
A Software-Based Error Detection Technique Using Encoded
Signatures

Abstract

In this Paper, a software-based control flow checking technique called SWTES (Software-
based error detection Technique using Encoded Signatures) is presented and evaluated. This
technique is processor independent and can be applied to any kind of processors and
microcontrollers. To implement this technique, the program is partitioned to a set of blocks
and the encoded signatures are assigned during the compile time. In the run-time, the
signatures are compared with the expected ones by a monitoring routine. The proposed
technique is experimentally evaluated on an ATMEL MCS51 microcontroller using Software
Implemented Fault Injection (SWIFI). The results show that this technique detects about 90%
of the injected errors. The memory overhead is about 135% on average, and the performance
overhead varies between 11% and 191% depending on the workload used.

1. Introduction

Today, the use of general purpose processors (from modern processors to simple
microcontrollers) has become a common trend in many safety-critical systems such as space,
automotive and industrial applications. Since these systems usually operate in harsh
environments and the presence of faults in such applications may cause catastrophic
consequences, the faults must be detected as early as possible [8]. It has been reported that the
occurrence of transient faults is more probable (10 to 30 times [18]) than the permanent and
intermittent faults in such systems [11, 16]. The permanent or transient faults in hardware
components such as the program counter, the address circuitry and the memory elements or the
software bugs such as compiler and operating system bugs also may result in CFEs [9, 15].
[16, 20] reported that more than half (up to 70% [2]) of the transient faults lead to the control
flow errors (CFEs) in the program execution. Therefore, it seems that control flow checking is
a viable solution to the systems reliability requirements.

Control flow checking techniques are mainly based on signature monitoring principle. An
abstract of program execution is extracted and some signatures that represent the chosen
abstract are assigned for the correct program execution before the system’s execution (run-
time). Signatures are assigned arbitrarily (assigned signatures), e.g. SIC [9], CFCSS [15], CCA
[12], ECCA [1], and SEIS [11, 16], or derived from the binary code or the address of the
instructions (derived signatures), e.g. PSA [14], SIS [19], ASIS [3], CSM [21], OSLC [10],
and TTA [13]. During the run-time, the signatures are again generated in real-time and are
compared to the stored, expected signatures. If a disagreement occurs, the occurrence of an

Yasser Sedaghat, Seyed Ghassem Miremadi, Mahdi Fazeli
Dependable Systems Laboratory (DSL)

Sharif University of Technology, Tehran, Iran
y_sedaghat@ce.sharif.edu, miremadi@sharif.edu, m_fazeli@ce.sharif.edu

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

error is detected and reported. The signature monitoring is performed by a watchdog processor
in hardware and a monitoring routine [4], in software techniques. Since in modern computer
architectures, the observability of the system bus is drastically reduced, e.g. by the use of on-
chip caches and instruction prefetch queues, derived signature based techniques no longer can
be used. Therefore, the employment of assigned signatures based techniques are almost
exclusively used in COTS processors.

Many control flow checking techniques which are based on assigned signature principle are
proposed in the literature. These techniques have some disadvantages which are as follows:

• The memory and performance overhead of these techniques are relatively high.
• The algorithm of assigning the signatures is complex in some techniques (e.g., SEIS

[11, 16] and ECCA [1]).
• The Software-Based techniques, e.g. ECCA [1], are unable to detect the program

crashes which are caused by a CFE.
• The error detection coverage of these kinds of techniques is rather low.

In this paper, a software based technique, called SWTES is presented and evaluated by
means of the SWIFI [17] method. In the SWTES, the signatures are assigned to the program by
a comparatively simple algorithm and compared to the expected ones in the run-time. This
technique tries to mitigate the mentioned existing problems for the assigned signature-based
techniques and provides high error detection coverage as well as having acceptable overheads.

The structure of this paper is as follows: Following the introduction, the error models are
presented in section 2. The SWTES technique will be presented in details in the third section.
In section 4, the capabilities of the proposed technique are explained. The experimental results
are introduced in section 5 and finally the paper is concluded in the last section.

