NUMERICAL MODELING OF CHARRING MATERIAL ABALATION WITH CONSIDERING CHEMICAL REACTION, MASS TRANSFER AND SURFACE HEAT TRANSFER EFFECTS

A. B. Rahimi and H. Mohammadian
Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad, Iran
rahimiab@yahoo.com, hmohammadian@yahoo.com

*Corresponding Author

(Received: March 16, 2010 – Accepted in Revised Form: December 15, 2011)

Abstract
Accurate calculations for measuring the sacrificing rate of various materials in heat shield systems have not been obtained yet. So having a reliable numerical program that calculates the surface recession rate and interior temperature history is necessary. In this study numerical solution of governing equations for charring material ablation are presented. Thermodynamic properties \(\rho \), \(C_p \), \(k \) changes relative to the temperature accompany the nonlinear nature of the governing equations. The Newton-Raphson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton-Raphson method is one of the advantages of solving method because it is relatively simple and it can be easily generalized to more difficult problems. The obtained results are compared with reliable sources in order to examine the accuracy of compiling code.

Keywords
Ablation and surface recession rates; Interior temperature history; Charring material ablation; Newton Raphson; Numerical method

1. INTRODUCTION

One of the first methods to increase efficiency of the missile systems is reducing the weight which causes the increase in missile velocity and its range. In order to satisfy this need, using composite technology has been increased in aerodynamic industry. According to the limitation in functional temperature of these materials, we need to use thermal protective systems which are designed to increase the weight of the structure in optimized conditions. In returned phase to atmosphere a high aerodynamic heating is produced because of the high velocity and compactness of the air molecules in front of the missile and kinetic to thermal energy conversion. This phenomenon is of considerable importance especially around the nose and it can destroy the structure, too. It is clear that no heat insulation can bear this environment unless by special mechanism which reduces the effect of strong heat flux. Some of these kinds of high temperature thermal systems used in these conditions include: heat-sink system, reflex-cooling, leakage cooling and ablative cooling, shown in Figure 1. So they absorb and lose some amount of heat flux when exposed to hot gases. In this manner, ablative insulation sacrifices itself for the main structure and prevents it from damage.
The ablative system deletes the surface temperature of the heat-sink system materials and it prevents the structure overweight. The major aim in studying ablative insulation is calculating the heat distribution in the depth of insulation and the amount of its recession during the missile movement. Figure 1 shows different areas created in a degradable material. The charring layer and the virgin layer have constant density [2]. Historically, the first scientific studies on ablative phenomenon are conducted in late 1960s and early 1970s and they are based on the first study of vonkarman and Liz, [3]. As mentioned earlier, the main aim of predicting ablative insulation behavior is measuring the temperature under the insulation and its recession process when the flying object flies, and as a result designing the optimized insulation. CMA was presented by Aerotherm company in 1968 [4]. This technique solves the energy equilibrium and decomposition equations implicitly along with energy equilibrium conditions of the ablative system. More recently,
FIAT is presented in Ames research Center in NASA [5] which is more stable. An ablative program is presented in national laboratories of Sandia that uses the finite volume method along with unstructured mesh [6]. The integral solution (HBI) is one of the engineering solving methods to evaluate complex problems of heat transfer coupled with ablative problems which cause savings in the computer programs running time [7]. This method is considered as the oldest ablative problem-solving in the literature. In this method, Goodman integral method is used to anticipate the charring ablation materials behavior. These pseudo-analytic techniques is invented in late 1950s and early 1960s for some nonlinear problems of heat transfer, and the exponential, polynomial temperature profiles are used in it [8]. The most two recent studies can be mentioned here are quasi-state solutions obtained by Shan Lin [9] and [10]. In the first one, a one-dimensional quasi-state solution for the ablation of charring materials is investigated under the influence of a steady external heat source where the ablation is assumed to proceed at a known fixed constant. In the second one, an analytical modeling of the steady ablation of a 3-dimensional composite is considered.

In this paper, the governing equations are presented in order to anticipate the amounts of recession and the thermal response of charring ablative installations by considering the effect of chemical reactions, mass transfer and heat transfer to the surface (by considering pyrolysis gas effects and fluid-solid interaction). After specifying the boundary conditions, governing equations are solved by using Newton-Raphson method along with TDMA algorithm.

