برآورد نسبت انرژی ورودی به خروجی تحلیل هزینه نهاده‌ها در تولید محصول انگور سلطانی (مطالعه موردی منطقه قوجان)

رجب تندرو، حسین عاقل، آکبر ثناei، مقدم

- دانشجویان کارشناسی ارشد مکانیک‌های انرژی، دانشگاه فردوسی مشهد
- استادیار کارشناس مهندسی مکانیک‌های انرژی، دانشگاه فردوسی مشهد

rbiglar@yahoo.com

چکیده

سهم انرژی های مستقیم در باند به ترتیب سطح و نرخ، مکانیزم‌های حال و سهم انرژی‌های غیر مستقیم به عنوان عدم مواد سطحی موجود قابل توجه می‌باشد. در این لحاظ تحقیق انرژی مستقیم 10 درصد و انرژی غیر مستقیم 80 درصد از کل انرژی را به خود اختصاص داده‌اند. سهم انرژی کارگری از کل انرژی ورودی 1/47 درصد بوده که رقم پایینی می‌آمد ولی سهم آن از کل هزینه‌های مشابه 2/47 درصد بوده که این عدد نشان دهنده لحیم‌نیروی کارگری در بهره وری سرمایه‌های می‌باشد. در سایر مکانیزم‌های کردن بخشی از عملات منند و کاشت و گود ورتاری، شاخص هزینه‌های نیرویی کارگری خوبی‌می‌نماید. شاخص هزینه‌های انرژی به‌سروتی بسته امر افزایش بهره وری انرژی از طریق کاهش

نرخ انرژی ورودی و افزایش عملکرد امکان پذیر است با توجه به عملکرد نسبتاً مطلوب‌اند. در هکتار، فاقدی به‌همه‌وی از طریق مصرف منابع ورودی و کاشت سهم بخشی از بهره‌های آن از جمله کود آنت و آب امکان پذیر است. در ضمن، اینکه با توجه به استفاده بیش از المان‌ییاز، از وگن دکتر محدودیت محسوب جلوگیری می‌شود.

کلمات کلیدی: باند انرژی، انگور، هزینه تولید انگور
کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌های جدید پرورش و مدیریت داده شده است. در کنار زمین کاری کشاورزی مصرفی در سیستم‌های کشاورزی کاملاً پرداخته و کشاورزی اولیه ضمن طراحی نامی با شرایط منطقه‌ای محدود می‌باشد. برای اینکه بررسی قرار دادن منابع میزان سهمیه که از انرژی مصرفی منطقه کشاورزی مصرفی و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی از انرژی مصرفی تولید می‌شود و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی با وجود کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌های جدید پرورش و مدیریت داده شده است. در کنار زمین کاری کشاورزی مصرفی در سیستم‌های کشاورزی کاملاً پرداخته و کشاورزی اولیه ضمن طراحی نامی با شرایط منطقه‌ای محدود می‌باشد. برای اینکه بررسی قرار دادن منابع میزان سهمیه که از انرژی مصرفی منطقه کشاورزی مصرفی و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی از انرژی مصرفی تولید می‌شود و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی با وجود کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌های جدید پرورش و مدیریت داده شده است. در کنار زمین کاری کشاورزی مصرفی در سیستم‌های کشاورزی کاملاً پرداخته و کشاورزی اولیه ضمن طراحی نامی با شرایط منطقه‌ای محدود می‌باشد. برای اینکه بررسی قرار دادن منابع میزان سهمیه که از انرژی مصرفی منطقه کشاورزی مصرفی و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی از انرژی مصرفی تولید می‌شود و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی با وجود کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌های جدید پرورش و مدیریت داده شده است. در کنار زمین کاری کشاورزی مصرفی در سیستم‌های کشاورزی کاملاً پرداخته و کشاورزی اولیه ضمن طراحی نامی با شرایط منطقه‌ای محدود می‌باشد. برای اینکه بررسی قرار دادن منابع میزان سهمیه که از انرژی مصرفی منطقه کشاورزی مصرفی و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی از انرژی مصرفی تولید می‌شود و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی با وجود کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌های جدید پرورش و مدیریت داده شده است. در کنار زمین کاری کشاورزی مصرفی در سیستم‌های کشاورزی کاملاً پرداخته و کشاورزی اولیه ضمن طراحی نامی با شرایط منطقه‌ای محدود می‌باشد. برای اینکه بررسی قرار دادن منابع میزان سهمیه که از انرژی مصرفی منطقه کشاورزی مصرفی و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی از انرژی مصرفی تولید می‌شود و هزینه‌های قابل توجه را برای آن‌ها قرار دادن در محیط‌های بیشتر و به‌طور کلی با وجود کشاورزی یک فرآیند تبدیل انرژی است. در این فرآیند انرژی نور خورشید فراورده‌های سوخت‌های فصلی و الکتریسیته، به غذا و ایفای موردی می‌شود. می‌توان گفت که انرژی جمعی در فرآیندهای مصرفی جهت تبدیل انرژی به انرژی گیاهی، به سرمشق کشاورزی در زمین مورد نیاز به استفاده از روش‌ها...
پیشتر این مسئله به‌طور مستقیم مطرح نمی‌شد ولی این تفاوت می‌توانست در جیرابین در کل این تاکید نمود. هر چه دانست.
شاخس های انرژی

