A STUDY OF EQUILIBRIUM CONDITIONS FOR
ALUMINOTHERMIC REDUCTION OF
STRANTIUM OXIDE

A. Zabet
d, S. Sahebian2
Ferdowsi University of Mashad

Abstract
Different thermodynamical conditions for Aluminothermic reduction of SrO has been studied to find appropriate conditions for production of \textit{Al-Sr} master alloy. Computations have been conducted using a chemical thermodynamics software. Different ratios of \textit{SrO/Al} in initial mixture have been considered. The effects of temperature, presence of inert gas or oxidizing atmosphere and different additives have been studied. Based on thermodynamical calculations following equilibrium path, it has been found that use of reducing additives such as \textit{Mg} and \textit{Ca} retards formation of \textit{SrO.Al2O3} and helps completing reduction of \textit{SrO}. The ratio of \textit{SrO/Al} should not exceed one. The choice appropriate ratio depends on final \textit{Sr} content of \textit{Al-Sr} master alloy. Temperature does not affect equilibrium condition above liquidus temperature of \textit{Al-Sr} solution. Selection of proper temperature requires consideration of the kinetics of reduction reaction and the amount of \textit{Sr} loss due to evaporation which depends on its vapor pressure.

Key words: \textit{Al-Sr} master alloy, Thermodynamical computations, Aluminothermic reduction.

1 Assistant professor
2 Undergraduate student
بررسی ترمودینامیکی تولید آمیزان به روش آلومینومری Al-Sr

اصحبا ی سلیمانیان
دانشگاه فردوسی مشهد

چکیده
شرايط مختلف ترمودینامیکی توليد آمیزان Al-Sr به روش احیا آلومینومری مورد مطالعه قرار گرفته. محاسبات برای سنتیهی مختلف SrO به ترکیب اولیه انجام شدند. اثر درجه حرارت، اتصال اکسیدگذنده و خنثی و مواد افزودنی مورد بررسی قرار گرفته. با توجه به نتایج محاسبات ترمودینامیکی حالت تعادل اتصال مربوط خنثی و استفاده از مواد افزودنی چهت ایجاد شرایط احیا، مناسب به نظر می‌رسد. نسبت SrO به Al به نسبت بالا بیش از یک باشد و انتخاب نسبت مناسب به دصرد استرنسیوم در آمیزان مورد نظر است. درجه حرارت مناسب با توجه به فشار بخار استرنسیوم، باید با در نظر گرفتن شرایط سینتیکی واکنش احیا و کنترل اتلاف استرنسیوم طی آزمایشات عملی به دست آید.

