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Abstract The well-known support vector data descrip-

tion (SVDD) is based on precise description of precise

data. When we know the features of training samples

precisely and we are uncertain about their class labels, the

fuzzy SVDD can be used to obtain the data description. But

if the features of training samples are fuzzy numbers, the

fuzzy SVDD cannot be utilized. In this paper, we extend

the fuzzy SVDD for the description of such training sam-

ples and then apply our proposed method, called FSVDD*,

to real data. The experimental results show the ability of

the proposed method in Taiwanese tea evaluation.

Keywords Fuzzy SVDD � Data description �
Fuzzy numbers � Distance � Defuzzification

1 Introduction

Pursuing of effective methods for real data analysis is

considered with researchers recently. Progress in fuzzy

mathematics encourages engineering and other scientists in

application fields for presentation of real models such as

fuzzy image filtering [1], fuzzy clustering [2, 3], fuzzy

multivariable nonlinear regression analysis [2] and fuzzy

classification [3, 4] (Classification is among the most

important problem tasks in the realm of data analysis, data

mining and machine learning and has many applications in

industry, including, e.g., oil spill detection [5], intrusion

detection in computer networks [6], breast cancer detection

[7], fingerprint identification [8], text document classifica-

tion [9, 10], handwritten Tamil character recognition [11],

Epo doping control [12], human identification [13, 14] and

signature verification [15]).

In this paper, we want to introduce a one-class classifier

based on support vector data description (SVDD) [16, 17]

and its extended version, the fuzzy SVDD (FSVDD) [18],

suited for working with real data which are usually

uncertain. The FSVDD is a suitable approach in the field of

pattern recognition for one-class classification or data

description. In the FSVDD, one can assign different degree

of importance to each training samples. The FSVDD

includes quadratic programming with quadratic constraints.

Thus, to solve the FSVDD for samples whose features are

fuzzy numbers, a fuzzy quadratic program with fuzzy

quadratic constraint must be solved. Specifically, nonlinear

programming with crisp parameters has been widely used

in solving real problems and several efforts reported in

literature developing efficient algorithms for solving these

types of problems [19]. Liu [20] solved a special form of

fuzzy quadratic program by formulating a pair of two-level

mathematical programs to calculate the upper bound and

lower bound of the objective function of the fuzzy qua-

dratic program, but using the Liu’s method leads to obtain

a non-convex problem which obtaining its global optimal

solution is very time-consuming. Thus, we use a defuzz-

ification method to solve the quadratic fuzzy programming.

The defuzzification of fuzzy parameters of the fuzzy
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quadratic program leads to obtain a crisp quadratic pro-

gram which gets a crisp description of fuzzy data.

Organization of this paper is as follows: Section 2 will

deal with some preliminaries and in Sect. 3 our novel

method (FSVDD*) will be explained. Section 4 shows

experimental results of the presented work. Finally, Sect. 5

concludes the paper.

2 Preliminaries

2.1 FSVDD

In one-class classification, if the class region is approxi-

mated by some method then if we test whether test samples

are outside the region, the outliers can be detected. The

approximation of the genuine class region is called the

domain description. Tax and Duin extended the support

vector method to domain description (SVDD). In this sub-

section, we discuss an extended version of their method,

namely the FSVDD [18].

Let xi (i = 1, …, n) be p-dimensional training samples

belonging to one class. We consider approximating the

class region by the minimum hypersphere with center

e = (e1, e2, …, ep)T and radius R in high dimensional

feature space (HDS), excluding the outliers. Then the

problem is

minR;e;nR2 þ C
Xn

i¼1

wini

subject to
gðxiÞ � ek k2�R2 þ ni; i ¼ 1; . . .; n;

ni� 0; i ¼ 1; . . .; n;

(
ð1Þ

where g(x) is the mapping function that maps x into a high

dimension space (HDS), n = (n1, …, nn)T and ni is the

slack variable of ith training sample and wi is its weight or

its importance and C is a constant which determines the

trade-off between the hypersphere volume and outliers.