Figure1. A schematic model of the ablative insulation thermo chemical decomposition

2. PROBLEM FORMULATION

As shown in Figure 2, in terms of charring ablative material, it's better for the basic site axis basis to conform the material surface because of the ablative surface recession. In this matter, in contrast with non-charring ablative materials, like graphite and carbon-carbon composites, the mass flux of the pyrolysis gas is not zero. The material density is variable and governing equations are as mentioned in the literature [10]:

Energy equation:

\[
\frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + S \frac{\partial}{\partial t} \left(\rho h \right) + \Delta h_{\text{pyr}} = \rho C_v \frac{\partial T}{\partial t}
\]

in which, \(\Delta h_{\text{pyr}} \) is introduced as: \(\Delta h_{\text{pyr}} = h_g - \bar{h} \)

where, \(\bar{h} = \rho \frac{h_g}{\rho_c} - \rho_c \).

Continuity equation:

\[
\frac{\partial m_x}{\partial z} = \frac{\partial \rho}{\partial t} - \frac{\partial \rho}{\partial t}
\]

where, \(\dot{S} = \frac{m_{\text{ab}}}{\rho}, S'' = S'' + \dot{S} \Delta t \).

Decomposition equation:

\[
\frac{\partial \rho}{\partial t} - \frac{\partial \rho}{\partial t} = r_z \left(\frac{v_r - v_c}{r_r - r_c} \right) \sum \lambda_j \exp \left\{-B_j \left(T - T_{\text{ref}} \right) \right\}
\]

EST and ACE computer codes calculate the ablation rate using the thermodynamic properties of the materials in JANAF tables. The input to these functions are the surface temperature (\(T_s \)), the surface pressure (\(p_s = p_r \)) and the normalized mass flux of pyrolysis gas. The outputs of these functions are in mass flux of surface ablation, and gas enthalpy at the wall. The mass transfer coefficient is calculated from ablative mass flux as following functions which have been introduced in Ref. [10]. In these relations \(B'_g \) and \(B'_b \) are calculated from the following equations:

\[
\begin{align*}
B'_g &= m_g \left/ g_s \right., \quad B'_b = m_b \left/ g_s \right., \quad m_a = m_g + m_b, \quad g_s = r u_s St \\
g_s &= g_{\text{sat}} \phi_{\text{blow}} \\
\phi_{\text{blow}} &= \frac{\ln(1 + a B'_b)}{a B'_b} = \frac{a B'_b}{\exp(a B'_b) - 1}
\end{align*}
\]
After obtaining mass transfer constant from the above equations by the standard assumption of "Lewis number = $L_e = 1$", heat transfer coefficient is obtained.

If $B'_g = 0$, the above equations can be used for carbon-carbon ablative material. Usually, the heat transfer is obtained in the absence of mass injection. Here, the subscript 0 is related to the area without ablation and pyrolysis gas mass flux.

ϕ_{blow} is related to the blowing resulted from the gas entering the boundary layer and it is calculated as:

$$B' = \dot{m}_w / g_w, \quad B'_g = \dot{m}_w / g_{w0}, \quad B' = B'_g / \phi_{\text{blow}}$$ \hspace{1cm} (7)

in which,

$$\phi_{\text{blow}} = a B'_g / \left(\exp(a B'_g) - 1 \right),$$ \hspace{1cm} (8)

$$B'_g = (\dot{m}_w + \dot{m}_{gw}) / g_{w0}, \quad B'_g = \dot{m}_{gw} / (g_{w0} \phi_{\text{blow}})$$

If the $L_e = 1$, the value of the constant "a" for carbon-carbon and for carbon-phenolic is 1.5 and 1.3, respectively. In the compiling code, the total time of movement is divided according to the determined time pace. In every moment, the ablative mass flux of the previous moment is shown by \dot{m}_{ab} and the mass flux of pyrolysis gas is shown as: \dot{m}_{gw}. In every moment, g_{w0} and p_w values are conjectural. For correcting blowing constant, the following estimations are proposed:

$$B'_{eq} = B'_{w,eq} + \dot{B}'_g$$ \hspace{1cm} (9)

