Information Processing Letters 111 (2011) 841-847

Contents lists available at ScienceDirect 2)
Information
Processing Letters

Information Processing Letters

www.elsevier.com/locate/ipl

A hybrid token-based distributed mutual exclusion algorithm using
wraparound two-dimensional array logical topology

Hoda Taheri?, Peyman Neamatollahi®*, Mahmoud Naghibzadeh

2 Department of Computer Engineering, Young Researchers Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
b Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 29 October 2010

Received in revised form 25 May 2011
Accepted 30 May 2011

Available online 2 June 2011
Communicated by FY.L. Chin

In token-based distributed mutual exclusion algorithms a unique object (token) is used to
grant the right to enter the critical section. For the movement of the token within the
computer network, two possible methods can be considered: perpetual mobility of the
token and token-asking method. This paper presents a distributed token-based algorithm
scheduling mutually exclusive access to a critical resource by the processes in a distributed
network. This network is composed of N nodes that communicate by message exchanges.
The proposed hybrid algorithm imposes a logical structure in the form of wraparound two-
dimensional array on the network. It applies the concept of perpetual mobility of the token
in columns and token-asking in rows of the array. The major purpose of the algorithm is to
increase the scalability property and decrease overhead due to additional communication
in a system with at least one unresponded critical section request at any given time. In
this status, typically, the number of message exchanges is between /N and 2+/N under
light demand and reduces to +/N message exchanges under heavy demand. Therefore, it
outperforms lots of well known algorithms in terms of number of messages exchanged.
The algorithm satisfies safety and liveness properties.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
Token-based algorithm
Mutual exclusion
Distributed systems
Hybrid algorithm
Concurrency

Message exchange

1. Introduction ories, distributed databases, etc., that a resource should be
given to only one process at a time. When a process has to
read or update certain shared data structures, it first en-

ters a CS to achieve mutual exclusion and ensures that no

A Distributed System (DS) consists of a collection of dis-
tinct processes which are spatially separated, and which

communicate with one another by exchanging messages.
One of the most important purposes of the distributed
systems is to provide an efficient and convenient environ-
ment to share resources [15]. Therefore, it is possible that
more than one process request a shared resource through
their critical sections simultaneously. Each process has a
code segment, called Critical Section (CS), in which the
process can access the shared resource. There are many sit-
uations within operating systems, distributed shared mem-

* Corresponding author.
E-mail addresses: h.taheri.mshd@gmail.com (H. Taheri),
neamatollahi.peyman@gmail.com (P. Neamatollahi),
naghibzadeh@um.ac.ir (M. Naghibzadeh).

0020-0190/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.05.021

other process will use the shared data structures at the
same time [17]. If a resource needs to be accessed exclu-
sively, Mutual Exclusion (ME), some controls are necessary
to assure that only one process can use a shared resource
at any given time. The algorithms designed to ensure ME
in distributed systems are termed Distributed Mutual Ex-
clusion (DME) algorithms. In a DS, any given node has
only a partial or incomplete view of the total system [19].
So, DME problem has to be solved by using message ex-
changes. The problem of ME has been fairly well studied
in distributed systems. The proposed solutions can be clas-
sified in token-based and non-token-based algorithms. In
token-based DME algorithms, token is a unique entity in
the entire system which is used to grant a node to enter

842 H. Taheri et al. / Information Processing Letters 111 (2011) 841-847

its CS from among other nodes that are attempting to in-
voke their critical sections.

In this paper, a wraparound two-dimensional array log-
ical topology is used to decrease the number of message
exchanges. We attempt to propose a hybrid token-based
algorithm to solve the DME problem in order to decrease
communication overhead and increase scalability property
in a system with at least one unresponded CS request, at
any given time. This hybrid method applies the concept
of perpetual mobility of the token in columns and token-
asking in rows of the array. A CS entry request message
is horizontally sent to the nodes in a row and the token
vertically circulates in the array. The role of the common
node between the row consisting of the requesting node
and the column consisting of the token is to directly send
the token to the requesting node. This approach satisfies
two important ME necessities: safety and liveness. Also, it
will be shown that the number of message exchanges be-
comes between +/N and 2+/N under light demand; on the
other hand, +/N message exchanges under heavy demand.
In both cases, the algorithm acts better than many famous
algorithms (e.g. [1,6,8,14,16]).