The Lagrangian dual form of (1) is as follows:

maxd

Xn

i¼1

diKðxi; xiÞ �
Xn

i¼1

Xn

j¼1

didjKðxi; xjÞ

subject to

Pn
i¼1 di ¼ 1;

0� di�Cwi; i ¼ 1; . . .; n; ð2Þ

�

which is a convex quadratic program and its global

optimal solution can be obtained easily. After solving the

program (2), it can be said that the unknown datum x is

inside the hypersphere if gðxÞ � ek k2�R2 or equivalently

if

Kðx; xÞ � 2
Xn

i¼1

diKðx; xiÞþ
Xn

i¼1

Xn

j¼1

didjKðxi; xjÞ�R2; ð3Þ

where

R2 ¼ Kðxi; xiÞ � 2
Xn

j¼1

djKðxi; xjÞ

þ
Xn

j¼1

Xn

k¼1

djdkKðxj; xkÞ for 0\di\Cwi: ð4Þ

See Appendix for more information.

2.2 Some fuzzy concepts

Definition 2.2.1 Let R denote the set of all real numbers.

A fuzzy number is a mapping �x : R! ½0; 1� with the fol-

lowing properties:

• ~x is a normal fuzzy set, i.e., the core of ~x ¼ Cð~xÞ ¼
fx 2 R : l~xfxg ¼ 1g is not empty.

• l~xð�Þ is upper semi-continuous.

• ~x is a convex fuzzy set, i.e., l~xðkxþ ð1� kÞyÞ�
minfl~xðxÞ; l~xðyÞg; for all x; y 2 R; k 2 ½0; 1�:

• The support of ~x; Sð~xÞ ¼ fx 2 R : l~xðxÞ[ 0g and its

closure clðSð~xÞÞ is compact.

Definition 2.2.2 The LR-type fuzzy number is a special

type of representation for fuzzy number. It is defined by

two functions L (and R) which map R
þ ! ½0; 1� and are

decreasing shape functions and L(0) = 1, L(1) = 0;

Vx \ 1:L(x) [ 0 and Vx [ 0:L(x) \ 1. A fuzzy number ~x is

of LR type if there exist reference functions L (for left),

R (for right) and scalars D, r[ 0, with

l~xðxÞ ¼
L m�x

D

� �
x�m;

R x�m
r

� �
x�m:

�
ð5Þ

Here, m, called the mean value of ~x; is a real member

and D and r are called the left and right spreads,

respectively. Here l~xðxÞ is membership function of fuzzy

number ~x; denoted by (m, D, r)LR (Fig. 1).

Definition 2.2.3 Let each feature of the training sample ~x

be a fuzzy number with probably different width of uncer-

tainty (Fig. 2). Such training sample at a-cut can be shown

by a hyper-rectangle (HR). We name this hyper-rectangle

Fig. 1 An LR-type fuzzy number
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as a-cut hyper-rectangle or a-cut HR. The width of each

dimension of a-cut HR of this training sample shows the

width of uncertainty of one of its feature at a-cut (see Fig. 3).

In the other words, if the membership value of this fuzzy

training sample is ignored, it can be shown by the set

fðx1; . . .; xpÞjðxkÞLa � xk �ðxkÞUa ; k ¼ 1; . . .; pg; which is a

hyper-rectangle, called a-cut HR.

2.3 Distance between two fuzzy numbers

Let us consider distances for fuzzy numbers. Some of these

distances were proposed by [21–23]. A method of the fuzzy

data preprocessing is based on these distances. Indeed,

these metrics can be used for defuzzification of the distance

between two fuzzy numbers.

Definition 2.3.1 (The Yang Distance) The Yang distance

[23] for two LR-type fuzzy numbers ~x ¼ ðm~x;D~x;r~xÞLR

and ~y ¼ ðm~y;D~y;r~yÞLR is as follows:

d2
Yangð~x; ~yÞ ¼ ðm~x � m~yÞ2 þ ððm~x � lD~xÞ � ðm~y � lD~yÞÞ2

þ ððm~x þ rr~xÞ � ðm~y þ rr~yÞÞ2 ð6Þ

where l ¼
R 1

0
L�1ðwÞ dw and r ¼

R 1

0
R�1ðwÞ dw: The Yang

distance for two triangular fuzzy numbers ~x ¼
ðm~x;D~x;r~xÞT and~y ¼ ðm~y;D~y;r~yÞT becomes as follows:

d2
Yangð~x; ~yÞ ¼ ðm~x � m~yÞ2 þ ðm~x � m~yÞ �

1

2
ðD~x � D~yÞ

� �2

þ ðm~x � m~yÞ �
1

2
ðD~x �r~yÞ

� �2

ð7Þ

Definition 2.3.2 (The Hausdorff Distance) For any two

fuzzy numbers ~x and ~y; the Hausdorff distance metric is

defined by [21] as follows:

d2
Hausdorffð~x; ~yÞ ¼ max ~xL

a � ~yL
a

�� ��2
; ~xU

a � ~yU
a

�� ��2
n o

; ð8Þ

where ~xa ¼ ½~xL
a ; ~x

U
a � ¼ fx : l~xðxÞ� ag and a 2 ½0; 1�:

Definition 2.3.3 (The Hathaway Distance) Let ~x ¼
ðm~x; d~x;D~x;r~xÞT1 and ~y ¼ ðm~y; d~y;D~y;r~yÞT1 be two trape-

zoidal fuzzy numbers. Then the Hathaway distance is

defined by [22] as follows:

d2
Hathawayð~x; ~yÞ ¼ ðm~x � m~yÞ2 þ ðd~x � d~yÞ2 þ ðD~x � D~yÞ2

þ ðr~x �r~yÞ2: ð9Þ

3 Our novel method

The well-known SVDD is based on precise description of

precise data. When we know the features of a training

sample precisely and we are uncertain about its class label,

the FSVDD can be used for data description and low value

is assigned to the weight of such training sample, but when

some features of training samples are fuzzy numbers, the

FSVDD cannot be utilized to obtain the data description. In

our proposed method (FSVDD*), the description of such

training samples can be obtained.

Let xik be kth feature of ith training sample xi =

(xi1, …, xip)T. We suppose that the features of training

samples, xik, are approximately known and can be repre-

sented by LR-type fuzzy number ~xik: Thus, the formulation

of our novel method can be stated as follows:

min ~R;~e;~n
~R2 þ C

Xn

i¼1

wi
~ni

subject to
gð~xiÞ � ~ek k2� ~R2 þ ~ni; i ¼ 1; . . .; n;

~ni� 0; i ¼ 1; . . .; n; ð10Þ

(

where ~n ¼ ð~n1; . . .; ~nnÞT; ~e ¼ ð~e1; . . .; ~enÞT and ~R are fuzzy

set. One approach to solve this program is to use a

defuzzification method. That is, to solve the program (10) it

suffices to convert it to a crisp program as follows:

minDð ~RÞ;Dð~eÞ;Dð~nÞDð ~RÞ
2þC

Xn

i¼1

wiDð~niÞ

subject to
Dðgð~xiÞÞ�Dð~eÞk k2�Dð ~RÞ2þDð~niÞ; i¼1;...;n;

Dð~nÞ�0; i¼1;...;n;

(

ð11Þ

where D(�) is a defuzzification function. The Lagrangian

dual form of (11) is

maxd;cLð ~R; ~e; ~n; d; cÞ
subject to di; ci� 0; i ¼ 1; . . .; n;

ð12Þ

where d = (d1, …, dn)T, c = (c1, …, cn)T and

Lð ~R; ~e; ~n; d; cÞ ¼ Dð ~RÞ2 þ C
Xn

i¼1

wiDð~niÞ �
Xn

i¼1

diðDð ~RÞ2

þ Dð~niÞ � Dðgð~xiÞÞTDðgð~xiÞÞ þ 2Dð~eÞTDðgð~xiÞÞ

� Dð~eÞTDð~eÞÞ �
Xn

i¼1

ciDð~niÞ: ð13Þ

For the optimal solution, the following conditions are

satisfiedFig. 2 Width of uncertainty
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oL

oDð ~RÞ
¼ 0!