واژه‌های کلیدی: آمیزان آلومینیم استرنسیوم، محاسبات ترمودینامیکی، احیا آلومینومری

1- استاد
2- دانشجوی کارشناسی
مقمت

سیالیت و قابلیت ریخته‌گری مناسب آلایه‌های پوستکتیک و هیپوپوستکیک Al-Si و وجود آن در آلایی ریخته‌گری حدود ۵–۱۲٪ است که همین امر باعث تشکیل تیغچه‌های درشت و خشن فاز پوستکتیک می‌شود. این فاقد انجماد می‌گردد. این ساختار کاهش خواص مکانیکی را به همراه دارد که برای رفع این عیب از سدیم و آنتیمون برای تغییر ساختار ریخته‌گری استفاده می‌شود. سری بودن آنتیمون، میل ترکیبی بالای سدیم و کاهش سیالیت مذاب از معاون به‌کارگیری آنتیمون و سدیم می‌باشد. استفاده Al-Si یکی از روشهای متفاوت گزارش شده است. با توجه به عدم دسترسی به اطلاعات patent، جنگی روشهای متفاوت یکی از آنها اشکال شده به صورت شیمی‌دان [۳–۴] تولید آلیمیتی که روش تولید آلیمیتی با استفاده از استراتیسوم احیا شده می‌باشد. در این روش ابتدای آلیمیتی مذاب تا دمای ۲۰۰–۶۰۰°C حرارت داده شده و سپس استراتیسوم به میزان مورد نظر در مذاب حل می‌شود. از آنجایی که تبخیر استراتیسوم موجب تلفات این عنصر می‌شود، میزان ۱/۱-۵/۵٪ از مذاب اضافه می‌شود که یک لایه پوشش نمکی می‌باشد و رون مذاب ایجاد می‌نماید. سپس استراتیسوم را که در ورق‌های آلیمیتی، پیچیده شده به مذاب اضافه می‌نمایند. افزودن استراتیسوم مذاب را تکان داده داده اول نمایش به‌همه صورت گیرد، این ارتقاء به گونه‌ای است که لیمکی رونی مذاب از بین نروید. در یک روشه، در میان استراتیسوم را به مذاب آلیمیتی در دمای ۹۰۰°C افزوده و دمای مذاب ۱۰۰۰°C را به ۷۰۰°C سرد می‌کنند. سپس برای جلوگیری از اکسید، این آلیمیتی فلزی را به سطح مذاب اسپرسی دومه، درجه حرارت را به ۷۰۰°C رساند و ریخته‌گری می‌نمایند. منزیل را می‌توان به صورت MgCl 2 و CaF KCI به مذاب افزوده.

روش دیگر تولید آلیمیتی بر اساس احیا آلیمیتی SrO می‌باشد. به‌دست‌می‌آید اکسید استراتیسوم به آلیمیتی مذاب اضافه می‌شود. آزمایشات در گزارش بیشتر با مذاب ۱۲۰۰°C ۱۷۵۰ میلادی مشکل اصلی این روش اکسیدشدن مجدد استراتیسوم، تبخیر و پاک‌یافته کم آن بوده است.

۲۱۸
روش تحقیق

در روش آلومینومتری تولید آمیزان Al-Sr اولین آمیزان آلومینومی مذاب به عنوان اجاقولی اکسید استرانسیوم و پایه آمیزان برای حل کردن استرانسیوم استفاده می‌شود. در این سیستم اکسید آلومینوم تولید شده با بخشی از ترکیب SrO، ایجاد می‌نماید. اکتش های ناشانه شده در این سیستم به قرار زیر می‌باشد:

\[
4SrO + 2Al = 3Sr + SrO \cdot Al_2O_3 \\
SrO + Al_2O_3 = SrO \cdot Al_2O_3 \\
3SrO + Al_2O_3 = (SrO)_3 Al_2O_3 \\
2(SrO)_3 \cdot Al_2O_3 + 2Al = 3Sr(g) + 3SrO \cdot Al_2O_3
\]

برای رسیدن به پهپادنگار شرایط ترمودینامیکی با استفاده از نرم افزار FACT شرایط مختلف انجام واکنش در نظر گرفته شده و تغییر از نظر درصد استرانسیوم باقی مانده در مذاب و مواد دیگر (تغییرات انتیلی واکنش) مورد بررسی قرار گرفته‌اند.

منابع محاسباتی در حال حاضر کننده‌ی آزاد گیس ترکیبات باقی مانده می‌باشد. برای این منظور نرم افزار با استفاده از سیستم اطلاعاتی جامع آزاد گیس ترکیبات موجود در سیستم باستاوی را محاسبه می‌نماید و با تغییر تعداد مول اکسا به صورت محاسباتی و مواد به جرم هم‌زمان، انتزاع آزاد گیس کل سیستم را محاسبه می‌نماید. این تغییر تا رسیدن به وضعیت که انتزاع آزاد کل سیستم حداکثر شود ادامه می‌یابد.
از آنجایی که حالت تعادل سیستم به شرایط نهایی مسئگی دارد، حالت ورودی موارد در نتیجه محاسبات تأثیر نداشته و لذا می‌توان موارد ورودی را به صورت عناصر با ترکیبات در نظر گرفت. البته شرایط اولیه برای محاسبه تغییرات انتقالی اهمیت داشته که در موارد استفاده شده به آن اشاره خواهد شد. ذیل‌اکی نمونه اطلاعات ورودی آورده شده است. پس از محاسبات حالت تعادل اطلاعات خروجی به فرم زیر خواهد بود.

