitness 
function approximation in cellular genetic algorithms for 
solving multiobjective optimization problems. 

This method reduces the number of fitness function 
evaluations by the use of fitness granulation via an adaptive 
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fuzzy similarity analysis. Here, an individual's fitness is 
only computed if it has insufficient similarity to a queue of 
fuzzy granules whose fitness has already been computed. If 
an individual is sufficiently similar to a known fuzzy 
granule, then that granule's fitness is used instead as a crude 
estimate. Otherwise, that individual is added to the queue as 
a new fuzzy granule. The queue size as well as each 
granule's radius of influence is adaptive and will 
grow/shrink depending on the population fitness and the 
number of dissimilar granules. 

II. ADAPTIVE FUZZY FITNESS GRANULATION 

Adaptive fuzzy fitness granulation (AFFG) aims to 
minimize the number of exact fitness function evaluations 
by creating a queue of solutions (fuzzy granules) by which 
an approximate solution may be sufficiently applied to 
proceed with the evolution. The method uses fuzzy 
similarity analysis to produce and update an adaptive 
competitive queue of dissimilar solutions/granules. When a 
new solution is introduced to this queue, granules compete 
by a measure of similarity to win the new solution and 
thereby to prolong their lives in the queue. In turn, the new 
individual simply assumes fitness of the winning (most 
similar) individual in this queue. If none of the granules are 
sufficiently similar to the new individual, i.e. their similarity 
is below a certain threshold, the new individual is instead 
added to the queue after its fitness is evaluated exactly by 
the known fitness function. Finally, granules that cannot win 
new individuals are gradually eliminated in order to avoid a 
continuously enlarging queue. Basics of AFFG algorithm are 
as follows: 

1. The first generation of 

Po = {X:,X�, ... ,X�""'X:} is 

individuals 

determined. 

Wh x; {; ;  ; r }' • h ere j = Xj,p Xj,2 ' ••• ' Xj,r' •••• ' Xj,m IS J-t 

individual in i-th generation, X�,7 is the r-th 

parameter of X� , t is population size and m is the 

number of function variables. Also 

G={(Ck'O"k,Lk)I Ck E Rm,Lk E R,k=l, ••• ,l} 
is a set of fuzzy granules that is initially empty, 

where C k is an m dimensional vector of centers, 

O"k is the width of membership functions of the k­

th fuzzy granules and Lk is the index of granule's 

life. 

2. Center of first granule is equal to the phenotype of 
the first chromosome, i.e. 

CI = {CI,p CI,2, ••• ,CI,7, ••• ,c1,m} = X: 
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3. Then the membership function,llr,k describes a 

Gaussian similarity neighborhood for each 
parameter k as follows: 

,llk,7(X�,r) = exp(-(x�,r -Ck,r)2 /(O"k,r)2) 
(1) 
for k= 1 ,2, ...  ,I where 1 is the number of fuzzy 
granules. 

4. Then, the average similarity of a new solution 

x; {; ; ; ;} j = X j,P X j,2 , •••• , X j,r , ••• X j,m to each 

granule Gk can be computed 

b 
- � ,llk,r(X�,7) . 

f X;· . 
h y ,ll j,k = L.. . Fitness 0 j IS eIt er 

7=1 m 
calculated by exact fitness function computing or 
estimated by associating it to one of granules in the 
queue if there is a granule in the queue with higher 

similarity to X � than a predefined threshold, as 

follows. 

if max {llj,k} > (Ji 

otherwise 

K=index max 
where 

k E {1,2, ... ,1} 

0; = a. 
Max{/(X;-' ), /���-I ), ... ,/(X:-I)} 

1'-

/-; = 
� /(X�) 

0 , L.. ' a > is a constant of 
j=1 t 

probability. Threshold 0; increases as the best 
individual's fitness in generation i increases. 
Hence as the population matures and reaches 
higher fitness valuations while also converging 
more, the algorithm becomes more selective and 
uses exact fitness calculations more often. 
Therefore, with this technique we can utilize the 
previous computational efforts during previous 
generations. Alternatively, if 

max {,uj,k} < 0; 
chosen as ke{I,2, ... ,I} 

newly created granule. 

Adaptation in the Width of Membership Functions 
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Fig 1. Flowchart of the CGA-AFFG algorithm 
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(f k is distance measurement parameter that controls the 

degree of similarity between two individuals. Since it is 
more important to have accurate estimation of the fitness 
function of the individuals that are highly fit, the granules 
shrink or enlarge in reverse proportion to their fitness as 
below. 

1 
(2) 

Where f3 > ° is an emphasis operator. The combined 

effect of granule enlargement/shrinkage in accordance to 
the granule fitness and the threshold increase in 
proportion to each population's fitness is that the 
algorithm initially accepts individuals with less similarity 
as similar individual. 