Xn

i¼1

di ¼ 1; ð14Þ

oL

oDð~eÞ ¼ 0! Dð~eÞ ¼
Xn

i¼1

diDðgð~xiÞÞ; ð15Þ

oL

oDð~nÞ
¼ 0! di ¼ Cwi � ci; i ¼ 1; . . .; n; ð16Þ

dið Dðgð~xiÞÞ � Dð~eÞk k2�Dð ~RÞ2 � Dð~niÞÞ ¼ 0;
i ¼ 1; . . .; n;

ð17Þ

ciDð~niÞ ¼ 0; i ¼ 1; . . .; n: ð18Þ

Using the above conditions, Lð ~R; ~e; ~n; d; cÞ is trans-

formed to

Xn

i¼1

diKrðxi; xiÞ �
Xn

i¼1

Xn

j¼1

didjKrðxi; ~xjÞ; ð19Þ

where

Krð~xi; ~xjÞ ¼ Dðgð~xiÞÞTDðgð~xiÞÞ ¼ D�ðgð~xiÞTgð~xjÞÞ
¼ D�ðKð~xi; ~xjÞÞ; ð20Þ

and D*(�) is a defuzzification function. Since di C 0 and

from (16) we have 0 B di B Cwi. Thus, the Lagrangian

dual form of (11) can be stated as follows:

maxd

Xn

i¼1

diKrð~xi; ~xiÞ �
Xn

i¼1

Xn

j¼1

didjKrð~xi; ~xjÞ

subject to

Pn
i¼1 di ¼ 1;

0� di�Cwi; i ¼ 1; . . .; n:

�
ð21Þ

For example and without loss of generality let to use

Gaussian kernel function, i.e., Kð~x; ~yÞ ¼ e
� ~x�~yk k2

2r2 : Thus,

Krð~x; ~yÞ ¼ D�ðKð~xi; ~xjÞÞ ¼ D� e
� ~x�~yk k2

2r2

� �
¼ e

�D��ð ~x�~yk k2Þ
2r2 and

the program (21) can be stated as follows:

mind

Xn

i¼1

Xn

j¼1

didje
�D��ðk~xi�~xjk2Þ

2r2

subject to

Pn
i¼1 di ¼ 1;

0� di�Cwi; i ¼ 1; . . .; n:

�
ð22Þ

Now, since ~xik ¼ ðm~xik;D~xik;r~xikÞLR was considered to

be LR-type fuzzy number and without the loss of

generality, the following defuzzification function can be

used

D��ð ~xi � ~xj

�� ��2Þ ¼ d2
LRð~xi; ~xjÞ; ð23Þ

where d2
LRð�; �Þ is a crisp distance between two

LR-type fuzzy vectors such as the Yang distance. If the

Yang distance is used, the program (22) is restated as

follows:

mind

Xn

i¼1

Xn

j¼1

� didje
�ððmxi�mxj Þ

2þððmxi�lDxi Þ�ðmxj�lDxj ÞÞ
2þððmxi�rrxi Þ�ðmxj�rrxj ÞÞ

2Þ

2r2

subject to

Pn
i¼1 di ¼ 1

0� di�Cwi; i; . . .; n;

(
ð24Þ

Fig. 3 0-cut HR of a two-

dimensional fuzzy sample

~x ¼ ð~x1; ~x2ÞT
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where m~xi
¼ ðm~xi1

; . . .;m~xip
ÞT;D~xi

¼ ðD~xi1
; . . .;D~xip

ÞT and

r~xi
¼ ðr~xi1

; . . .;r~xip
ÞT: Now, we have a convex quadratic

program with crisp parameters. That is, its local optimal

solution is global optimal solution, too. Therefore, its

global optimal solution can be obtained easily and

there exists standard algorithm to solve it. From (15),

we have Dðgð~xiÞÞ � Dð~eÞk k2¼ Krð~xi; ~xiÞ � 2
Pn

j¼1 djKrð~xi;

~xjÞ þ
Pn

j¼1

Pn
k¼1 didkKrð~xj; ~xkÞ; and from (17), if di [0;