The rest of this paper is organized as follows: Sec-
tion 2 provides the related works, Section 3 defines the
assumptions of the algorithm, Section 4 includes the out-
line, data structures and messages, and algorithm behavior
(the pseudo code of the algorithm is shown), Section 5
proves the correctness of the algorithm (safety and liveness
properties), Section 6 calculates the performance of the al-
gorithm for both light and heavy load conditions, Section 7
discusses about the logical topology and the application of
the proposed algorithm for ad hoc networks, and a conclu-
sion is provided, at the end.

2. Related works

Solving the ME problem (which is first introduced by
Dijkstra [5]) has been one of the topics which have re-
ceived the attentions of many researchers. In distributed
solutions, there are two families of algorithms which are
token-based and non-token-based algorithms. In token-
based algorithms a simple concept is used; as only one
process at a time can enter its CS (safety property), the
right to enter is materialized by a special object which is
unique in the whole system, namely a token. Processes re-
questing to enter their critical sections are allowed to do so
when they possess the token. Therefore, the token gives a
process the privilege of entering the CS. At any given time,
the token must be possessed by one process at most. The
safety property is trivially ensured as the token is unique.
The only thing one has to manage is the movement of the
token from one process to another so that each request
can be granted eventually (liveness property). At this point,
two possibilities can be considered for such a movement:
the perpetual mobility of the token and the token-asking
method [13].

In the perpetual mobility, the token travels from one
process to another to give them the right to enter their
critical sections exclusively, without paying attention to
whether that process needs the token or not. Therefore,
additional processing and communication are imposed on

the system as overhead, especially in the light load situa-
tions in which a very few number of processes attempt to
invoke their critical sections simultaneously, but the per-
petual mobility of the token is very effective on the high
load situations. Token-ring algorithm [7] is one of these
algorithms. In this algorithm, perpetual mobility of the to-
ken on a unidirectional logical ring ensures the liveness.
The main problem of this method is that it does not have
the scalability property. The reason is that, by increasing
the number of processes, the average waiting time for the
process attempting to get the token increases.

In token-asking methods (e.g. [10,12,16]), a process
which is attempting to invoke its CS, if it is not the token-
holding process, requests to receive the token and waits
for the token arrival. After completing the execution of its
CS, the token-holding process chooses a requesting pro-
cess and sends the token to it. If no process wants to
use the token, the token-holding process does not need
to send the token away. Using this method, Suzuki and
Kasami [16] presented an algorithm that process P; which
is attempting to invoke its CS, broadcasts requested mes-
sage to all other processes, N — 1 message exchanges are
required, and the token is sent directly to process P; for
which one message exchange is required. Hence, this algo-
rithm requires N message exchanges per CS invocation at
the most. We have used their scheme for the rows of the
logical topology in our algorithm, with some modifications.

3. Assumptions

What we will present in this paper solves ME prob-
lem in a DS composed of N nodes and no shared memory.
These nodes communicate through asynchronous message
passing on a communication network layer that is error-
free. At first without loss generality, we assume that only
one process is in each node. Therefore, we use process and
node to represent the same concept.

Message propagation delay is unpredictable but it is fi-
nite; it indicates that every message will eventually be
received. This assumption prevents introducing message
acknowledgement protocols. The messages are not guaran-
teed to be delivered in the same order as they are sent.
A unique non-zero identification number is assigned to
each process. Every process can send messages directly
to all other processes using their identification numbers,
which are considered as their addresses (complete com-
munication graph similar to [2,6,10,11,14,16]).