Now, we can specify $B'_{w,eq}$, $h_{w,eq}$ using the above equations at T_w, p_w, and \dot{B}'_g then the following quantities are specified:

$$\phi_{\text{blow,eq}} = \ln(1 + a B'_{w,eq}) / (a B'_{w,eq})$$

$$m_{eq} = g_{w0} \phi_{\text{blow,eq}} B'_{w,eq}, \quad m_{ab} = m_{eq} f_w$$

$$f_w = 1 \left[1 + (m_{eq} / m_w) \right]^{0.5}$$

$$m_e = a_p (X_0 / p'_w)^{0.5} \exp(-E_k / (RT_w))$$

$$h_w = f_w h_{w,eq} + (1 - f_w) h_{w0}$$

$$a_p = 4.71 \times 10^5 \text{ Kg/m}^2 \text{s}$$

$$X_0 = 0.21$$

$$E_k = 44 \times 10^4 \text{ K cal/K mol}$$

$$R = 1.989 \text{ kcal / mol atm.}$$

$$h_{w0} = \int_{T_0}^{T_w} C_p dT$$

$$C_p = C_v + D T$$

$$C_v = 979 \text{ J/kg K}$$

$$D = 0.15 \text{ J/kg K}$$

$$D_0 = 0.15 \text{ J/kg K}$$

Now, the correction of blowing constant and the mass flux of ablation can be calculated according to \dot{m}_{ab}.

$$B'_g = (\dot{m}_w + \dot{m}_{gw}) / g_{w0}$$ \hspace{1cm} (11)

$$\phi_{\text{blow}} = a B'_g / \left(\exp(a B'_g) - 1 \right)$$ \hspace{1cm} (12)

2.1. Boundary conditions

In Figure 3, a general ablative material is shown schematically. As it can be seen, we have to model the radiation and conduction, heat production or absorption related to chemical reactions. So, conservation of energy equation in ablative material surface is as follows.

$$q_{\text{act}} = -q_{\text{rad}} - \dot{m}_{ab} (h_w - h_{ab}) - \dot{m}_{gw} (h_w - h_{gw})$$ \hspace{1cm} (13)

In order to determine the boundary conditions of the first node ($-k \partial T / \partial z_{z=1} = q_{\text{act}}$), energy and mass equilibrium in the surface are used. The mass flux pyrolysis gas is not zero like carbon-carbon composite and graphite. There is also density variation as well. So we have [10],

Figure 2. Thermo chemical decomposition presentation of charring ablative material
\[
q_{net} = q_{ev}(1-h_s/h_w)\varphi_{HAL} - \varphi_{blow} - \varepsilon\sigma(T^4_{w} - T^4_{ref}) - m_{ab}(h_w - h_a) + m_{ev}(h_a - h_{ev})
\]
(14)

in which, \(q_{ev}\) is the heat flux of the cold wall and \(h_s\) is the recovery enthalpy calculated by aerodynamic relations. The term \(\varphi_{blow}\) relates to blow resulted from the gas entering the boundary layer and it is calculated by the following equation [10],
\[
\varphi_{blow} = \frac{\ln(1+a_B)}{a_B B'}. \quad B' = B'_e + B'_c
\]
(15)

In the above equation, the amount of \(a_i\) for carbon-phenolic equals 1.3, \(\varphi_{HAL}\) ≥ 1, is the abrasion coefficient. It states that, there isn’t any abrasion. It equals unity. Also emission coefficient \(\varepsilon\) equals 0.9. The \(h_a\) is determined as follows [10],
\[
h_a = \int_{T_{ref}}^{T} C_p dT = C_p(\sqrt{T^2_{w} + D^2} - \sqrt{T^2_{ref} + D^2})
\]
(16)

In the above equation, \(C_p = 2300\, J/kg\, K\), \(D = 800^\circ\) \(k\), \(T_{ref} = 300^\circ\) \(k\). The determination steps of, \(m_{ab}, h_w\) and \(h_s\) was specified in the last section.