2. CFE models

The SWTES technique primarily detects CFEs caused by transient faults. The following
definitions are presented for the sake of clarity.

Definition 1: A CFE is an illegal branch which can be caused by transient faults in
hardware such as the program counter, address circuit or memory system [9].

Definition 2: A Basic Block (BB) is a maximal set of ordered non-branching instructions
(except in the last instruction) or branch destinations (except in the first
instruction) in which the execution always enters at the first instruction and
leaves via the last instruction [22]. These sets should have a minimal length.

Definition 3: A Partition Block (PB) is a set of instructions between two physically
consequent BB.

Definition 4: A program crash occurs when the execution illegally continues outside the
program (unused memory space)

The SWTES technique assumes that the program is partitioned into BBs and PBs. In this
model, seven types of CFEs are considered which are shown in Figure 1.

Type 1: from a BB to other BB
Type 2: from a PB to itself or another PB
Type 3: from a BB to itself
Type 4: from a PB to a BB
Type 5: from a BB to a PB
Type 6: from a BB to the unused memory space
Type 7: from a PB to the unused memory space

Figure 1. Program partitions and the seven types of CFEs

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

(a) (b)

In fact, a CFE is the occurrence of one of the seven types of the CFEs. Types 6 and 7 usually
lead to a program crash in our experiments. Therefore, these two types can be merged.

3. The SWTES technique

The structure of a program can be represented by a directed graph, where nodes represent
the Basic Blocks and the arcs represent the relations between the Basic Blocks. This directed
graph is called the control flow graph (CFG). In Figure 2 (b), the CFG of a typical program, in
figure 2 (a), has been shown.

Figure2. A typical source code and its CFG

The SWTES technique has the following steps:

1. Extracting the Basic and Partition Blocks and generating CFG of the program.
2. Labeling the Graph nodes by a specific algorithm.
3. Producing the signatures for each labeled node and assigning them to the Basic

Blocks.
4. Inserting the appropriate instructions to the end of each Basic Block in order to

sending the signature to the monitoring system in run-time phase.
5. In the SWTES, a supplementary mechanism called, Entry-Exit Checking is exploited

to increase the error detection coverage. So in this step, a flag is assigned for the
Basic Blocks and one for the parts of Partition Blocks which have not any branch
instructions and branch destinations inside except in the last or the first instruction.
Actually these parts are the Basic Blocks which have a short length, but it is not
efficient to consider them as the Basic Blocks due to the large amount of imposed
overhead.

6. In fact, there are two major parts that should be explained more for clarifying the
proposed technique: The labeling algorithm and the signature generating step.

3.1. The labeling algorithm

In the labeling algorithm, the program CFG is taken as the input and a unique label is
assigned to each node. It should be noticed that in each CFG, the length of labels of the nodes
is the same. This labeling is exploited in the signature generating step which will be discussed
in the following section. The labeling algorithm is presented below:

A
L1:

MOV DPTR,#ARRAY
MOV R1,#30
MOV R4,#00

B

CLR A
MOVC A,@A+DPTR
INC DPTR
MOV R0,A

CLR C
SUBB A,R1
JC L2

C
MOV A,R0
ADD A,R3
MOV R3,A
SJMP L3

D
L2:

MOV A,R0
CLR C
SUBB A,R3
MOV R3,A

E
L3:

MOV R0,R4
MOV R3,A
MOV @R0,R3
SJMP L1

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

In this algorithm, a unique label is assigned to each of the CFG nodes and two supportive
lists, namely Black list and Valid list, which are empty at first, are used. The algorithm works
as follows: at first, the label 1 is assigned to the first node which is the root of the CFG. Then,
for labeling each of the unlabeled nodes, one of the following cases happens:

1. If the node with X label (X node) has two unlabeled successor nodes then labels 2X
and 2X+1 are assigned to these nodes.

2. If X node has only one unlabeled successor node then label 2X is assigned to this
node and label 2X+1 is added to the Black list.