The token mobility (which is the key feature of our al-
gorithm) is based on a two-dimensional logical topology.
More precisely, every node belongs to two logical rings. In
the first one, the token visits the nodes sequentially in ver-
tical manner, while in the second one nodes are visited on
demand in horizontal manner. Besides, each request issued
by a node must be broadcast to all other nodes located
on the second ring. Therefore, the logical structure of the
interconnecting network is a wraparound two-dimensional
array: the token moves perpetually from one node to an-
other along the vertical rings (circles) and it moves on
demand along the horizontal rings (circles). The algorithm
does not entail any specific physical interconnection topol-
ogy. It is assumed that N = d?, where d is an integer and N

H. Taheri et al. / Information Processing Letters 111 (2011) 841-847 843

Coll_CoIZ Col3 Cold Col5
Row 1 (PP P3P [P
o B
o B8
e R
Row 5 —|P,,

Fig. 1. A proposed network of 25 nodes.

is the number of processes. Therefore, the logical intercon-
necting array is composed of v/N rows and +/N columns.
Every process knows its row and column numbers in the
wraparound two-dimensional array. In the sample system
shown in Fig. 1, every node knows other nodes in its row
and also its down neighbor.

We assumed that processes operate correctly. A pro-
cess has the permission of dedicated access to the resource
only when executing its CS but for a limited amount of
time. While a process requests its CS, it cannot create an-
other request for the CS until the first one is granted. We
assumed that at least one unresponded request exists in
proposed DS, at any given time, and also CS entry requests
might not be satisfied in the order of their construction,
like algorithms proposed in [1,2,7,8,10,12,16].

4. The new algorithm

The explanation of the algorithm is divided into three
parts: first, the outline is described, second, data struc-
tures and messages are introduced, and third, the overall
algorithm is presented.

4.1. The outline

By hybrid we mean the concept of perpetual mobil-
ity of the token in columns and token-asking in rows of
wraparound two-dimensional array. A node requests ME
by informing all other nodes in its row. On the other hand,
the token perpetually circulates from row to row. When
the token reaches at a given row, it acquires knowledge
of pending requests for that row (first stage) and serves
those requests (second stage). During the second stage, the
pending requests are responded. To avoid the token oscil-
late in the same row when rest of the nodes are starved,
the new requests are ignored in this stage. These requests
are pended until the token meets this row in the future.

We assume that in the beginning of the algorithm, Py is
the token-holding process (which is in Row a and Column
b of the logical topology). To simplify, assume there is only
one non-token-holding process, say process P; in Row m
and Column n so that m is unequal to a, which is attempt-
ing to invoke its CS. The given position of these two nodes
and messages exchanged between them in the following
scenario is shown in Fig. 2. Process P; sends its CS entry

{?{? L {E
RO
TR

-~ ORETR
T HIHCHLHO

1] token 2 ReqMsg

Fig. 2. Total messages exchanged between processes in the algorithm.

request (ReqgMsg) to all nodes in its row, then waits un-
til it receives the token. All existing nodes in Row m after
receiving that ReqMsg know that process P; is waiting for
achieving the token.

On the other hand, process P, sends the token to the
next node below. In this way, the token continues the per-
petual mobility around Column b until it reaches one of
the nodes in Row m, say process Pj, eventually. Because
process P; knows that process P; has a pending request,
after receiving the token forwards it to process P;.

When process P; receives the token, it enters its CS. Af-
ter releasing the CS, it sends the token in down direction.
So the token can continue its perpetual mobility.

4.2. Data structures and messages

ReqMsg is a message type which is sent by a process,
say process Pj, to invoke its CS. This message is composed
of the identification number of that process, i, and its se-
quence number, SN;, which is shown by ReqMsg(i, SN;). SN;
is a counter that process P; increases by one when at-
tempts to invoke its CS to indicate that there is a request
from this process which is unresponded.

The token is a record which is sent by a message. It is
composed of a FIFO queue named next (including not yet
responded requests) and an array with N elements named
seqnum. The ith element of this array counts the number
of process Pi’s CS entries. The token.seqnum is used to dis-
tinguish responded requests from not yet responded ones,
similar to the LN array in [16]. RTR is the other field of
this record. The token.RTR is the number of last row which
is visited by the token.

Each node has a queue which is composed of ReqMsgs
named Waiting. It is possible that every element may be
removed from everywhere in Waiting. Every node knows
its down neighbor which is represented by constant iden-
tifier placed in Down variable. A local variable named CS-
permission contains zero value or the node identifier to
indicate whether a node can enter its CS or not.