Krð~xi;~xiÞ�2
Pn

j¼1 djKrð~xi;~xjÞþ
Pn

j¼1

Pn
k¼1 djdkKrð~xj;~xkÞ ¼

Dð ~RÞ2þDð~niÞ: From (16), if di \ Cwi then ci [ 0 and

from (18) we have Rankð~niÞ ¼ 0:Therefore, if 0 \ di \
Cwi,

R2 ¼ Krð~xi; ~xiÞ � 2
Xn

j¼1

djKrð~xi; ~xjÞ þ
Xn

j¼1

Xn

k¼1

djdkKrð~xj; ~xkÞ:

ð25Þ

Finally, the unknown datum ~x is inside the hypersphere

if Dðgð~xÞÞ � Dð~eÞk k2�Dð ~RÞ2� 0 or equivalently if

f ð~x; d; ~RÞ ¼ Krð~x; ~xÞ � 2
Xn

i¼1

diKrð~x; ~xiÞ

þ
Xn

i¼1

Xn

j¼1

didjKrð~xi; ~xjÞ � Dð ~RÞ2: ð26Þ

4 Experimental results

4.1 Numerical examples

In this section, the proposed algorithm is utilized using

different training samples. Here, for ease of evaluation,

two-dimensional data are used and each feature of training

samples is considered to be a symmetric triangular fuzzy

number. The cores of the training samples are selected

from a banana distribution with variance of 7. Moreover,

the Gaussian kernel function and the Yang distance are

used to obtain the description of fuzzy data.

In the first experiment, 10 fuzzy training samples were

used (see Fig. 4). The 0-cut HR of these training samples

has been shown by rectangle and their cores by small stars.

The thick curve shows the data description obtained using

our proposed method. Then, we changed the core of one of

the fuzzy training samples shown by dashed rectangle in

Figs. 5 and 6 from its center to its corner and obtained the

objective data description (shown by thin curve). As it can

be seen, the proposed method is sensitive to the cores of

fuzzy training samples.

In the next experiment, we used the same fuzzy training

samples, but this time we changed the maximum width of

uncertainty of a feature of one of the training samples

shown by dashed rectangle (Figs. 7, 8, 9, 10). As it can be

seen, the proposed method is also sensitive to the width of

uncertainty of the features of the training samples, but

increasing left or right spread parameter of a fuzzy feature

of a training sample has just the same effect on the

description of data, which is a drawback.

Our experiments show that the Hathaway distance also

has the explained drawback, but the Hausdorff distance

does not have. However, when we use the Hausdorff dis-

tance and changed the core of a training samples from its

center to its corner as it explained earlier, the description of

data does not change, which is also a drawback.

Meanwhile, the drawn curves for the description of data

have been obtained using the crisp test data. In the other

word, the crisp test samples which lie in the drawn curves

are accepted as a member of the genuine class. To deter-

mine the classification of a fuzzy test sample, Eq. 26 must

be used.

4.2 Application to one-class classification

of Taiwanese Grade-one-tea

In this section, we use the proposed method for one-class

classification of Taiwanese Grade-one-tea and use Tai-

wanese tea dataset [24]. To do so, we use the Yang distance

for defuzzification.

Tea has become a more important agricultural product

in Taiwan and there are currently 20,000 h of tea farms

with an annual production of 21,000 tons. The types of

tea produced in Taiwan include green tea, Paochong,

Oolong and black tea. In recent years, the majority of teas

produced in Taiwan have been of the Paochong and

Oolong varieties. Black tea and green tea are relatively

minor types in comparison. Because the tea varieties and

Fig. 4 The description of fuzzy training samples using the proposed

method (the rectangles show 0-cut HR and the small stars show the

cores of the training samples)
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prices are numerous and complicated, many consumers

are confused. To give consumers a better understanding

of Taiwanese tea, the Taiwan Tea Experiment Station

(TTES) is going on in its attempts to formulate an eval-

uation system for tea quality. In general, there are four

criteria used to evaluate tea quality: appearance, tincture,

liquid color and aroma.