3. If X node hasn’t any successor nodes or all of its successors be labeled before, labels
2X and 2X+1 are added to the Black list.

In this algorithm, a numeric variable, Limit, is also used for limiting the growth of length of
labels. Its value is initially as follows:

Limit = ⎣ ⎦)(log2 nodesofnumbertotal
If in any of the previously described steps of the algorithm, the label that is to be assigned to

a node be greater than 2Limit, one of the following cases is done:
1. If the Valid list is not empty and its first element is smaller than 2Limit then this first

element is removed from the list and is used as the label for the current node.
2. If the Black list is not empty then its first element (e.g. A) is removed from this list

and labels 2A and 2A+1 are inserted in the valid list then:
a. If 2A is smaller than 2Limit this element is removed from valid list and is

assigned to the current label.
b. If 2A is not smaller than 2Limit then Num is increased by one unit and label

2X is assigned to the current node.
3. In case none of the above cases is true Limit is increased by one unit and label 2X is

assigned to the current node.

The result of the above cases is that whenever it is not possible to assign a label to the
successors of a node, this label will not be assigned to any other nodes of the CFG. Therefore
by using this algorithm, all of the graph nodes are uniquely labeled, that is, the label which is
assigned to each node is unique in the entire CFG.

Since the application programs are implemented in assembly level, the nodes have at most
two successors. But it should be noted that this technique can be slightly modified to support
more than two successors. Figure 2 (b), also shows the assigned labels in a typical CFG
according to the preceding labeling algorithm.

3.2. The signature generating step

The generated signature for each node has four fields that three of them have a constant
length and the fourth field may not exist regarding the node labeling relations (see figure 3).
The length of the most significant field is two bits, called Status field. These two bits specify
the status of the label of this node which is related to its successor node labels. The next field is
the Entry/Exit bits. These bits indicate the last status of entry and exit flags. The third field (ID)
specifies the label of the current block (the block which has already sent the signature). Finally,
based on the last variable field of signature, named successors field and the status field,
possible successors of current block are uniquely determined.

Status field Entry/Exit code Label of current B.B (ID) Successors

The status field of the signature is determined based on the relations between the label of
this node and labels of its successors. The rule of extracting the status field is listed bellow:

Figure 3. The structure of a Signature

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

1. If the labels of successors of a block (with X label) are 2X and 2X+1 (or only 2X, if
there is only one successor), status field of assigned signature of the block is equal to
‘00’. These kinds of successors are called systematic successors (see the figure 4).

Figure 4. The systematic successors

2. Since in the CFG program it is probable for a node to have more than one
predecessors, it can not be guaranteed that its label is in the form of 2x or 2x+1 (x is
the label of the node’s predecessor). If at least one of the node successors have a label
which is not in the form of 2x or 2x+1, the status field of its signature is equal to ‘01’.
The successor nodes that their labels are not in the form of 2x or 2x+1 are classified as
unsystematic successors from their predecessors point of view. For example, in figure
5(a), the node C has two successors, named B and D. Since the node B has another
predecessor except node C and due to the graph topology and labeling algorithm, node
B is labeled by using this predecessor label and not the one of node C. In this case,
node B is named an unsystematic successor. In contrast, node D has only one
predecessor (node C) and is labeled after its predecessor, i.e. it is in a normal situation
and is called a systematic successor. The status field of node C signature is ‘01’. In
figure 5(b), since label of node C is X and the labels of its successor nodes are in the
form of 2X and 2X+1, the status field of its signature is ‘00’. Label of node D is 2X
but both of its successors are labeled by their previous predecessors and are
unsystematic successors. Therefore, the status field of node D signature is ‘01’.

Figure 5. The unsystematic successors

3. Finally, the value ‘11’ is reserved in the status field for sending a specific or control
message to the monitoring system, e.g. sending an initial control message that informs
the length of labels to the monitoring system.