For the following section, we assume that node k, k
is constant, in Row a and Column b is the token-holding
node, 1 <a < +/N and 1 <b < +/N. For details, see the Ini-
tialization part in Fig. 3.

844 H. Taheri et al. / Information Processing Letters 111 (2011) 841-847

4.3. Algorithm behavior

We investigate the behavior of the algorithm in three
cases (1) process P; requests to enter its CS, (2) process
P; receives a message from process Pj, and (3) process P;
leaves its CS.

Requesting the CS: Process P; (in Row m and Col-
umn n) which wants to execute its CS, increases SN; by
one and creates ReqMsg(i, SN;). Process P;, after insert-
ing ReqMsg(i, SN;) in its Waiting queue, Waiting;, sends
ReqMsg(i, SN;) to all other nodes in its row to inform
them of its request. Then, process P; waits until it re-
ceives the token. Whenever it receives the token, it sets
CS-permission; to i and executes its CS. For details, see
Lines 1 to 8 in Fig. 3.

Receiving a Message: When process P; receives a mes-
sage from process P; (in Row x and Column y), two kinds
of status are possible:

1. The received message is ReqMsg(j,SN;). In this case,
the message is inserted in Waiting;. Note that process
P; has sent its ReqMsg to all nodes in its row, in-
cluding process Pj, to inform them of its request. For
details, see Lines 19 and 20 in Fig. 3.

2. The received message is composed of the token. In this
case, two kinds of status may occur:

(a) The token reaches process P; from process P (P;
is in the row just before P;’s row): Process P; first
updates token.RTR with its row number. Then, if
there are any unresponded requests from nodes of
Row m in Waiting;, they will be recognized and
inserted in token.next queue. Recognizing whether
a ReqMsg is responded or not is done via to-
ken.seqnum. Now, if token.next is empty (there is
not any unresponded request in this row), the to-
ken is sent to the next node below to continue its
perpetual vertical path. But if head(token.next) is
ReqMsg(i, SN;), CS-permission; is set to i and pro-
cess P; can enter its CS. Otherwise, the token is
sent to a process in Row m, say process Py, whose
request is in the head(token.next). For details, see
Lines 21 to 35 in Fig. 3.

(b) When process P; receives the token from pro-
cess P; (placed in P;'s row), process P; sets CS-
permission; to i, so that it can enter its CS. For
details, see Lines 36 to 38 in Fig. 3.

Releasing the CS: Assume the status that process P;
wants to exit its CS. First, this process sets CS-permission;
to zero, so that it cannot enter its CS repeatedly and
causes starvation for other processes. ReqMsg(i, SN;) must
be removed from token.next or Waiting;, because the re-
quest of process P; is responded. Process P; updates
token.seqnum|[i] with SN; and if there is a request in
head(token.next), sends the token to the corresponding
node. Otherwise, process P; sends the token to it's Down
to comply with the perpetual mobility of the token. For
details, see Lines 9 to 16 in Fig. 3.

Initialization:
token.seqnum/1...N]«—0, token.RTR«a, token.next is empty.
For all processes: SN«—0, CS-permision—0, Waiting is empty.

Distributed Mutual Exclusion Solver:

1. CASE REQUEST THE CS:

2 SN«—SN;+1;

3 CREATE ReqMsg(i,SN));

4. INSERT (Waiting, ReqMsg(i,SN;),

5. [*inserts ReqMsg(i,SNi) in the rear of Waitingi.*/

6. SEND ReqMsg(i,SN)) to all nodes in row m except itself;

7. [*multicasts RegMsg(i,SNi) to all nodes in its row.”/

8. WHILE (CS-permisioni#i);

9. CASE RELEASE THE CS:

10. CS-permision«—0;

11. REMOVE ReqMsg(i,SN)) from head(token.next) or Waiting;;

12. token.seqnumfi] —SN;;

