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Abstract: The performance of robotic systems with parallel kinematics can be evaluated by
their kinematic, static, and dynamic properties. These properties are directly used in model-
based controllers which potentially offer higher accuracy for robotic systems. Inverse dynamic
solution is an essential part of these controllers. In the present work, the inverse dynamics model
of a 3-PRR (prismatic–revolute–revolute) planar parallel manipulator based on the natural
orthogonal complement (NOC) method is developed. To drive the NOC for the 3-PRR closed-
loop systems, the explicit expressions of the loop constraints equations and the associated
Jacobian matrices are first obtained. Next the NOC matrix, which is a velocity transformation
matrix relating the Cartesian angular/translational velocities of various bodies to the motor joint
rates, is calculated. Finally results of the NOC method are compared with simulation of a 3-PRR
planar parallel manipulator using two commercial softwares: SimMechanics toolbox of Matlab
and COSMOSMotion of SolidWorks. In order to verify the theoretical results, two different
configurations for the robot are considered: a horizontal and a vertical. Results of the NOC
method as well as the two simulations are compared for the two robot configurations.
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1 INTRODUCTION

Parallel robots are widely used for industrial ap-

plication ranging from packaging to ultra-high

precision assembly tasks and assistant for surgery.

These manipulators are closed-loop mechanisms

that consist of separate serial chains connecting the

moving platform to the fixed base. Compared with

the serial robots, parallel mechanisms have some

potential advantages such as greater rigidity, greater

accuracy, better stiffness, larger dynamic charge

capacity, and greater load bearing. But two major

drawbacks of parallel manipulators are small work-

space and complicated singularities. The work-

space of parallel manipulators is small because of

the constraints created by the closed-loop kine-

matic chains. Parallel robots can be equipped with

revolute or prismatic, hydraulic, or pneumatic actu-

ators.

The two principal problems associated with the

dynamics of mechanical systems are inverse and

direct dynamics. The inverse dynamics model of a

robot manipulator provides the input actuator forces

or torques required to follow a desired end-effector

trajectory. Inverse dynamics is used in a wide range

of controllers, in optimum trajectory planning, and

also in manipulator design (selection of the actua-

tors, structure design, and so on) [1]. A schematic of

how inverse dynamic is used in an on-line control

scheme is shown in Fig. 1. Unlike serial manipula-

tors, the application of inverse dynamic for parallel

manipulators in control requires the additional

solution of direct kinematics. This is because as

input, inverse dynamics needs information on both

actuated and passive joints. However, in general only

the actuated joints are measured. As shown in Fig. 1,

to obtain the additional information on the passive

joints, direct kinematics is used.
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In the inverse dynamics problem, time histories of

all the system degrees of freedom are supplied and

the actuated joint torques or forces are computed.

Because the position, velocities, and accelerations of

the system are known, the solution process is

primarily an algebraic one and typically does not

require the use of numerical integration methods.

Conversely, in the direct or forward dynamics

problem, time histories of the actuated joint torques

or forces are supplied and time histories of the joint

coordinates, velocities, and accelerations are calcu-

lated. In the first step of solving for the direct

dynamics problem, the equations of motion are

solved algebraically to determine the accelerations.

Next the underlying ordinary differential equations

are integrated to obtain all the joint coordinate time

histories. Because of the non-closed form solutions

to such systems of non-linear ordinary differential

equations, numerical integration methods is needed.

Most studies on methods for calculation of

dynamic model of a closed-loop systems, such as

parallel manipulator, use Lagrangian formulation

[1, 2], the Newton–Euler formulation [3, 4] and the

principle of virtual work [5, 6]. Most recently, Staicu

[7] used recursive modelling for the kinematics and

dynamics of a 3-PRR (prismatic–revolute–revolute)

planar parallel manipulator. He used the principle of

virtual work in the inverse dynamics problem for 3-

PRR manipulator. Newton–Euler approaches typi-

cally use Cartesian variables as configuration–space

variables. They admit recursive formulations by first

developing equations of motion for each single body;

these equations are then assembled to obtain the

model of the entire system. The commonly known

Newton–Euler method, which takes into account the

free-body-diagrams of the mechanism, leads to a

large number of equations with unknowns among

which are also the connecting forces in the joints [5].