The length of the second field is two bits, and is determined at the time of signature
transmitting to the monitoring system. At the run-time, initially two flags (F1 and F2) are set to
zero. In the entrance and exit parts of each Basic Block the F1 flag is complemented. Since the
size of the sending signature part is relatively long, a flag is assigned to the first and to the end
of this part to detect the possible illegal CFEs inside it. It should be noted that only one byte
instruction is imposed for setting each flag which is a little overhead compared to the whole

(b)(a)

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

Figure 6. The location of inserting
of Entry-Exit instructions

Figure 7. The CFG of the figure 2
with assigned signatures

block size. Whenever the execution enters to the sending signature part or exits from it, this
flag is complemented. In the monitoring system when a signature is received and compared
with the expected ones, the content of the flags is checked to verify if each exit follows an
entry (see the Figure 6).

The content of the fourth field that specifies the successors of the current block has a
variable length depending on the status field. This field is used in the form of the following
stages:

1. If the status field is equal to ‘00’, the successor field will be removed. In this situation,
the length of this field would be zero.

2. If the status field is equal to ‘01’ the successor field will contain the XOR-difference
between the current block label and labels of unsystematic successors. In this situation,
the length of this field would be at most twice the length of labels.

3. And finally, if the status field is equal to ‘11’, this field will be removed.
Figure 7 shows signatures that are assigned to CFG nodes of figure 2.

3.3. The control flow checking scenario

Whenever the program execution reaches the signature sending part, the signatures of each
block is sent to a monitoring system. The monitoring system specifies the successors of the
current Basic Block based on its status bits, ID fields and the possible successor field. Then in
the monitoring system, the current signature ID is just compared with the label of successors of
previous block which are specified by the previous signature. If the ID of the current block be
equal to one of the labels of successors of the previous block, the flow of the program is
correct and no CFE has been occurred.

In the proposed technique, an on-chip processor timer is exploited as a workload timer for
detecting the program crash errors. In this mechanism, the timer is restarted by the monitored
program in a special part of the program for preventing the overflow of the workload timer. In
case of a program crash, the program flow will never reach a restarting instruction and an
overflow interrupt will occur. In this case, a signature with status field of ‘11’ is sent to the
monitoring system.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

Figure 8. The flow of CFE detection in SWTES technique

As mentioned before, two flags are used to implement the Entry-Exit Mechanism. In the
monitoring system, since these two flags are checked in the middle of the signature block the
content of the flags should be always ‘01’ in case of correct execution. Otherwise, a CFE has
been occurred and is detected. Figure 8, shows the flow of CFE detection in the SWTES
technique.

4. Capabilities of the SWTES technique

Regarding figure 1, it is obvious that type 1 and 2 errors are detected by monitoring system,
while the next signature is received and checked. Also, type 4 and 5 errors disturb the program
execution. Therefore, the flags are incorrectly complemented and a signature with invalid
Entry/Exit field is sent to the monitoring system. Similar to other techniques which are based
on the assigned signatures, the third type of errors can not be detected by this technique, unless
in special situations (for example, if the result of these CFEs be jumping to the operand part of
an instruction, this may be interpreted as an opcode of a branch instruction and as mentioned
above can be detected). Finally, the incorrect jumps to unused memory spaces are detected by
using the system internal workload timer.

Another feature of SWTES is its ability to checking the program control flow in multi
processor systems. To reach this purpose, each processor just attaches its identification to the
signatures and then sends it to the monitoring system. In this approach, the monitoring system
can distinguish program control flows of different monitored systems from each others.

Due to the short signature length, the SWTES has a relatively low communication overhead
in comparison with other similar techniques such as SEIS [11, 16] and ECCA [1]. In the
proposed technique, unlike some approaches like ECCA [1], a simple labeling mechanism has
been used that noticeably results in preventing long label lengths.