Because tea evaluation comes under the subjective

judgment of experts, the quality levels are described using

the terms: perfect, good, medium, poor and bad. These five

quality defining terms allow for the ambiguity and impre-

cision inherent to human perception. Since fuzzy sets are

suited to describing ambiguity and imprecision in natural

language, these terms can be defined using triangular

fuzzy numbers as follows: Xperfect = (1, 0.25, 0)T, Xgood =

(0.75, 0.25, 0.25)T, Xmedium = (0.5, 0.25, 0.25)T, Xpoor =

(0.25, 0.25, 0.25)T and Xbad = (0, 0, 0.25)T. These repre-

sentations were shown in Fig. 11. Because tea evaluation

will vary according to the evaluation of each individual

expert, 10 experts were assigned to evaluate each kind of

tea and assign the quality levels of perfect, good, medium,

poor and bad for the four criteria of appearance, tincture,

Fig. 7 Thick curve The description of data before changing the

maximum width of uncertainty of second feature of the training

sample (shown by dashed rectangle). Thin curve The description of

data after changing the maximum width of uncertainty of the training

sample

Fig. 8 Thick curve The description of data before changing the

maximum width of uncertainty of second feature of the training

sample (shown by dashed rectangle). Thin curve The description of

data after changing the maximum width of uncertainty of the training

sample

Fig. 6 Thick curve The description of data before changing the core

of the fuzzy training sample (shown by dashed rectangle) from its

center to its corner. Thin curve The description of data after changing

the core of the fuzzy training sample

Fig. 5 Thick curve The description of data before changing the core

of the fuzzy training sample (shown by dashed rectangle) from its

center to its corner. Thin curve The description of data after changing

the core of the fuzzy training sample

242 Pattern Anal Applic (2012) 15:237–247
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liquid color and aroma. For each criterion, a fuzzy arith-

metic average was used to obtain a fuzzy number and then

perfect, good, medium, poor or bad nearest was assigned to

this fuzzy number. The final evaluation data were shown in

Table 1. Let ~xjk ¼ ðmjk; ljk; rjkÞT be assessed by kth crite-

rion of the jth type of tea, k = 1, 2, 3, 4, j = 1, …, 69.

The overall performance for jth type of tea is determined as

~xj ¼ ð �mj; �lj; �rjÞT where

�mj ¼
1

4

X4

k¼1

mjk; �lj ¼
1

4

X4

k¼1

ljk; �rj ¼
1

4

X4

k¼1

rjk: ð27Þ

We clustered the dataset to two clusters using the FCN

[23] and also the AFCN [24]. Data no. 1-54 and 55-69 were

clustered to Grades 1 and 2, respectively. If we accept the

result of these two clustering algorithms and use the first

cluster of the dataset as the genuine class and the second

cluster as the outlier, we can check the ability of our

proposed method for one-class classification of the genuine

class, namely Grade-one-tea.

In order to measure the probability of misclassification

of our proposed method for one-class classification of the

genuine class, we use the leave-one-out strategy (see e.g.

[25, 26]), i.e., in turns, we remove only one element from

the genuine class, we train the model with the remaining

elements of the genuine class and we test this model with

the sample removed from the genuine class and the ele-

ments of the outlier class. We repeat the process for every

element of the genuine class and then obtain the probability

of misclassification as follows:

probability of misclassification ¼ # of misclassifications

# of test samples
:

ð28Þ

The obtained results for the mentioned strategy have

been shown in Table 2. As it can be seen, the probability of

misclassification is very low for different values of r and

the best result has been obtained for r = 0.02.

We also used the 10-fold cross-validation to measure the

probability of misclassification of our proposed method,

i.e., the instances of the genuine class of the dataset are

grouped in 10 sets (these sets forming a partition), and each

one (together the outlier class) is used in turn as test set

against all 9 others taken together as training set, i.e., the

process is repeated 10 times and then obtain the probability

of misclassification by using (28) (see [26]). The proba-

bility of misclassification of our proposed method on the

dataset for 10-fold cross-validation strategy has been

shown in Table 3. As it can be seen, however, the proba-

bility of misclassification of our proposed method for the

10-fold cross-validation strategy is more than its proba-

bility of misclassification for the leave-one-out strategy,

but this probability is still small specially for r = 0.02.