\[
\text{Equilibrium Input:} \quad (\text{gram}) \ 2\ SrO + 8\ Al + 0.02\ Si + 0.03\ Fe = (298K,1ATM,S) \quad (1273K,1ATM,L) \quad (298K,1ATM,S) \quad (298K,1ATM,S)
\]

\[
\text{Equilibrium Output:} \\
0.10000 \ \text{litre} \quad (99.991 \ \text{vol}\% \ Sr + 0.83785E-02 \ \text{vol}\% \ Al + 0.63300E-03 \ \text{vol}\% \ Sr_2 + 0.29550E-03 \ \text{vol}\% \ Al_2O + 0.10336E-03 \ \text{vol}\% \ Sr_2O + 0.14679E-06 \ \text{vol}\% \ Al_2 + 0.94965E-07 \ \text{vol}\% \ SiO + 0.86366E-07 \ \text{vol}\% \ Fe + 0.76106E-08 \ \text{vol}\% \ Si) \\
(1273.0K,0.1795E-02 \ \text{atm}, \text{gas}_\text{ideal})
\]

\[
+ 9.0579 \ \text{gram} \quad (85.446 \ \text{wt}\%. \ Al + 14.002 \ \text{wt}\%. \ Sr + 0.33120 \ \text{wt}\% \ Fe + 0.22080 \ \text{wt}\% \ Si) \\
(1273.00 \ \text{K},0.17950E-02 \ \text{atm}, \text{liquid})
\]

\[
+ 0.99200 \ \text{gram} \quad (\text{SrO})(\text{Al}_2\text{O}_3) \\
(1273.0K, \ 0.1795E-02 \ \text{atm}, S2, a=1.00) \quad \delta H (J) \quad \delta G(J) \\
1.532E+02 \quad -4.773E+02
\]
نتایج و بحث

محاسبات در شرایط مختلفی انجام شده اند. موارد مورد بررسی به ترتیب، تغییرات نسبت اکسید استرانسیوم به آلومینیم، درجه حرارت، فشار سیستم، اتمسفر محافظ و مواد افزودنی می‌باشد.

بررسی نسبت مخلوط

برای بررسی نسبت مخلوط به سر O به صورت زیر به عنوان اطلاعات ورودی استفاده شده است. مقادیر سلس مسوع و آهن با توجه به حضور زیرین این عناصر در ترکیب آلیاژ به صورت تقریبی در نظر گرفته شده‌اند. درجه حرارت انجام واکنش ۱۰۰۰ درجه سانتی‌گراد و فشار سیستم یک اتمسفری می‌باشد.

سیستم مستقیم و امکان تبیخ تا زمانی که فشار یکبار اجرا به یک اتمسفر نرسید و به‌طور مداوم زمان استرانسیوم به صورت مخلوط به سر O به تغییر پایدار و حالی تعادل محاسبه می‌شود. نتایج محاسبات در شکل ۱ رسم شده‌اند. میزان استرانسیوم