5. Experimental results

As mentioned before, since the aim of this research work is to introduce a general control
flow checking technique, i.e. it dose not depend on a specific processor or platform, the
proposed technique is applied to the 8051 microcontroller family which is widely used as the
core of modern microcontrollers. In order to evaluate the SWTES technique, a tool named
uVision 3.0 [7] is used to compile the assembly code of the benchmarks which are protected by
the SWTES technique. The mentioned tool has also the capability of simulating the 8051
microcontroller family which is exploited for implementing the whole system that consists of
the protected code, monitoring and fault injection system. The protected code saves the
signatures to a specific location of system memory and then the monitor program picks up
them from the mentioned location.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

Table 1. The SWTES’s control flow error detection coverage and memory
overhead

Benchmarks
Number of

injected
faults

Number of
detected
errors

Error
detection
Coverage

Memory
Overhead

Performance
Overhead

Bubble Sort 2000 1964 98.2% 174.8% 191.36%
Linked List 2000 1625 81.25% 90.9% 10.95%

Binary Search Tree 2000 1803 90.15% 139.84% 98.86%

Three workload programs, all written in MCS51 assembly language, were used in the
experiment: a bubble sort, a linked list and a binary search tree. A total of 2000 faults were
injected into the evaluation system while running each workload and the results are shown in
table 1. The used fault injection method in this work is SWIFI, in which a bit of the program
counter register is randomly flipped at random times.

For comparison, the overhead and coverage figures of some of the previous control flow
checking techniques are reported in table 2. It is evident that the SWTES technique, which is a
general purpose technique, has the high error detection coverage in comparison with the other
general purpose techniques.

Table 2. Comparison of the SWTES technique with some of the previous,
software-based CFC techniques

CFC Methods
Memory

Overhead (%)
Performance

Overhead (%)
Error Detection
Coverage (%)

General
Purpose

ECIC [17] 5~10 42~67 90.5~98.2 No
CFCSS [15] 26.6~63.6 16.2~69.2 28.8~41 Yes
ECCA [1] 303~490 260~622* 22.6~83.4* Yes
ACFC [20] 48~112.2 41~136.2 10~92.1 Yes
YACCA [6] 191~496 110~354 21.1~56 Yes
CFCBTE [5] 33~44 110~304 89.4~94.3 No

SWTES 90.9~174.8 10.95~191.36 81.25~98.2 Yes
 * Previously reported in ACFC [20]

6. Conclusions

Two broad categories for designing reliable systems using COTS processors have been
proposed in the literature: structure-based techniques and behavior-based techniques. The
structure-based techniques, which are based on hardware redundancy, are considered to be
expensive. On the other hand, behavior-based techniques usually provide adequate levels of
error detection and hence system reliability, with acceptable overheads. Among the behavior-
based techniques, Control flow checking techniques provide a viable solution to the modern
embedded Systems reliability requirements.

In this article, a software-based control flow checking technique which does not depend on a
specific processor or platform is proposed and the SWIFI approach is used to evaluate the
technique. The results show that this technique detects about 90% of the injected control flow
errors. The memory overhead is 135.18% on average, and the performance overhead varies
between 10.95% and 191.36% depending on the workload used.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

7. References

[1] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy and J.A. Abraham, “Design and evaluation of system-level
checks for on-line control flow error detection,” IEEE Trans. on Parallel and Distributed Systems, Vol.
10, Issue 6, June 1999, pp. 627 – 641.

[2] E.W. Czech and D. Siewiorek, “Effects of transient gate-level faults on program behavior,” Proc. of 20th
Internat-ional Symposium on Fault-Tolerant Computing (FTCS-20), Newcastle-Upon- Tyne, UK, June
1990, pp. 236-243.

[3] J.B. Eifert and J.P. Shen, “Processor Monitoring Using Asynchronous Signatured Instruction Streams,”
Proc. of 25th International Symposium on Fault-Tolerant Computing (FTCS-25), Los Angeles, CA, USA,
June 1995, pp. 106-111.

[4] A. Ersoz, D. M. Andrews, and E. J. McCluskey, “The watchdog task: Concurrent error detection using
assertions,” Center for Reliable Computing, Stanford Univ., CA, CRC-TR 85-8, 1985.