4. PRESENTATION OF RESULTS

In order to study the accuracy of Newton-Raphson method in solving the governing equations, first one dimensional non-linear heat transfer equation is solved. The condition is that the material properties are a function of temperature and the results are generalized to more complex problems. In analyzing this problem the specific heat capacity of material and heat conductivity coefficient are considered constant which are assumed as a function of temperature; but, material density is constant. For this problem, heat equation, initial and boundary conditions are considered. Variation of heat conductivity coefficient and specific heat capacity is assumed linear according to temperature and is expressed with the following equations:

\[
k(T) = k_i + \frac{k_e - k_i}{T_e - T_i}(T - T_i),
\]

\[
C_p(T) = C_{p,i} + \frac{C_{p,e} - C_{p,i}}{T_e - T_i}(T - T_i),
\]

\[
a = \frac{k}{(\rho C_p)} = \frac{k_i}{(\rho C_{p,i})} = \frac{k_e}{(\rho C_{p,e})}
\]

The analytical solution of this problem is performed using the transformations in [10]. By transferring the energy equation, boundary and initial conditions, similar solution as constant material properties are obtained:

\[
\frac{T(z,t) - T_0}{q L/k} = \frac{\alpha t}{L^2} + \frac{1}{3} + \frac{z}{L} + \left(\frac{z}{L}\right)^2
\]

(18)

\[
2 \Pi \sum_{n=1}^{\infty} \frac{1}{n} \exp(-n^2\Pi^2 \alpha t/L^2) \cos(n\Pi \frac{z}{L})
\]

The parameters used in the solution of the problem are as follows:

\[
T_0 = 300^\circ \, k, \quad q = 7.5 \times 10^5 \, W/m^2, \quad L = 0.01 \, m,
\]

\[
\rho = 8000 \, kg/m^3, \quad \alpha = k/(\rho C_p) = 2.5 \times 10^8 \, m^2/s
\]
along with the variations of conductivity coefficient and specific heat capacity in terms of the temperature. In Figure 4, the results obtained with our code are compared with the results of analytical solution at times, $t=4s$ and $t=40s$. As it can be seen, there is suitable conformity between these two results which is emphasis on the accuracy of Newton-Raphson method in solving non-linear equations. In order to become certain about the program accuracy, the obtained results are compared with the results of Ref. [11]. The considered problem in this reference is a missile that enters to atmosphere from 90km altitude, but the trajectory data are not specified. The cold wall heat flux, the recovery enthalpy and the pressure on ablative material in a specific location of the missile are as below:

$$q_{cw,ref} = 1.136J/cm^2s, \ h_{r,ref} = 2326J/g, \ p_{ref} = 101325N/m^2 = 1atm.$$

The virgin composites density is $1450kg/m^3$ and the charring composites density is $1190kg/m^3$. Its pyrolysis heat is $21630J/gr$ and the heat capacity of pyrolysis gas is $C_p = 1.6746J/gr.K$. The rate of change of density is calculated by Arrhenius equation (Equation 6) in which, $m=2$ is considered and the constants A_i and B_i are:

$$A_i = 1.68 \times 10^{-5}, \ A_2 = 2.82, \ A_i = 3.336 \times 10^4 [1/sec], \ B1 = 338, \ B2 = 7049, \ B3 = 15.677$$

According to Figure 6, the amount of recession in composite surface equals to 3.5 ml. The results from the present code have some differences in this comparison which are because of the nature of the numerical methods used (difference in discretization of the equations, differences in solution methods and the cut-off error in differentiation).

Figure 6. Presenting the profile of the surface recession of carbon-phenolic composite

5. CONCLUSIONS

Using Newton-Raphson method in solving the governing equations is one of the advantages of the
presented code. Because this method is easy to understand and can be easily generalized to more complex problems. Besides, this method has a suitable accuracy in solving nonlinear equations because despite the dispersion and low amount of input data, there's a good conformity between the presented results and the results from other references.

6. ACKNOWLEDGMENT

This research work has been supported financially by Ferdowsi University of Mashhad based on contract number 2/17759.

7. REFERENCES