Most of the dynamical models based on the

Lagrange formalism neglect the weight of intermedi-

ate bodies and take into consideration only the

active forces or moments and the wrench of forces

applied on the moving platform [5]. Many hypoth-

eses may be assumed for simplifying the dynamic

equations of parallel manipulators. For example,

Pierrot et al. [8] and Codourey and Burdet [9]

neglected the inertia of links and assumed point

masses placed at the two distal ends of each link. Do

and Yang [10] used the assumption that mass of

each link is placed in the middle of each link and

assumed the movable platform to act like a disc.

These assumptions help simplify the inertia matrix.

The concept of natural orthogonal complement

(NOC) was introduced by Angeles and Lee [11]. NOC

is defined as the linear transformation that maps the

independent joint velocities into the generalized

twist of the system. The matrix is an orthogonal

complement of the velocity constraint matrix arising

out of the joints present in the system [11]. The

dynamic modelling based on the NOC was found

advantageous in references [12] and [13]. Xi and

Sinatra [14] presented the inverse dynamics of

hexapods using the NOC matrix. Saha [15, 16]

introduced a representation of this NOC matrix as

the product of two matrices, a lower block triangular

matrix and a block diagonal matrix, termed the

decoupled NOC matrices. Also Saha and Schiehlen

[17] showed that the NOC of a closed loop parallel

manipulator can be split into three matrices,

namely, the lower-block triangular, the full-block,

and the block diagonal.

In this work the NOC method is used for dynamic

analysis of a 3-PRR planar parallel manipulator.

Using this method, dynamic equations of robot are

expressed in terms of the actuated joints. The

resulting dynamic model is in the form of Euler–

Lagrange without including constraints forces, or

torques or the Lagrangian coefficients.

To the best of the authors’ knowledge, the

application of NOC to dynamic analysis of the 3-

PRR robot is new and has not been presented before.

2 JOINT CONSTRAINTS

A joint coordinate is defined as the translational or

rotational displacement of a one degree-of-freedom

joint, which is used to describe the relative config-

uration of two successive bodies connected by this

joint. Unlike serial manipulators, in parallel manip-

ulators joint coordinates are not all independent.

The 3-PRR requires nine generalized coordinates.

The joint-position vector q can be represented by

Fig. 1 Inverse dynamics in a model based controller
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>>>>;

~
qa

qu

� �
ð1Þ

Since coordinate of some joints are independent, qa

and others are dependent, qu, the joint coordinates

are subjected to kinematic constraints. Utilizing the

geometrical structure of the robot, constraints can

be defined and expressed as

Q qð Þ~0 ð2Þ

The constrain equation, equation (2), can then be

used to solve dependent equations with respect to

the independent joints. Because of the non-linearity,

these equations must be solved numerically. If

W m{nð Þ|n is considered as the Jacobian matrix of

the joint constraints then

W~
LQ qð Þ
Lq

ð3Þ

The matrix W m{nð Þ|n can be partitioned into two

parts. One consisting of columns of W m{nð Þ|n

associated with the independent joint velocities

and the other consisting of the columns of

W m{nð Þ|n associated with the dependent joint velo-

cities. Wa and Wu are defined as

Wa~
LQ qð Þ
Lqa

, Wu~
LQ qð Þ
Lqu

ð4Þ

It is shown by Ma [18] that the dependent joint

velocities can be expressed using the independent

joint velocities

_qqu
~{ Wuð Þ{1

Wa _qqa ð5Þ

where _qqu is vector of dependent joint velocities and

_qqa is vector of independent, actuated joint velocities.

To continue the dynamic analysis, the concept of

twist of rigid body and orthogonal complements is

first defined.

3 ORTHOGONAL COMPLEMENT

Displacement of a rigid body can be expressed by a

position vector and a rotation matrix. To describe

the velocity field, the concept of twist is used. The

twist of a rigid body is a six-dimensional vector

defined as

t i~
vi

vi

� �
ð6Þ

The twist of the ith body can be expressed as a

linear transformation of the joint velocities [18]

t i~Ki _qq ð7Þ

Two types of orthogonal complements are used

for dynamic analysis, joint orthogonal complement,

and NOC.