Since, in general, members of the initial populations also 
have smaller fitness, threshold is also smaller. Therefore, 
fitness is computed by more often by 
estimation/association to the granules. As the evolution 
proceeds, fitness in both the queue of granules as well as 
current population is expected to increase. This prompts 
higher selectivity for granule associability and higher 
threshold for estimation. In other words, in the last 
generations, the degree of similarity between two 
individuals must be larger than the first generations to be 

accepted as similar individuals. Equation (2) adapts the 
width of membership functions in order to have more 
exact fitness computed around individuals who perform 
very well, but fewer fitness computations around 
individuals who have poor performance. This procedure 
promotes both fast convergence rate as well as high 
accuracy because of lower computation cost in the early 
steps of evolution and accurate estimation of fitness 
function during latter generations. 

Adaptation in the Length of Granule Queue 

Finally, as the evolutionary algorithm proceeds, it is 
inevitable that new granules are increasingly generated 
and added to the queue. Depending on complexity of the 
problem, the size of this queue can become excessive and 
become a computational burden itself. To prevent such 
unnecessary computational effort, a ''forgetting factor" is 
introduced in order to appropriately decrease the size of 
the queue. In other word, it is better to remove granules 
that do not win new individuals, thereby producing a bias 
against individuals that have low fitness and were likely 
produced by a failed mutation attempt. Hence, Lk is 
initially set at N and subsequently updated as below, 

{Lk+M 
L = k 

Lk otherwise 
if k=K 

( 3) 

Table I.Unconstrained test function 

Problem n 
ZDT 1 30 

ZDT2 30 

ZDT 3 30 

Variable bounds 

[0,1] 

[0,1] 

[0,1] 

Objective functions 

.t; (x) = Xl 
h(X) = g(x)[l-�xI / g(x)] 
g(x) = 1 +9(I;_2xi)/(n-1) 
.t; (X) = Xl 
h (X) = g(x)[l-(Xl / g(X»2 ] 
g(x) = 1 + 9(I;_2 xJ /(n -1) 
.t; (X) = Xl 

h(X) = g(X)[l-�XI / g(x) -�Sin(1OJZXI)] g(X) 
g(X) = 1 + 9(I;-2 Xi) /(n -1) 

Table 2.Constrained test function 
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Problem n 

Tanaka 2 

Variable bounds Objective 
functions 

Xi E [-Jr, Jr] ft(x) = Xl 
hex) = X2 

Constraints 

-X� -xi + 1 +0.lcos(1 6arctan(xl / x2)):::;; 0 
1 2 1 2 1 (Xl - 2) +(X2 - 2) :::;; 2 

ConstrEx 2 Xl E [0. 1,1 .0] 
x2 E [0,5] 

ft(X) =Xl 
h (X) = (1 + X2) / Xl 

X2 +9xl �6 
-X2 +9xl �1 

Srinivas 2 Xi E [-20,20] ft(X) = (Xl _2)2 + Xl2 +xi:::;; 2 25 
Xl -3X2 :::;;-1 0  

Where M is the life reward of the granule and K is the 
index of the winning granule for each individual in 
generation i. Here we set M = 5. 

III. CELLULAR GENETIC ALGORITHM WITH 
ADAPTIVE FUZZY GRANULATION 

(CGA-AFFG) 

Flowchart of the proposed method is shown in the Figure 
1. CGA-AFFG starts by creating an empty front, and 
individuals are arranged on a toroidal grid. For each 

(X2 _1)2 +2 

h(x)=9xl-(X2 _1)2 

individual the algorithm consists of selecting two parents 
from its neighborhood, recombining them in order to 
obtain an offspring, mutating it, and evaluating the 
resulting offspring. In order to evaluate the offspring, we 
use AFFG method discussed in the previous section. After 
that, the resulting individual if is not dominated by the 
current individual is inserted in both the auxiliary 
population and in the Pareto front. Finally, after each 
generation, the old population is replaced by the auxiliary 
one. 

Table 3- Mean and standard deviation ofthe convergence metric GD 

Problem Opt. method NSGA II MoCell CGA-AFFG 

No.FFE 25000 25000 2465.3354 
ZDTl 

Mean and Std. 2.176e-4± 3.53e-5 4.087e-4±6.45e-5 4.165e-4±4.76e-5 

No.FFE 25000 25000 4375.7689 
ZDT2 

Mean and Std. 1. 765e-4± 3.56e-5 2.432e-4±8.36e-5 2.563e-4±4.54e-5 

No.FFE 25000 25000 3879.787 
ZDT3 

Mean and Std. 2.207e-4 ±3.62e-5 2.535e-4 ± 2.81e-5 2.641e-4±3.52e-5 

Tanaka No.FFE 25000 25000 7534.6470 

Mean and Std. 1.177e-3 ±7.54e-5 7.587e-4 ± 7.15e-5 l.354e-4±6.87e-5 

No.FFE 25000 25000 2367.3542 
ConstrEx 

Mean and Std. 2.867e-4 ±3.28e-5 1.960e-4 ± 2.52e-5 2.935e-4±2.37e-5 

No.FFE 25000 25000 6989.6482 
Srinivas 

Mean and Std. 1.907e-4 ±3.12e-5 5.l65e-5 ± 1.65e-5 2.107e-4±2.98e-5 

Table 4- Mean and standard deviation of the convergence metric Delta 

Problem Opt. method NSGA II 
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MoCell CGA-AFFG 