13. IF (token.next is empty) THEN SEND token to Down;

14. ELSE

15. EXTRACT head(token.next) which is ReqMsg(f.SN);
16. SEND token to process Py;

17. CASE RECEIVE A MESSAGE BY PROCESS P; FROM PROCESS P;:
18. SWITCH (message type)

19. CASE RegMsg(j,SN)):

20. INSERT (Waiting; ReqMsg(j,SN)));

21. CASE token:

22. IF (token.RTR#m) THEN token.RTR<—m;

23. [*state in which token is received from a node in
24. previous row of process Pi in the array.*/

25. WHILE (Waiting; is not empty)

26. REMOVE head(Waiting;) which is ReqMsg(f,SN);
27. IF (token.seqnum{[f]<SNy) THEN

28. INSERT (token.next, ReqMsg(f,SNy),

29. IF (token.next is empty) THEN SEND token to Down;
30. [*token continues its circular movement.*/

31 ELSE IF (head(token.next) is ReqMsg(i,SN;)) THEN
32. CS-permision«—i;

33. ELSE

34. EXTRACT head(token.next) which is ReqMsg(f,SN);
35. SEND token to process Py

36. ELSE [*state in which the token reaches process Pi

37. because of Pi’s request.*/

38. CS-permision; «—i;

Fig. 3. Pseudo code of the new algorithm in process P;.

5. Proof of the correctness

To ensure the correctness of the algorithm, it is suf-
ficient to assure safety and liveness. Therefore, we must
proof separately that these two basic needs are assured.

5.1. Safety is assured

A node must obtain the token to enter the CS, and re-
lease it only after exiting the CS. Since the token in the
system is unique, safety is assured.

5.2. Liveness is assured

Liveness is assured if every request to enter the CS is
eventually granted. Liveness implies freedom of deadlock
and starvation.

Theorem 1 (liveness). The algorithm in Fig. 3 confers liveness
property.

Proof. We prove this by contradiction, too. Therefore, sup-
pose that the algorithm does not assure liveness. This as-
sumption can be the result of the following situations:

H. Taheri et al. / Information Processing Letters 111 (2011) 841-847 845

1. None of the nodes is the token-holding node; there-
fore the token cannot be transferred to the other
nodes: This assumption is incorrect because in the be-
ginning of the algorithm, Py is the token-holding pro-
cess (based on the assumptions of the algorithm) and
this token is sent from one node to another.

2. The token-holding node does not eventually get in-
formation about other nodes’ requests: Process P; in
order to attempt to invoke its CS sends ReqMsg(i, SN;)
directly to all nodes in its row except itself. These
nodes, after receiving ReqMsg(i, SN;), insert it in their
Wiaitings. On the other hand, the token reaches one
of these nodes, say process Pj, in the path of per-
petual mobility of the token. When P; becomes the
token-holding process, it inserts ReqMsg(i, SN;) in the
token.next (first stage). Note that, only when the to-
ken reaches process P; in its vertical path, the existing
unresponded ReqMsgs in Waiting; are inserted in to-
ken.next. After that, the token passes through nodes
in Pj’s row so that the existing ReqMsgs in token.next
is served (second stage). Therefore, in this stage no
insertion in token.next will occur. The new ReqMsgs
from processes in Pj’s row should wait until the to-
ken reaches them again in its vertical movement. As a
result, there is no starvation for nodes in other rows
because new ReqMsgs in a row do not keep the token
in that row, forever. Therefore, the first assumption is
incorrect.

3. The token-holding node keeps the token forever: If Re-
qMsg of the token-holding node exists in head(token.
next), the token-holding node enters its CS and fin-
ishes executing its CS in a limited time. The token-
holding node, after releasing its CS and removing
its ReqMsg from head(token.next), becomes non-token-
holding node in two cases:

(a) If token.next becomes empty (since there is no in-
sertion in token.next during the second stage), the
token-holding node will pass the token to the next
node below in the path of perpetual mobility of
the token and becomes non-token-holding node.

(b) If token.next does not become empty, the token-
holding node will extract existing ReqMsg in head
(token.next), suppose ReqMsg(f,SNys), and sends
the token to process Py then becomes non-token-
holding node.

This contradiction then shows that the anti-liveness

assumption cannot be true.

4, Messages do not reach the destination node: Based
on assumptions in the algorithm, network is error-free
and nodes act correctly, thus this statement is incor-
rect, either.