3.1 Joint orthogonal complement

The relation between vector of all joint velocities,
_qq, and independent joint velocities, _qqa, can be ex-

pressed by joint orthogonal complement, matrix L, by

_qq~L _qqa ð8Þ

where

L~
In|n

{ Wuð Þ{1
Wa

� �
m|n

ð9Þ

For planar parallel manipulator n is calculated by

equation n~3r{2m.

3.2 Natural orthogonal complement (NOC)

The NOC is defined as the linear transformation

which relates the independent joint velocities to the

generalized twist of the system, such as

t~T _qqa ð10Þ

In the above equation, T is the NOC matrix. The

relation between T and L is given by

T~K L ð11Þ

where K is a 6r|m matrix which consist of two

parts; Ka consisting of n columns of K associated

with the actuated joints and Ku consisting of n{mð Þ
columns of K associated with the passive joints.

4 DYNAMIC MODEL OF A SYSTEM WITH NOC

As mentioned earlier, dynamics consist of two parts:

inverse and direct dynamics. In this section, the
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inverse dynamic model of a system is derived using

NOC. It is assumed that the bodies are rigid and the

mass of each body is placed at its centre of mass.

Inverse dynamics equation of a manipulator in

terms of the independent joint coordinates can be

expressed as [18]

M€qqa
zC _qqa

zG~ta ð12Þ

where parameters M, C, G, and ta are defined as

M~M qð Þ~TT MtotalT ð13Þ

C~C q, _qqð Þ~TT Mtotal
_TTzTTVMtotalT ð14Þ

G~G qð Þ~{TT wg ð15Þ

ta~ t1
a t2

a � � � tn
a½ � ð16Þ

It is noted that ta is the generalized actuating force

of the robot. In the above relations Mtotal and V are

diagonal matrices and defined as

Mtotal~diag M1, M2, � � � , Mrð Þ ð17Þ

V~diag V1,V2, � � � ,Vrð Þ ð18Þ

where Mi and Vi are 6|6 matrices given by

Mi~
Ii 0

0 mi|1

� �
, Vi~

vi|1 0

0 0

� �
ð19Þ

In the above equations, 1 is 3|3 identity matrix

and 0 is a 3|3 zero matrix. Likewise wg is defined

as

wg~ 0 m1g 0 m2g . . . 0 mrg½ �T ð20Þ

where 0 is three-dimensional (3D) zero vector.

5 DESCRIPTION OF THE MANIPULATOR

This section describes the 3-PRR planar parallel

manipulator. The manipulator consists of a base

plate, a movable platform, and three links. Each link

has an actuated prismatic joint and two passive

consecutive revolute joints. Therefore, the robot has

a total of three active and six passive joints (see

Figs 2 and 3). Three degrees-of-freedom (DOF) of

the 3-PRR manipulator are the translations along the

X and Y axis and the rotation about the Z axis.

6 KINEMATIC CONSTRAINTS

The 3-PRR robot has a total of nine joints and

therefore nine generalized coordinates are consid-

ered. The relationship between the generalized

coordinates defines the kinematics constraint equa-

tion, equation (2). The number of independent

kinematics constraint equations, l, is given by

l~m{n~9{3~6 ð21Þ

Using Denavit–Hartenberg frame assignment con-

vention [19], the general form of link transformation

matrix is as follows

A
BT~

A
BR APB ORG

0 0 0 1

� �
ð22Þ

where A
BR is the corresponding 363 rotation matrix

and APB ORG is the related transformation vector.

Fig. 2 A 3-PRR planar parallel manipulator
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The individual transformation matrix for each link

is

1
4T~

1 0 0 q1

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

4
7T~

cos q4ð Þ {sin q4ð Þ 0 l1 cos q4ð Þ
sin q4ð Þ cos q4ð Þ 0 l1 sin q4ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

7
t T~

cos q7ð Þ {sin q7ð Þ 0 l2 cos q7ð Þ
sin q7ð Þ cos q7ð Þ 0 l2 sin q7ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

2
5T~

cos 2p=3ð Þ {sin 2p=3ð Þ 0 q2 cos 2p=3ð Þ
sin(2p=3) cos 2p=3ð Þ 0 q2 sin 2p=3ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

5
8T~

cos q5ð Þ {sin q5ð Þ 0 l1 cos q5ð Þ
sin q5ð Þ cos q5ð Þ 0 l1 sin q5ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