No.FFE 25000 
ZDTl 

Mean and Std. 3.125e-l± 2.98e-2 

No.FFE 25000 
ZDT2 

Mean and Std. 3.544e-l±3.71e-2 

No.FFE 25000 
ZDT3 

Mean and Std. 7.514e-l± 2.15e-2 

Tanaka No.FFE 25000 

Mean and Std. 7.176e-l± 3.45e-2 

No.FFE 25000 
ConstrEx 

Mean and Std. 4.252e-l± 3.24e-2 

No.FFE 25000 
Srinivas 

Mean and Std. 3.265e-l± 2.91e-2 

IV. COMPUTAIONAL RESULTS 

In this section the proposed algorithm is evaluated. For 
that, 6 test problems have been chosen which were taken 
from the specialized literature, and, in order to assess how 
competitive CGA-AFFG is, we compared it to NSGA II 
and MoCell. These test problems are depicted in table 1 
and 2. The parameters which are used by the proposed 
algorithm are as follows. We have organized 100 
individuals on a square toroidal grid and the 
neighborhood defined on it always contains 5 individuals: 
the considered one plus the North, East, West, and South 
individuals. We have used arithmetic crossover and 
uniform mutation. Crossover and mutation rates are Pc=1 
and Pm= 0.05. 

Since multi-objective algorithms find a set of non­
dominated solutions with respect to multiple objectives 
(not a single fmal solution with respect to a single 
objective), the comparison between different multi­
objective algorithms is not easy. There are two goals in a 
multi-objective optimization: 1) convergence to the 
Pareto-optimal set and 2) maintenance of diversity in 
solutions of the Pareto-optimal set. These two tasks 
cannot be measured adequately with one performance 
metric. Here, we use two different metrics for evaluating 
each of the above two goals in a solution set obtained by a 
multi-objective optimization algorithm. 

• Generational Distance This metric was 
introduced by Van Veldhuizen and Lamont [14] 
for measuring how far the elements are in the set 
of non-dominated vectors found so far from 

those in the Pareto optimal set, and it is defined 
as: 
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25000 2465.3354 

1.176e-l± 1.27e-2 3.342e-l ±2.54e-2 

25000 4375.7689 

1.132e-l± 2.12e-2 4.012e-l± 2.98e-2 

25000 3879.787 

7.087e-l± 1.24e-2 7.546e-l±2.31e-2 

25000 7534.6470 

6.624e-l± 3.18e-2 8.152e-l± 3.26e-2 

25000 2367.3542 

1.423e-l± 2.04e-2 4.126e-l±3.26e-2 

25000 6989.6482 

6.198e-2± 1.02e-2 3.362e-l± 3.21e-2 

� 
GD = 

...:V....;. fti....;;=l_ Ui_ 
n 

(4) 

Where n is the number of vectors in the set of 
non-dominated solutions, and di is the 
Euclidean distance ( measured in objective space) 
between each of these solutions and the nearest 
member of the Pareto optimal set. 

• Delta This metric [8] is a diversity metric that 
measures the extent of spread achieved among 
the obtained solutions. This metric is defined as: 

N-l 
df +d/+ I id i -JI 

L\ = 
i=l 

d f +d/+(N -l)d 
(5) 

Where, di is the Euclidean distance between 
consecutive solutions in the obtained non-

dominated set of solutions. J is the mean of 
these distances, and df and d{ are the Euclidean 
distances between the extreme solutions and the 
boundary solutions of the obtained non­
dominated set. 

The results which are summarized in Table 3 and 4, 
shows generational distance (GD) and delta (a) 
respectively. For each problem, 30 independent runs were 
carried out, and the tables include the mean, standard 
deviation and number of fitness function evaluation of the 
results. 

As illustrated in Tables 3 and 4, the CGA-AFFG is 
competitive with NSGA II and MoCell. By the less 



number of fitness function evaluation; the proposed 
method illustrated admissible Pareto optimal solutions. 

v. CONCLUSION 

Cellular genetic algorithms are one of promlsmg 
evolutionary algorithms in solving many optimization 
algorithms. But due to their nature, they need repeated 
fitness function evaluation and so they are time 
consuming. In order to overcome this problem, an 
adaptive fuzzy fitness granulation is used. This method 
selectively reduces number of fitness function evaluations 
without approximating or on-line training. This algorithm 
detects the similarity between solutions to either create 
new fuzzy granules or to use results of earlier 
computations in order to avoid unnecessary computation 
of fitness, even among members of same generation. The 
simulations show that the proposed method could lead to 
improvement in computation time without sacrificing 
performance. 
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