5. Nodes’ requests to enter their critical sections in to-
ken.next are unresponded: token.next is a FIFO queue
without priority. Therefore, a node which its ReqMsg is
inserted in token.next, eventually it receives the token.
Therefore this assumption cannot be true, either.

In the end, liveness is assured. O

6. Performance and comparison

The execution time of instructions in the algorithm is
assumed to be negligible, compared to the message trans-
mission times. Hence, we focus on the number of message
exchanges for performance evaluation. The performance of
a DME algorithm is often studied under two special load-
ing conditions, i.e., light load and heavy load.

6.1. Performance under light demand

Consider the light load situations, in which only process
P; attempts to invoke its CS. Therefore, process P; sends
ReqMsg(i, SN;) directly to all nodes in Row m except it-
self, v/N — 1 message exchanges are required. All nodes in
Row m except process P;, after receiving ReqMsg(i, SN;), in-
sert it in their Waitings. On the other hand, from the time
of inserting ReqMsg(i, SN;) in Waiting of nodes in Row m to
the time that token in its perpetual mobility reaches one of
the nodes in Row m, between 1 to /N message exchanges
are required. One message exchange is required when the
token-holding node which is in the previous row sends the
token in downward direction. ~/N message exchanges are
required when the token-holding node which is in Row m,
without attending newly created request (ReqMsg(i, SN;))
in the same row, sends the token in downward direction
to continue perpetual mobility of the token. Finally, after
that the token reaches one of the nodes in Row m, zero
(receiver node of the token is process P;) or one (receiver
node of the token is not process P;) message exchange is
required for transferring the token to process P;. So the
algorithm in the worst case (under circumstance of ex-
isting at least one request in the system), requires 24/N
message exchanges which are fewer than what are needed
by similar algorithms [1,6-8,10,12,14,16] in this case. The
number of overall message exchanges in the best case is
/N, which is better than many similar algorithms [1,6,8,
14] in the same case, too.

6.2. Performance under heavy demand

Suppose a heavy load situation, in which all nodes at-
tempt to invoke their critical sections in time t; simul-
taneously and each node after releasing its CS, again at-
tempts to invoke its CS immediately. As a result, each of
N nodes sends its ReqgMsg to all nodes in its row except
itself (other ~/N — 1 nodes). So up to this step of the algo-
rithm, N(+/N — 1) messages are exchanged totally. On the
other hand, suppose the token is transferring from process
P; (placed in Row m and Column n) to process P; (placed
in Row ((m mod +/N) + 1) and Column n) to continue the
perpetual mobility of the token in Column n.

Assume that in time ty, (ty > t1), ReqgMsgs of half of
nodes in Row ((m mod VN)+ 1), on average, reaches pro-
cess P; earlier than the token. When the token reaches
process Pj, these ReqMsgs are appended to token.next (first
stage). Then the token is passed from one node to an-
other node in Row ((m mod +~/N) + 1) to satisfy the men-
tioned ReqMsgs (second stage). So, one message exchange
is required for transferring the token to satisfy each of

846 H. Taheri et al. / Information Processing Letters 111 (2011) 841-847

these ReqMsgs. Whenever token.next becomes empty, per-
petual mobility of the token starts via transferring the to-
ken to downward direction. ReqgMsgs of each row are re-
sponded similar to what mentioned above. Hence, at most
N/2 + +/N messages are exchanged to transfer the token
between N/2 requesting nodes. The same number of mes-
sages will be exchanged to satisfy the request of other
nodes.

Generally N 4+ 2¢/N 4+ N(+/N — 1) messages are ex-
changed in this situation. Thus, the number of message
exchanges per CS invocation in the average case of heavy
demand situation is:

(N+2vN+N(vN—1))/N = /N.

Which is better than many other algorithms (e.g. [1,6,8,14,
16]) in the same case.

7. Discussion

The perpetual mobility of the token in very light load
situations wastes resources of the DS. It seems to be a dis-
advantage of the algorithm because the token sometimes
circulates uselessly. Therefore, we recommend that the al-
gorithm not be implemented on the distributed systems
with very light demand. On the other hand, circulating of
the token in a special column imposes extra load on nodes
in that column. To prevent the extra load, changing col-
umn can be done if there is not any request in the circular
path of the token.