8
t T~

cos q8ð Þ {sin q8ð Þ 0 l2 cos q8ð Þ
sin q8ð Þ cos q8ð Þ 0 l2 sin q8ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

3
6T~

cos 4p=3ð Þ {sin 4p=3ð Þ 0 q3 cos 4p=3ð Þ
sin 4p=3ð Þ cos 4p=3ð Þ 0 q3 sin 4p=3ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

6
9T~

cos q6ð Þ {sin q6ð Þ 0 l1 cos q6ð Þ
sin q6ð Þ cos q6ð Þ 0 l1 sin q6ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

9
t T~

cos q9ð Þ {sin q9ð Þ 0 l2 cos q9ð Þ
sin q9ð Þ cos q9ð Þ 0 l2 sin q9ð Þ

0 0 1 0
0 0 0 1

2
664

3
775

1
2T~

1 0 0 l3

0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1
3T~

1 0 0 l3 cos p=3ð Þ
0 1 0 l3 sin p=3ð Þ
0 0 1 0
0 0 0 1

2
664

3
775

ð23Þ

Referring to Fig. 3, it is possible to write

1
t T~1

4T|4
7T|7

t T

2
t T~2

5T|5
8T|8

t T

3
t T~3

6T|6
9T|9

t T
ð24Þ

A 3-PRR robot has a total of three kinematics chains:

DGPHEBD, EHPIFCE, and ADGPIFA (see Fig. 3).

However, only two of them are independent. There-

fore two of the chains can be used for obtaining

kinematics constraints. In this paper chains DGP-

HEBD and EHPIFCE are selected for calculating the

kinematics constraints. Position of point P, centre of

end-effector, with respect to the base reference frame

can be calculated in three ways. This position can be

Fig. 3 Generalized coordinates for the 3-PRR manip-
ulator
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shown by three vectors: Q1, Q2, and Q3

Q1~ADzDGzGP

Q2~ABzBEzEHzHP

Q3~ACzCFzF IzIP
ð25Þ

Note that the three vectors must be equal. Therefore

Q1~ Q2 ~ Q3 ð26Þ

Additionally, Q1, Q2, and Q3 can be obtained from

the position vector of the following transformations

Q1~Transformation vector of 1
4T|4

7T|7
t T

� �
Q2~Transformation vector of 1

2T|2
5T|5

8T|8
t T

� �
Q3~Transformation vector of 1

3T|3
6T|6

9T|9
t T

� �
ð27Þ

Using these position vectors, the constraint equation

(2) can be formed. As stated earlier, there are a total

of six kinematics constraints. Four of these con-

straints may be obtained by noting

Q1x~Q2x

Q1y~Q2y

Q2x~Q3x

Q2y~Q3y

ð28Þ
Using Matlab software the four constraint equations,

equation (28), can be simplified as

Q1~l2 cos q4zq7ð Þzl1 cos q4ð Þzq1z
l2

2
cos q8zq5ð Þzffiffiffi

3
p

2
l2 sin q8zq5ð Þz l1

2
cos q5ð Þz

ffiffiffi
3
p

2
l1 sin q5ð Þz

q2

2
{l3

Q2~l2 sin q4zq7ð Þzl1 sin q4ð Þz
l2

2
sin q8zq5ð Þ{ffiffiffi

3
p

2
l2 cos q8zq5ð Þ{

ffiffiffi
3
p

2
l1 cos q5ð Þz

l1

2
sin q5ð Þ{

ffiffiffi
3
p

2
q2

Q3~l2 cos q4zq7ð Þzl1 cos q4ð Þzq1z
l2

2
cos q9zq6ð Þ{ffiffiffi

3
p

2
l2 sin q9zq6ð Þz l1

2
cos q6ð Þ{

ffiffiffi
3
p

2
l1 sin q6ð Þz

q3

2
{

l3

2

Q4~l2 sin q4zq7ð Þzl1 sin q4ð Þz
l2

2
sin q9zq6ð Þz

ffiffiffi
3
p

2
q3

z

ffiffiffi
3
p

2
l2 cos q9zq6ð Þz

ffiffiffi
3
p

2
l1 cos q6ð Þz

l1

2
sin q6ð Þ{

ffiffiffi
3
p

2
l3

ð29Þ

As mentioned in equation (7), it can be deduced that

t i~
vi

vi

� �
~Ki _qq ð30Þ

To obtaining K the twist of each body is written

and ki i~1 : 7ð Þ is calculated. For example, to

calculate k1, k4, and k7, we have

v1~0, v1~ _qq1

v4~ _qq4, v4~ _qq1z _qq4|r44

v7~ _qq7, v7~ _qq1z _qq4|r47z _qq7|r7t ð31Þ

Therefore, define matrices ki i~1 : 7ð Þ and K such as:

k1~
0 0 0 0 0 0 0 0 0

e1 0 0 0 0 0 0 0 0

" #
6|9

k2~
0 0 0 0 0 0 0 0 0

0 e2 0 0 0 0 0 0 0

" #
6|9

k3~
0 0 0 0 0 0 0 0 0

0 0 e3 0 0 0 0 0 0

" #
6|9

k4~
0 0 0 e4 0 0 0 0 0

e1 0 0 e4|r44 0 0 0 0 0

" #
6|9

k5~
0 0 0 0 e5 0 0 0 0

0 e2 0 0 e5|r55 0 0 0 0

" #
6|9

k6~
0 0 0 0 0 e6 0 0 0

0 0 e3 0 0 e6|r66 0 0 0

" #
6|9

k7~
0 0 0 e4 0 0 e7 0 0

e1 0 0 e4|r47 0 0 e7|r7t 0 0

" #
6|9

K ~

k1

k2

:

:

k7

2
666666664

3
777777775

42|9 ð32Þ

where 0 represents a three-dimensional zero vector

and vector ei is

ei~ cos 2 i{1ð Þ p
3

	 

sin 2 i{1ð Þ p

3

	 

0

h i
i~1 : 3

ei~ 0 0 1½ � i~4 : 9
ð33Þ

Additionally, vectors r44, r47, r7t , r55, and r66 are

defined as
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r44~
1

2
4
7 T 1 : 3, 4ð Þ

r47~
4
7T 1 : 3, 4ð Þ and r7t~

7
t T 1 : 3, 4ð Þ

r55~
1

2
5
8 T 1 : 3, 4ð Þ and r66 ~

1

2
6
9 T 1 : 3, 4ð Þ

ð34Þ

Note that T 1 : 3, 4ð Þ, first three rows of fourth column

of T matrix, denotes the translation vector of the T

matrix. The position vectors used for the first leg are

shown in Fig. 4.

It should be noted that selecting of constraints is

arbitrary. However, the selected constraints must be

independent of each others. Using the Jacobian

matrix of constraints, equation (3), is a convenient

way to insure independence of constraints. If the

determinant of the Jacobian matrix is not equal to

zero, then constraints are independent.

In the previous section, four constraint equations

were obtained. According to equation (21), two more

constraints are needed. As stated earlier, there are a

total of three kinematics loops, where any two

selected loops are independent. Considering Fig. 3,

the two loops DGPHEBD and EHPIFCE can be

selected. These two loops each make out a hexagon

(not necessary regular). For a hexagon the total

internal angles is 4p radians. Therefore, two addi-

tional constraints can be defined by writing the

summation of internal angles for these two loops

Q5~q4zq7{q8{q5

Q6~q8zq5{q9{q6
ð35Þ

The six independent kinematics constraint equa-

tions, Q1*Q6, can be used to obtain the Jacobian

matrix, W qð Þ. Upon obtaining W qð Þ, Simulink toolbox

of Matlab is used to calculate matrices M, C, and G.

Fig. 4 Vectors rij for first leg of 3-PRR robot

Fig. 5 Motor accelerations

Fig. 6 (Left) Trajectory of point P, (Right) Orientation of moving platform

Table 1 Properties of 3-PRR robot

Mass number mi (gr) Ii (gr mm2)

1 137.2 0.017
2 520.1 0.606
3 1419.5 5.076
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7 NUMERICAL EXAMPLE

Two case studies are presented to verify the theoretical

dynamical results obtained in previous sections. In

the first case, the robot is assumed to be in the

horizontal plane. In the second case, the robot is as-

sumed to be in the vertical plane. The NOC results are

compared with two commercial dynamical simulation

softwares: SimMechanics toolbox of Matlab and CO-

SMOSMotion of Solidworks. Mass and inertia proper-

ties for a 3-PRR robot are defined in Table 1, also

l1~0:3 m, l2~0:15 m, l3~1 m ð36Þ

7.1 SimMechanics simulation

The robot is simulated in SimMechanics toolbox of

Matlab software. Total simulation time is one second.