شکل ۱. تغییر محصولات واکنش با نسبت Al به SrO
حل شده در مذاب با افزایش نسبت \(\text{Sr} \) به \(\text{Al} \) به \(\text{Al}_2\text{O}_3 \) به علت افزایش آب‌پذیری و کاهش اسیدیت باعث شده که می‌تواند با افزایش احتمال وارد شدن سیستم باعث شود. لذا پایه بهره‌گیری از تمام \(\text{SrO} \) در واکنش نسبت به \(\text{Al}_2\text{O}_3 \) با ویژگی‌های بازدهی از طرفی با توجه به گرماگیری بودن واکنش، تأثیر گرمای مورد نیاز واکنش احیا باید در نظر گرفته شود. در غیر این صورت می‌پانیست با محاسبات واکنش آدیاباتیک دمای محصولات واکنش را تعیین و حالت تعادل را از آن داده واکنش است. با توجه به شکل ۱ برای ترکیب \(\text{Al} \)-\(\text{Sr} \) \(\text{SrO} \) مورد نیاز ۱۵/۱ گرم و آلومینیم مذاب مورد نیاز ۸/۵ گرم خواهد بود.

شکل ۳. تغییر انتلپی و انرژی آزاد گیس با دما

۲۲۲
اثر درجه حرارت
با مراجعه به دیاگرام دوتایی
نیکوئید برای آزمایش Al-Sr
برای بازی به عبارت دیگر حاصل دما برای
حضور فاز مذاب 10
815°C
می‌باشد. محاسبات
حال تعداد در دماهای مختلف
بین 815°C تا 900°C ۱۵۰۰ نسان
می‌دهد تغییری در محصولات
و اکشن اتفاق نمی‌افتد. البته
چنانچه محاسبات در یک
سیستم با امکان تبخر انجام
شود با توجه به افزایش فشار
بخار استرانسیوم (شکل ۴) با افزایش دما، میزان تبخر استرانسیوم متناسب با فشار بخار
سترنسیوم و فضای موجود برای فاز گازی در محفظه و اکشن تغییر می‌کند.
لذا در سیستم تحت برسی دما در محدوده مورد نظر تأثیر چندی از نظر ترمودینامیکی ناشته و
اثر آن با افزایش سرعت انجام واکنش و اکشن استرانسیوم می‌باشد. البته جان‌چه
لازم باشد گرمای لازم برای واکنش‌ها را توسط گرمای محصول استرانسیوم مذاب تأمین نمود
می‌توان با تغییر دمای آلومینیم مذاب و در نظر گرفتن دمای اولیه درجه حرارت ادباتیک
850—۱۵۰۰°C محاسبه واکنش را نیز محاسبه نمود. چنانچه تغییرات انتقالی درباره دمای
دما به محاسبه شود، گرمای مورد نیاز برای این واکنش می‌باشد. البته
۱۴۰۰ وتقریباً و با توجه به وابستگی را برای درجه حرارت‌های مختلف در شکل ۳ نشان
داده شده است.

شکل ۲: دیاگرام دوتایی آلومینیوم – استرانسیوم
اطر اتمسفر محیط و فشار
برای بررسی اثر انمسفر، هوا، نیتروژن، آرگون و محفظه خلا به عنوان محیطهای اکسید کننده و خنتی در نظر گرفته شدند. تولید آمیزان در انمسفر هوا باعث اکسیدشدن استرانسیوم و آلومینیم می‌شود. در این شرایط عملاً احیا SrO و تولید آمیزان امکان پذیر نخواهد بود. حضور نیتروژن در سیستم موجب تشکیل تركیب SrN شده و کاهش آلومینیم لازم برای احیا را به همراه خواهد داشت. لذا از نیتروژن نمی‌توان به عنوان یک گاز خنتی استفاده نمود SrO احیا SrN.

تسهیل نموده و از نظر شرایط انجام واکنش با حالتی که سیستم بسته بدون امکان تبخر بررسی شد تجربه دارد. اما فضای گاز آرگون امکان تبخر استرانسیوم را مناسب با فشار بخار آن فراهم می‌نماید. لذا بهره به حجم محفظه و واکنش بخشی از استرانسیوم تبخر می‌شود. در صورت استفاده از خلا نیز شرایط مشابه گاز آرگون بوده و میزان تلفات استرانسیوم بستگی به حجم محفظه و واکنش خواهد داشت. با این حال، شرایط به سیستم خلا استفاده کنیم، در شرایط موجود نیاز به تخلیه گاز‌های ايجاد شده در سیستم ممکن می‌شود که با توجه به فشار بخار استرانسیوم کاهش پیوسته استرانسیوم در سیستم را به دنبال خواهد داشت.}

شکل 4. تغییر فشار بخار استرانسیوم با دما

224
است اتلاف استرانسیوم در صورت استفاده از گاز آرگون به جای سیستم بسته، با شدت کمتری واقع می‌شود.