[5] M. Fazeli, R. Farivar and S.G. Miremadi, "A Software-Based Concurrent Error Detection Technique for
PowerPC Processor-based Embedded Systems," Proc. of 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT'05), Monterey, CA, USA, Oct. 2005, pp. 266-274.

[6] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda and M. Violante, “Soft-Error Detection Using Control
Flow Assertions”, Proc. of 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT'03), Boston, Massachusetts November 2003, pp. 57-62.

[7] Keil - An ARM Company, μVision IDE tool, http://www.keil.com/uvision2, 2006.
[8] J. H. Lala and R. E. Harper, “Architecture Principles for Safety-Critical Real-Time Applications”, Proc. of

the IEEE, vol. 82, January 1994, pp. 25-50.
[9] D.J. Lu, “Watchdog processors and structural integrity checking,” IEEE Trans. on Computers, Vol. C-31,

Issue 7, July 1982, pp. 681-685.
[10] H. Madeira and J. G. Silvia, “On-line signature learning and checking”, in Dependable Computing for

Critical Applications 2, J. F. Schlichting and R. D. Schlichting, Eds: Springer-Verlag, 1992, pp. 395–420.
[11] I. Majzik and A. Pataricza, “Control flow checking in multitasking systems,” Periodica Polytechnica-

Series Electrical Engineering, Vol. 39, Issue 1, Technical University of Budapest, 1995, pp. 27-36.
[12] L.D. Mcfearin and V.S.S. Nair, “Control-flow checking using assertions,” Proc. of IFIP International

Working Conference Dependable Computing for Critical Applications (DCCA-05), Urbana-Champaign,
IL, USA, September 1995.

[13] G. Miremadi, J. Ohlsson, M. Rimen, and J. Karlsson, “Use of Time, Location and Instruction Signatures
for Control Flow Checking”, Proc. of the DCCA-6 International Conference, IEEE Computer Society
Press, Urbana-Champaign, IL, USA, September 1995, pp. 201-221.

[14] M. Namjoo, “Techniques for concurrent testing of VLSI processor operation,” Proc. of International Test
Conference (ITC’82), Philadelphia, PA, USA, November 1982, pp. 461-468.

[15] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Control-flow checking by software signatures,” IEEE Trans.
on Reliability, Vol. 51, Issue 1, March 2002, pp. 111-122.

[16] A. Pataricza, I. Majzik, W. Hohl and J. Hoenig, “Watchdog processors in parallel systems,” Proc. of 19th
Sym-posium on Microprocessing and Microprogramming (EUROMICRO’93), Barcelona, Spain, 1993,
pp. 69-74.

[17] A. Rajabzadeh and G. Miremadi, “Transient Detection in COTS Processors Using Software Approach”,
Proc. of 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC
2004),Papeete, Tahiti, March 2004, pp.49-54.

[18] M.A. Schuette and J.P. Shen, “Processor control flow monitoring using signatured instruction streams,”
IEEE Trans. on Computers, Vol. C-36, Issue 3, March 1987, pp. 264-277.

[19] J.P. Shen and M.A. Schuette, “On-line self-monitoring using signatured instruction streams,” Proc. of
International Test Conference (ITC’83), Philadelphia, PA, USA, Oct. 1983, pp. 275-282.

[20] R. Venkatasubramanian, J.P. Hayes and B.T. Murray, “Low-cost on-line fault detection using control flow
assertions,” Proc. of 9th IEEE On-Line Testing Symposium (IOLTS’03), Greece, July 2003, pp. 137 - 143.

[21] K. Wilken and J.P. Shen, “Continuous signature monitoring: low-cost concurrent detection of processor
control errors,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, Issue
6, June 1990, pp. 629-641.

[22] S.S. Yau and F.C. Chen, “An approach to concurrent control flow checking,” IEEE Trans. on Software
Engineering, Vol. 6, Issue 2, March 1980, pp. 126-137.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

