Microstructural and mechanical properties (hardness) investigations of 0.61%Al-1.11%Si austempered ductile iron

Kiani-Rashid, A.R., Hashemi, B.
Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran

Abstract

The effect of aluminium as a strong graphitizing element is known. A lot of investigations have been made by researchers to replace silicon with aluminium in gray and ductile cast irons. The aluminum increases the oxidation resistance at high temperatures and also improves the hardness and strength of the cast iron. Therefore, in this research, by adding a few values of aluminium in presence of silicon, it is tried to determine the microstructure of the experimental samples by using optical and electron microscopes. Thus, the phase transformations are investigated by applying suitable heat treatments by austenitising at 890°C and austempering at 350, 400 and 450°C. Furthermore, hardness measurements are used for determining the mechanical properties of the material.

Language of original document

English

Author keywords

Aluminum; Ductile iron; Graphite; Microstructure

Index Keywords

Austempered ductile irons; Austempering; Ductile cast irons; Hardness measurement; High temperature; Micro-structural Engineering controlled terms: Aluminum; Ductility; Hardness; Investments; Iron; Microstructure Engineering main heading: Cast iron

References (33) View in table layout

Select: Page

1 Myszka, D.
Austenite-Martensite transformation in austempered ductile iron

2 Dave, J.R.
ASM Press

3 Davenport, E.S., Bain, E.C.
Transformation of austenite at constant sub-critical temperatures
Iron and Steel Division

4 Zimba, J., Simbi, D.J., Navara, E.
Austempered ductile iron: An alternative material for earth moving components
doi: 10.1016/S0958-9465(02)00078-1

View at publisher
5 Roedter, H.
ADI - Austempered Ductile Iron

6 Hayrynen, K.L., Keough, J.R.
Keith Millis Symposium on Ductile Cast Iron 2003, Livonia, Michigan, USA

7 Guzik, E.
Some selected problems concerning the processes of cast iron improvement
(2001) Archives of Foundry IM

8 Binczyk, F.
Silesian Technical University, Gliwice

9 Myszka, D.
Structural research of direct austempered ductile irons obtained in sand mould
(2001) Archives of Foundry, 1 (1), pp. 263-270. in Polish

10 Darwish, N., Elliott, R.

11 Voigt, R.C., Loper, C.R.

12 Rao, P.P., Putatunda, S.K.
Comparative study of fracture toughness of austempered ductile irons with upper and lower ausferrite microstructures

13 Shannugam, P., Prasad Rao, P., Rajendra Udupa, K., Venkataraman, N.
Effect of microstructure on the fatigue strength of an austempered ductile iron
doi: 10.1007/BF00358546

14 Prasad Rao, P., Putatunda, S.K.
Investigations on the fracture toughness of austempered ductile iron alloyed with chromium
doi: 10.1016/S0921-5093(02)00541-5

15 Yu, S.K., Loper, C.R.
Effect of molybdenum, copper and nickel on the pearlitic and martensitic hardenability of ductile iron

16 Kiani-Rashid, A.R.
Ph.D. Thesis, University of Leeds

17 Boutorabi, S.M.A.
Ph.D. Thesis, University of Birmingham, May

18 Stefanescu, D.M.
Thermodynamic Properties of Iron-Base Alloys

19 Kiani-Rashid, A.R., Edmonds, D.V.
Microstructural characteristics of Al-alloyed austempered ductile irons
doi: 10.1016/j.jallcom.2008.10.038

20 Elliott, R.

21 Defranco, C., Van Fegham, J., Desy, A.A.
36th Int. Foundry Congress, Belgrad, 1969

22 Boutorabi, S.M.A.
23. Boutorabi, S.M.A., Young, J.M., Kondic, V., Salehi, M.
The tribological behaviour of austempered spheroidal graphite aluminium cast iron

Influence of heat treatments on microstructure and toughness of austempered ductile iron

25. Siščanin, L., Smallman, R.E., Boutorabi, S.M.

26. Bayati, H., Elliott, R.

27. Prasad Rao, R., Putatunda, S.K.
Investigations on the fracture toughness of austempered ductile irons austenitized at different temperatures

doi: 10.1016/S0921-5093(02)00633-0

28. Bahmani, M., Elliott, R.

29. Bayati, H., Elliott, R.

30. Boutorabi, S.M.A., Young, J.M., Kondik, V.

31. Brown, J.R.
Butterworth-Heinemann

32. Stefanescu, D.M.
Thermodynamic Properties of Iron-Base Alloys

33. Golozar, M.A.

Kiani-Rashid, A.R.; Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad,
91775-1111, Mashhad, Iran; email:kiani rashid@gmail.com
© Copyright 2011 Elsevier B.V., All rights reserved.