اثر مواد افزودنی

به‌منظور جلوگیری از تشکیل $SrO(Al_2O_3)$ و بازیابی بهتر استرانسیوم، ایجاد شرایط احیایی شدیدتر می‌تواند به نظر بیشتری بخود برسد. به‌این‌نوع اثر افزودن عناصری با قدرت احیا‌کننده بالا مثل منیزیم و کلسیم را بررسی می‌نماییم.

منیزیم

شکل ۵ اثر افزودن منیزیم به سیستم را نشان می‌دهد. با افزایش منیزیم در سیستم ابتدا مقدار MgO در مذاب جل شده و با افزایش فعالیت منیزیم $SrO(Al_2O_3)$ تجزیه و تشکیل MgO می‌گردد. این واکنش باعث افزایش استرانسیوم احیا‌شده و در نتیجه افزایش میزان آن در مذاب $Al-Sr$ می‌گردد.

شکل ۵ تغییر محصولات واکنش با افزودن منیزیم

225
گلسیم

حضور گلسیم نیز باعث ایجاد شرایط احیایی شدیدتر و در نتیجه افزایش استرانسیوم حل شده در آلومینیم می‌گردد. شکل 6 نشان می‌دهد که با مقدار کمتری گلسیم نسبت به منیزیم می‌توان از جلوگیری نمود. از طرفی با توجه به انتالپی پایین تر ترکیب $SrO(Al_2O_3)$ اکسید گلسیم، افزایش کلسیم باعث بهبود موازنه انرژی می‌شود. شکل 7 انتالپی سیستم را با افزایش کلسیم و منیزیم نشان می‌دهد.

![Graph of Ca, SrO, SrO(Al₂O₃), CaO and Sr(Il) weight change with Ca (gram)]

شکل ۶: تغییر محصولات واکنش با افزودن کلسیم

۲۷۶
نتیجه‌گیری

محاسبات حالت تعادل در شرایط مختلف ترمودینامیکی برای سیستم احیا آلومینوترمی اکسید استرانسیوم با کمک نرم‌افزار FACT انجام گردید.

- مطالعه نشان می‌دهد که در ترکیب اولیه نمی‌تواند با کمک آلومینورمی به سیستم احیا آلومینوترمی اکسید استرانسیوم با کمک نرم‌افزار FACT انجام گزینید.
- درجه حرارت در حدود 1500°C تا 850°C تأثیر مهمی بر شرایط احیا آلومینوترمی اکسید استرانسیوم و در تغییرات باعث افزایش شد.
- تغییرات باعث افزایش شد.
بررسی ترمودینامیک تولید آمیزان Al-Sr

برای تولید آمیزان Al-Sr استفاده از انسفر خنثی و مواد احیاکننده مانند Ca و Mg و SrO(Al₂O₃) از تشکیل Ca و Mg جلوگیری کرده و بازیابی استراتسیوم را افزایش می‌دهد.

مراجع

4-اعظم عراقی، پایان‌نامه کارشناسی ارشد، ساخت آمیزان Al-Sr از سنگهای معدنی استراتسیوم به منظور بهسازی آلیاژ‌های پیشرفته، دانشگاه آزاد اسلامی شاهرود، 1378.

5-Facility for the Analysis of Chemical Thermodynamics, CRCT Ecole Polytechnique, Canada.

6-Shelest L.N., nauch.tr.tos.n-i.iproeketin-t redkom.prom-sti giredmet, 1980.