Fig. 9 Thick curve The description of data before changing the

maximum width of uncertainty of first feature of the training sample

(shown by dashed rectangle). Thin curve The description of data after

changing the maximum width of uncertainty of the training sample

Fig. 10 Thick curve The description of data before changing the

maximum width of uncertainty of first feature of the training sample

(shown by dashed rectangle). Thin curve The description of data after

changing the maximum width of uncertainty of the training sample

Fig. 11 Five triangular fuzzy numbers for a particular criterion
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Table 1 69 types of tea tree in Taiwan

No. Type Appearance Tincture Liquid color Aroma �x

1 Bai Mao Hou Perfect Poor Poor Good (0.5625, 02500, 0.1875)T

2 Hei Mao Hou Good Poor Poor Good (0.5000, 0.2500, 0.2500)T

3 Qing Xin Hei Nou Good Poor Poor Good (0.5000, 0.2500, 0.2500)T

4 Qui Zi Keng Bai Mao Good Poor Poor Good (0.5000, 0.2500, 0.2500)T

5 Da Nan Wan Bai Mao Perfect Bad Bad Good (0.4375, 0.1250, 0.1875)T

6 Qing Xin Oolong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

7 Dan Shui Qing Xin Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

8 Bu Zhi Chun Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

9 Tao Ren Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

10 Wan Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

11 Hong Xin Da Nou Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

12 Bai Xin Oolong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

13 Shui Xian Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

14 Gui Hua Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

15 Niu Pu Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

16 Lin Kou Heng Zhe Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

17 Feng Zi Lin Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

18 Pu Xin Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

19 Da Hu Wei Good Bad Poor Good (0.4375, 0.1875, 0.2500)T

20 Hong Xin Oolong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

21 Fu Chou Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

22 Tieh Kuan Yin Medium Bad Bad Perfect (0.3750, 0.1250, 0.1875)T

23 Heng Zhe Da Ye Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

24 Gan Zi Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

25 San Cha Zhi Lan Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

26 Ying Zhi Hong Xin Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

27 Da Ye Oolong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

28 Tian Gong Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

29 Gan Zi Chong(Huang) Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

30 Wen Shen Da Ye Good Bad Poor Medium (0.3750, 0.1875, 0.2500)T

31 Hei Mian Zao Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

32 Qing Xin Zao Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)T

33 Lin Kou Da Ye Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

34 Zao Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)T

35 Han Kou Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)T

36 Niu Shi Wu Good Bad Poor Medium (0.3750, 0.1875, 0.2500)T

37 Ping Shui Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)T

38 Yan Chuan Chong Good Bad Poor Medium (0.3750, 0.1875, 0.2500)T

39 Da Ye Zhu Ye Medium Bad Bad Good (0.3125, 0.1250, 0.2500)T

40 Tao Ren Wu Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

41 Hu Nan Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

42 Huang Zhi Chong Medium Bad Bad Good (0.3125, 0.1250, 0.2500)T

43 Ji Long Jin Gui Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

44 Wu Jin Chong Medium Bad Bad Good (0.3125, 0.1250, 0.2500)T

45 Jin Gui Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

46 Da Ji Ling Chong Medium Bad Poor Medium (0.3125, 0.1850, 0.2500)T

47 Huang Gan Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

48 Zhi Lan Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T
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5 Conclusion

In this paper, a fuzzy quadratic program with fuzzy qua-

dratic objective function and quadratic fuzzy constraints

was solved and this solution was used to obtain the

description of fuzzy data based on the FSVDD method.

The proposed method, namely FSVDD*, is suitable for

one-class classification of real data which are usually

uncertain.

We used a defuzzification method to solve our fuzzy

quadratic program. The defuzzification of fuzzy param-

eters of the fuzzy quadratic program leads to obtain a

crisp quadratic program which gets a crisp description of

fuzzy data. We used the Hathaway, the Hausdorff, and

the Yang distance for defuzzification and studied the

advantage and drawback of each distance metric on the

fuzzy data description. Finally, we applied our proposed

method to real data. The experimental results showed the

Table 3 The probability of misclassification of our proposed method for 10-fold cross validation strategy

R 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5

Probability of misclassification 0.0918 0.2102 0.1416 0.1827 0.1504 0.1645 0.1329 0.0920 0.2238