شاخس‌ها به عنوان انرژی مستقیم که امکان می‌پذیرد سیستم‌ها با یکدیگر و مطالعه جزء بجه آن‌ها و با یکدیگر برای ما فراهم کنند. (الماسی، 1382) در سیستم‌های ساختاری کشاورزی 2 شاخس مهم انرژی وجود دارد که امکان شناخت جامع و وضعیت انرژی در کشاورزی را برای ما می‌سازد. اطلاعات شاخس‌های انرژی می‌توان مرحله مختلف تولید محصول، متقابلی با داده انرژی در تولید محصولات مختلف را با روش‌های متغیر منطقی (ER) مشخص کرد. (الماسی، 1384). نسبت انرژی توسط بین انرژی محصولات خروجی (Eout) و کل انرژی صرف شده در عملیات تولید (Ein) بهره نهایی واحد انرژی (ή E) نهاده در سیستم باید از انرژی کننده را توان می‌زند. (الماسی، 1384). این شاخس با استفاده از اطلاعات جمع‌آوری شده در این مقاله محاسبه و حاصل شد.

نورنبرد کاری (انرژی) سنگین= نسبت انرژی

به‌عنوان خاص انرژی (NEG) از تکنیک بین انرژی ناخالص تولید شده و کل انرژی موجود برای تولید بر واحد سطح پدست می‌آید. در فناوری‌های واحد NEG وابسته به واحد تولید است. (الماسی، 1384). این شاخس بر حسب مکانیل و هرکاتی این‌ها گیرنده می‌شود.

انرژی بهره‌دار= انرژی سنگین= بهره‌دار خاص انرژی

به‌عنوان انرژی (EP) شاخسی از مقدار محصول تولید شده در سطح واحد موجود است. EP به‌عنوان محصول، مربوط به زمان متقابل است و می‌تواند به عنوان یک شاخس برای ارزیابی انرژی در سیستم تولید با یک محصول خاص کار برای بهبود EP در یک فرآیند می‌توان از انرژی صرف شده در کشاورزی را کاهش داد و هم علائم محصول را بهبود دهد و با استفاده از EP کفته‌های کاری (الماسی، 1384) سپس هر چه مقدار عدید.