There are two applicable aspects of the algorithm which
can be discussed here. In the first subsection, considering
different dimensions instead of current equal dimensions,
the logical topology is expanded. The following subsection
represents a preliminary step in giving a solution to a chal-
lenging problem, DME in mobile ad hoc networks.

7.1. Expanding the logical topology

The proposed algorithm can be implemented by a logi-
cal two-dimensional array with u rows and v columns. In
this case, process P; sends its ReqMsg to enter the CS to
all other nodes in its row using v — 1 message exchanges.
As it was mentioned in Section 6, for the arrival of the to-
ken at process P;, between 1 to u + 1 message exchanges
are needed. As a consequence, v message exchanges in the
best case and v + u message exchanges in the worst case
are required.

If we assume that v =1, then the algorithm will be-
come similar to the token-ring algorithm [7]. One message
exchange in the best case and u (or N) message exchanges
in the worst case are required. If we assume that u =1,
then the algorithm becomes similar to Suzuki-Kasami’s al-
gorithm [16]. As a result, v (or N) message exchanges in
both best and worst cases are needed.

Therefore, we can change the dimensions of the pro-
posed topology with respect to different applications. Of
course, the number of message exchanges will be changed,
too.

7.2. Expanding the algorithm to new application

Recently, the mutual exclusion problem received an in-
terest for mobile ad hoc networks [3,4,9,18,20]. To the best
of our knowledge, few algorithms have been proposed in
the literature and all of them are token-based approaches.

Consider a clustered ad hoc network. Some limitations
for this network are: the number of nodes in each cluster
is constant, and, within a cluster, nodes have low mobil-
ity. The algorithm can be mapped into some applications
of ad hoc networks for which the number of message ex-
changes under heavy load conditions is very important. To
mabp, it is sufficient to consider nodes in each row as mem-
bers of a cluster. Therefore, each node sends its CS entry
request to other members in its cluster and waits until
it receives the token. On the other hand, the token circu-
lates between clusters and satisfies request of nodes. Note
that v is assumed to be the number of columns (or clus-
ter size) and u is assumed to be the number of rows (or
clusters). Similar to what is mentioned in Section 6.2, the
number of message exchanges for requests is v(v — 1) in
each cluster and vu(v — 1) in all clusters. The number of
message exchanges for the token movement is v — 1 in
each cluster and u(v — 1) in all clusters. Therefore, there
are vu(v—1D4+u(v—=1) =u(v2-1) message exchanges in-
tra clusters, totally. The number of message exchanges re-
quired for the inter cluster token movement is 2u. Now, if
we consider the energy of intra cluster message exchanges
as E. and the energy of inter cluster message exchanges as
Ex, we can conclude that energy required for each node is
intermediately

(u(v? = 1)Ec + 2uEyx) /uv ~ VEc + (2/V)Ex.

This relation shows that with a constant number of
nodes, the more the number of intra cluster nodes (the
number of columns) increases, the more the wasted en-
ergy for inter cluster message exchanges decreases. As a
result, depending on the application (ratio of Ex with E.),
the optimal value for v can be gained so that it can de-
crease energy consumption and consequently increase net-
work lifetime.

8. Conclusion

The proposed hybrid token-based DME algorithm uses
both the perpetual mobility of the token and the token-
asking method. Therefore, we assumed a logical topology
in the form of wraparound two-dimensional array, which
applies the concept of perpetual mobility of the token in
columns and concept of token-asking in rows. We proved
that this algorithm satisfies the requests of entering the
critical sections, correctly. Therefore, safety and liveness
properties are assured.

We have increase in scalability property and decrease
in average waiting time and also the overhead due to ad-
ditional communication per CS invocation in comparison
with many other algorithms.