Table 1 continued

No. Type Appearance Tincture Liquid color Aroma �x

49 Shi Tea Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

50 Bai Xin Wu Yi Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

51 Mao Er Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

52 Ji Long Bai Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

53 Zhu Ye Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

54 Yu Zhi Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)T

55 Xiao Ye Zhu Ye Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)T

56 Shen Man Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)T

57 Bai Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)T

58 Bai Ye Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)T

59 Yellow Tea Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)T

60 Manipuri Good Bad Bad Bad (0.1875, 0.0625, 0.2500)T

61 Shan Good Bad Bad Bad (0.1875, 0.0625, 0.2500)T

62 Gao Lu Chong Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

63 Indigenou Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

64 Nan Tou Shen Tea Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

65 Japuri Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

66 A Sa Mu Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

67 Mian Dian Chong Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

68 Shan Tea Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

69 Kyang Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)T

Table 2 The probability of misclassification of our proposed method for leave-one-out strategy

r 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5

Probability of misclassifications 0.0278 0.0313 0.0313 0.0324 0.0359 0.0336 0.0336 0.0324 0.0313
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ability of the proposed method in Taiwanese tea

evaluation.

Appendix

The Lagrangian dual form of the program (1) is as follows:

maxd;cLðR; e; n; d; cÞ
subject to di; ci� 0; i ¼ 1; . . .; n; ð29Þ

where d = (d1, …, dn)T, c = (c1, …, c2)T and

LðR; e; n; d; cÞ ¼ inf R2 þ C
Xn

i¼1

wini �
Xn

i¼1

diðR2 þ ni

(

�gðxiÞTgðxiÞ þ 2eTgðxiÞ � eTeÞ �
Xn

i¼1

cini

)
: ð30Þ

For the optimal solution, the following conditions are

satisfied

oL

oR
¼ 0!

Xn

i¼1

di ¼ 1; ð31Þ

oL

oe
¼ 0! e ¼

Xn

i¼1

digðxiÞ; ð32Þ

oL

on
¼ 0! di ¼ Cwi � ci; i ¼ 1; . . .; n; ð33Þ

dið gðxiÞ � ek k2�R2 � niÞ ¼ 0; i ¼ 1; . . .; n; ð34Þ
cini ¼ 0; i ¼ 1; . . .; n; ð35Þ

Using the above conditions, L(R, e, n, d, c) is trans-

formed to

Xn

i¼1

diKðxi; xiÞ �
Xn

i¼1

Xn

j¼1

didjKðxi; xjÞ; ð36Þ

where K(xi, xj) = g(xi)
Tg(xj). Since di C 0 and from (33)

we have 0� di�Cwi: So, the Lagrangian dual form of (1)

can be restated as follows:

maxd

Xn

i¼1

diKðxi; xiÞ �
Xn

i¼1

Xn

j¼1

didjKðxi; xjÞ

subject to

Pn
i¼1 di ¼ 1;

0� di�Cwi; i ¼ 1; . . .; n;

�
ð37Þ

which is a conventional quadratic program and can

be solved easily. From (32), gðxiÞ � ek k2¼ Kðxi; xiÞ � 2Pn
j¼1 djKðxi; xjÞ þ

Pn
j¼1

Pn
k¼1 djdkKðxj; xkÞ and from (34)

if di [ 0; Kðxi; xiÞ � 2
Pn

j¼1 djKðxi; xjÞ þ
Pn

j¼1

Pn
k¼1 djdk

Kðxj; xkÞ ¼ R2 þ ni: From (33) if di\Cwi; ci [ 0: So,

from (35) we have ni ¼ 0: So, if 0\di\Cwi;

R2 ¼ Kðxi; xiÞ � 2
Xn

j¼1

djKðxi; xjÞ þ
Xn

j¼1

Xn

k¼1

djdkKðxj; xkÞ:

ð38Þ

Finally, the unknown datum x is inside the hypersphere

if gðxÞ � ek k2�R2 or equivalently if

Kðx; xÞ � 2
Xn

i¼1

diKðx; xiÞ þ
Xn

i¼1

Xn

j¼1

didjKðxi; xjÞ�R2:

ð39Þ
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