To perform the simulation, physical model of the 3-Fig. 7 Initial configuration of the robot

Fig. 8 The 3-PRR robot model in SimMechanics

Fig. 9 Inverse dynamic model of 3-PRR robot in SimMechanics
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PRR robot is defined as a subsystem in SimMecha-

nics. The inputs for all three motors are joint

trajectories. Accordingly, as shown in Fig. 5, we have

a1~sin 3t, a2~sin 2t, a3~0:5 sin 3t ð37Þ

The resulting trajectory for point P, centre of end-

effector and orientation of moving platform are

shown in Fig. 6.

All three actuators have equal initial condition

with zero velocity and 0.1595 m displacement. Then,

x1 t~0ð Þ~0:1595 m, v1 t~0ð Þ~0

x2 t~0ð Þ~0:1595 m, v2 t~0ð Þ~0

x3 t~0ð Þ~0:1595 m, v3 t~0ð Þ~0 ð38Þ

The initial configuration of the 3-PRR robot is shown

in Fig. 7.

The subsystem is shown in Fig. 8. The complete

simulation model of the system is shown in Fig. 9.

This model represents the inverse dynamics model

where the inputs are joint trajectories and the

outputs are motor forces. As shown in Fig. 9, three

force sensors record the required linear force exerted

by the three leadscrews. The final configuration of

robot is shown in Fig. 10.

7.2 COSMOSMotion simulation

A second dynamical analysis package is used to

verify the theoretical results. Using link properties

defined in Table 1, a SolidWorks model is developed,

see Fig. 11. The same acceleration input trajectories

and COSMOSMotion simulator are used to simulate

the motion. The robot is configured in two config-

urations: horizontal and vertical. Motor forces

required to maintain motion are recorded. A snap

shot of COSMOSMotion while recording motor

Fig. 10 Final configuration of the robot (after one
second)

Fig. 11 COSMOSMotion simulation for horizontal configuration
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forces (magnitude of each prismatic force) in the

horizontal configuration is shown in Fig. 11. Simula-

tion results are presented in the next section.

7.3 Results comparison

The results of the theoretical and the two simulation

methods are shown in Fig. 12 for the robot in the

vertical configuration. The next robot is configured

in the horizontal plane and simulations are repeated

(Fig. 13).

As shown, all results closely follow each other.

Therefore, the NOC method is verified.

Fig. 12 Forces for vertical configuration Fig. 13 Forces for horizontal configuration
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8 CONCLUSION

The application of NOC for the inverse dynamic

analysis of 3-PRR planar parallel manipulators is, for

the first time, presented. The method uses joint

orthogonal complement which indirectly incorpo-

rates the kinematics. Several other advantages of

NOC are pointed out. It is shown that using NOC, the

Lagrange multipliers and passive joint coordinates

are dismissed in the equations. Also the NOC

method does not need velocity and acceleration

inversions for deriving the dynamics equations. To

demonstrate the method, a 3-PRR robot is simulated

in both horizontal as well as the vertical configura-

tion. A desired joint trajectory is supplied and

required motor forces are calculated using NOC.

Additionally a simple model of the 3-PRR is created

and simulated in both SimMechanics as well as

COSMOSMotion of Solidworks software. Result of

the two simulation packages closely agree with

results obtained with the NOC formulation.
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APPENDIX

Notation

g gravity acceleration vector

Ii inertia tensor about mass centre of

ith body

In6n n6n identity matrix

L joint orthogonal complement matrix

m number of one degree of freedom

joint

mi mass of ith body

n number of degree of freedom

qa vector of independent joint

coordinates

q̇a vector of actuated joint velocities

qu vector of dependent joint

coordinates
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q̇u vector of dependent joint velocities

r number of rigid body

ti twist vector of ith body

T natural orthogonal complement

matrix

vi translational velocity vector of ith

body

ta generalize actuating force

W Jacobian matrix of the joint

constraints

vi angular velocity vector of ith body
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