پردرگی باشد. نشان دهنده بهبودی پیشتر تولید می‌باشد.
جدول ۱- میزان انرژی ورودی به تعیین نهاده‌ها

مقدار محاسبه شده انرژی	واحد سوزن ورودی (MJ/ha)	نهاده
۵۰۰۰ hr	نیروی کار کارگری	۱۹۶۰
۱۶۰ lit	سوخت کامپیون	۸۸۸۲
۴۰۰ tons	کود نی‌سی	۳۰۷۱
۹۰۰ m³	آب	۱۰۰۰
۳۵۰ kg	نتیجه نی‌سی	۶۶۱
۴۲۹ kg	فسفر	۲۷۲
۲۲۰ kg	حیوان	۱۱۹
۲۷۰ gr	نیترات	۱۱۵
۲۸۰ gr	کانی خشک	۱۱۰
۱۱۰ gr	کانی خشک	۹۲

جمع کل انرژی ورودی: ۹۹۳۱ کالری
نمودار ۱: مقایسه درصد انرژی و درصد هزینه در نهاده های تولید.

جدول ۳: انرژی ورودی به تفکیک منابع

<table>
<thead>
<tr>
<th>درصد</th>
<th>MJ</th>
<th>مشخصات انرژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td>۹۹۶۸</td>
<td>انرژی مستقیم ۳</td>
</tr>
<tr>
<td>۸۰</td>
<td>۸۲۳۳</td>
<td>انرژی غیر مستقیم ۳</td>
</tr>
<tr>
<td>۴۴/۵۷</td>
<td>۴۵۳۵۳</td>
<td>انرژی قابل بازیافت ۴</td>
</tr>
<tr>
<td>۵۳/۵۴</td>
<td>۵۶۱۵۴</td>
<td>انرژی غیر قابل بازیافت ۶</td>
</tr>
</tbody>
</table>

میزان محاسبه شده ۲۰۱۹ کیلوگرم بر مکانول بدست آمده برای بهبود بهبود می‌توان انرژی مصرفی در تولید نهاده را کاهش داد و هم علما در محصول را بهبود بخشید و از ضایعات کاست. با توجه به متوسط عملکرد کشوری ۱۲/۵ تن در هر تاک و عملکرد مطلوب ۲۰ تن در این نمونه ها بهبودی این تکنیک کاهش سهم انرژی ورودی مواد موقت‌تر می‌باشد.

تیپ‌های مواد شیمیایی:
- تیپ کهریزی، سوخت دیزل و نیروی جیوهای نازک شیمیایی و دامی مواد شیمیایی
- تیپ جوینت پلاستیک و کد گرم و آب می‌تواند تیپ مواد شیمیایی که به‌طور دیزل سوخت شود.
جدول ۲ نشان می‌دهد که فقط ۱۰ درصد انرژی از منابع مستقیم وارد مصرف می‌شود. پس این خود نشان دهنده باین بودن درجه مکانیزاسیون در باغات انگور سهرستان است که نیازمند عزم سهولت‌بری انرژی سطح تکنولوژی در باغات است. که این موضوع در بطن مقاله کامل مشهود بود. جمله نیروی ماندی جز در حمل کود کاربرد دیگری ندارد.

نتیجه‌گیری و بیشترسازها:

۱- بررسی‌ها نشان داد بیشترین سهم مصرف انرژی در کود دامی با متوسط ۲۵/۷ درصد و بنا بر آن کود اتیلن با سه ۲۱/۳ درصد سومین است.

۲- کمترین مصرف انرژی برای تیروئ دام با ۱۲/۴ و حشره کش با ۱۳/۹ است.

۳- نیروی کارگری با ۴۸/۷ درصد بیشترین سهم هزینه را داشت و بالاترین نیروی کار در می‌کند. نشان دهنده لحیمی نیروی کار در باغات می‌باشد.

۴- انرژی های مستقیم ۱۰ درصد از منابع ورودی را شامل می‌شود که این خود نشان دهنده باین بودن درجه مکانیزاسیون در باغات منطقه است که نیازمند توسعه می‌باشد.