Generally, in light demand conditions, the number of
necessary message exchanges, 24/N, is more than that of
the heavy demand conditions, +/N, per CS invocation. The

H. Taheri et al. / Information Processing Letters 111 (2011) 841-847 847

performance of the algorithm is better in comparison with
many other algorithms and requires fewer message ex-
changes, especially in the heavy load situations or in appli-
cations in which upper bound of the number of message
exchanges is important. For the future works, we will focus
on DME in mobile ad hoc networks.

References

[1] Md. Abdur Razzaque, C. Seon Hong, Multi-token distributed mutual
exclusion algorithm, in: 22nd International Conference on Advanced
Information Networking and Applications, March 2008, pp. 963-970.

[2] D. Agrawal, A. El Abbadi, An efficient and fault-tolerant solution for
distributed mutual exclusion, ACM Transactions on Computer Sys-
tems 9 (1) (February 1991) 1-20.

[3] R. Baldoni, A. Virgillito, R. Petrassi, A distributed mutual exclusion
algorithm for mobile Ad-Hoc networks, in: Proceeding of the Sev-
enth International symposium on Computers and Communications,
(ISCC'02), November 2002, pp. 539-544.

[4] M. Benchaiba, A. Bouabdallah, N. Badache, M. Ahmed-Nacer, Dis-
tributed mutual exclusion algorithms in mobile Ad hoc networks:
An overview, ACM SIGOPS Operating Systems Review 38 (1) (January
2004) 74-89.

[5] E.W. Dijkstra, Solution of a problem in concurrent programming con-
trol, Communication of the ACM 8 (9) (September 1965) 569.

[6] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Communication of the ACM 21 (7) (July 1978) 558-565.

[7] G. Le Lann, Distributed systems towards of a formal approach, in:
IFIP Congress, North-Holland, 1977, pp. 155-160.

[8] M. Maekawa, A +/N algorithm for mutual exclusion in decentralized
systems, ACM Transactions on Computer Systems 3 (2) (May 1985)
145-159.

[9] M. Moallemi, M.H. Yaghmaee Moghaddam, M. Naghibzadeh, A fault-
tolerant mutual exclusion resource reservation protocol for clustered

mobile ad hoc networks, in: 8th International Conference on ACIS,
Qingdao, July 2007, pp. 528-533.

[10] M. Naimi, M. Trehel, A. Arnold, A log(n) distributed mutual exclu-
sion algorithm based on the path reversal, J. Parallel and Distributed
Computing 34 (1) (April 1996) 1-13.

[11] S. Paydar, M. Naghibzadeh, A. Yavari, A hybrid distributed mutual
exclusion algorithm, in: 2nd International Conference on Emerging
Technologies, 13-14 November 2006, pp. 263-270.

[12] K. Raymond, A tree-based algorithm for distributed mutual exclusion,
ACM Transactions on Computer Systems 7 (1) (February 1989) 61-
77.

[13] M. Raynal, A simple taxonomy for distributed mutual exclusion algo-
rithms, in: Operating Systems Review, ACM Press, 1991, pp. 47-49.

[14] G. Ricart, A.K. Agrawala, An optimal algorithm for mutual exclusion
in computer networks, Communication of the ACM 24 (1) (January
1981) 9-17.

[15] P.C. Saxena, J. Rai, A survey of permission-based distributed mutual
exclusion algorithms, Computer Standards and Interfaces 25 (2003)
159-181.

[16] I. Suzuki, T. Kasami, A distributed mutual exclusion algorithm, ACM
Transactions on Computer Systems 3 (4) (November 1985) 344-349.

[17] AS. Tanenbaum, M.V. Steen, Distributed Systems Principles and
Paradigms, 2nd edition, Prentice-Hall International, 2007.

[18] R. Vedantham, Z. Zhuang, R. Sivakumar, Mutual exclusion in wireless
sensor and actor networks, in: Third Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), Reston, VA, USA, September 2006, pp. 346-
355.

[19] M. Velazquez, A survey of distributed mutual exclusion algorithms,
Technical Report CS-93-116, Colorado State University, September
1993.

[20] W. Zheng, L. Xin Song, L. Meian, Ad hoc distributed mutual exclusion
algorithm based on token-asking,]J. Systems Engineering and Elec-
tronics 18 (2) (2007) 398-406.

